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Abstract

The uniaxial compressive strength (UCS) and modulus of elasticity (E) are two important rock geomechanical parameters that are 

widely used in rock engineering projects such as tunnels, dams, and rock slope stability. Since the acquisition of high-quality core 

samples is not always possible, researchers often indirectly estimate these parameters. In the present study, prediction of UCS and E 

was investigated in calcareous mudstones of Aghajari Formation using multiple linear regression (MLR), multiple nonlinear regression 

(MNLR), artificial neural networks (ANN), and adaptive neuro-fuzzy ınference system (ANFIS). For this purpose, 80 samples from 

calcareous mudstones were subjected to the point loading, block punch, and cylinder punch tests. The performance of developed 

models was assessed based on determination coefficients (R2), mean absolute percentage error (MAPE), and variance accounted 

for (VAF) indices. The comparison of the obtained results revealed that, among the studied methods, ANFIS is the most suitable one 

for predicting UCS and E. Moreover, the results showed that ANN and MLNR respectively predict UCS and E better than MLR and a 

meaningful relationship between the observed and estimated UCS values in all regressions.
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1 Introduction
The Uniaxial compressive strength (UCS) and modulus of 
elasticity (E) of rocks are two basic and important geotech-
nical parameters for engineering applications such as a tun-
nel, dam design, rock blasting, slope stability, foundation 
engineering, and underground excavation. The direct way 
for determination of UCS and E is to test the specimens in 
the laboratory according to the ISRM and the ASTM sug-
gested methods. To determine these parameters accurately 
in the laboratory, the high-quality core samples are needed. 
However, preparing high-quality cores, particularly from 
weak, densely fractured, thinly bedded, and foliated rocks 
is a difficult task. Uniaxial compressive strength (UCS) and 
modulus of elasticity (E) are among the important param-
eters used in designing rock structures, which are obtained 
through the tests on intact rocks in the laboratory [45]. 
Considering the mentioned difficulty involved in the prepa-
ration of high-quality cores from some soft rocks such as 
marl, claystone, mudstone, siltstone, slate, and thin layer 
rocks, many researchers have tried to estimate indirectly the 

uniaxial compressive strength of the rocks using the results 
of other experiments as well as empirical and mathematical 
relations. One of the newest indirect methods for estimating 
uniaxial compressive strength is punch-stone test results. 
In this research, we determine physical and mechanical 
parameters of calcareous mudstones of Aghajari Formation 
located on the Bazideraz anticline. After analyzing the 
obtained results, the relations of each parameter with other 
parameters were investigated. Eventually, the optimum 
balance between the mechanical indices such as point 
load index, block punch index, and cylinder punch index 
was obtained for predicting uniaxial compressive strength 
(UCS) and elastic coefficient (E) values using the adaptive 
neuro-fuzzy inference system (ANFIS).

Several researchers have used various index tests such 
as point load index, Schmidt hammer, P-wave velocity, 
porosity, density, and tensile strength in order to estimate 
UCS in rocks. To date, point load test have yielded the 
best estimation and prediction of UCS index compared 
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to other tests (Sonmez et al. [35]; Diamantis et al. [12]; 
Yilmaz and Yuksek [44]; Basu and Kamran [10]; Heidari 
et al. [17]; Kohno and Maeda[23]; and Wong Li and 
Diyuan [42]; Khanlari and Abdi-lor [26]). Furthermore, 
block punch and cylinder punch tests have been used 
for predicting uniaxial compressive strength of dif-
ferent types of rocks (Van der Schrier [41]; Ulusay and 
Gokceoglu [39]; Gokceoglu and Aksoy [14]; Ulusay et al. 
[40]; Sonmez et al. [34–35]; Sonmez and Tunusluoglu [36]; 
Aksoy [3]; Aksoy et al. [4–5]; Karakul et al. [22]; Jafari 
et al. [19]; Mishra and Basu [32]; Khanlari et al. [24–26]; 
Abatan et al. [1]; Khanlari and Naseri [27]; Heidari et al. 
[18]). More recently, a wide variety of statistical meth-
ods have been utilized for developing a proper correlation 
between UCS index and other engineering properties of 
rocks, among which different statistics analysis models, 
multiple regression analysis, ANN model, fuzzy mod-
els, and ANFIS models have received a greater attention 
(Alvarez and Babuska [6]; Sonmez et al. [34]; Yilmaz and 
Yuksek [44]; Kahraman et al. [21]; Heidari et al. [16–17]; 
Manouchehrian et al. [29]; Mishra and Basu [32]; Torabi-
Kaveh et al. [38]; Armaghani et al. [2]; Jalali [20]).

In the present study, ANFIS and ANN models were 
prepared for the prediction of UCS and E of different cal-
careous mudstones and validated using multiple linear and 
nonlinear regression analyses. 

Fig. 1 a) Location of the study and area

Fig. 1 b) Geological map of the study area and sampling points
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2 Material and methods 
Rock blocks from calcareous mudstone were selected for 
studying and preparing laboratory samples from Aghajari 
Formation. The Aghajari Formation in the study area con-
sists of marl and calcareous mudstones with different 
colors. Altogether, a large number of rock blocks from 
8 rock types were selected based on the physical char-
acteristics of Aghajari Formation and transferred to the 
Bu-Ali Sina University of Hamedan to provide samples 
and perform various experiments. The sampling sites 
consist of the rock blocks including canal and portals of 
Bazideraz tunnel, which has been drilled for water trans-
port. This water transfer tunnel is drilled perpendicular 
to the Bazideraz anticline, which is comprised of Gurpey, 
Asmari, Gachsaran, and Bakhtiari Formations [28]. 

This anticline is located on the Zagros geological zone. 
Aghajari Formation in the west of Iran is located within 
45°40′ to 45°50′ E and 34°20′ to 34°30′ N. The geology 
of the Bazideraz anticline and sampling sites are shown 
in Fig. 1.

3 Result and discussions
To make the dataset needed in this study, mechanical prop-
erties of 80 samples including UCS, E, PLT, BPI, and CPI 
parameters were determined in accordance to the ISRM 
[11,13,40]and the ASTM [7–9] suggested methods, and 
Jafari et al. [19], respectively (Fig. 2). The results are listed in 
Table 1 and basic descriptive statistics for the original dataset 
are presented in Table 2. As shown in Table 1, each test was 
performed on 80 samples and the measured values for UCS 
were between 6.15 and 83.87, for E were between 0.46 and 
5.61, for BPI were between 1.75 and 10.15, and for CPI were 
between 2.18 and 13.36. The minimum and maximum Is(50) 
values were 0.21 and 5.78, respectively. The reason behind 
such a wide range is the geological characteristics of the sam-
ples, including the amount of lime and fine grain content.

3.1 Multiple Regression models 
Multiple regression analysis is a powerful modeling tech-
nique that can be useful when there exits complex rela-
tionships are involved in the problem. Multiple regression 
analysis can be helpful in rock engineering when more 
than one variable is effective in rock characteristics. In 
this research, two approaches of linear and nonlinear mul-
tiple regression analyses were used to determine the pre-
diction of UCS and E respectively, using the BPI, CPI, and 
Is(50). These indices were analyzed as independent vari-
ables while UCS and E were used as dependent variables.

Fig. 2 a) and b) An outcrop of Aghajari Formation from different views 
and c) and d) the prepared samples for laboratory tests

3.1.1 Multiple Linear Regression 
The purpose of regression analysis is to determine the 
relationship between dependent and independent vari-
ables. The general form of the linear regression model is 
as Eq. (1) [37]:

Y c b X b X b X b Xn n= + + + +…+
1 1 2 2 3 3

 (1)

where Y is the dependent variable, C is a constant, X1 to Xn 
are independent variables, and b1 to bn are partial regres-
sion coefficients for X1 to Xn. Finally, two multiple linear 
regression equations were extracted for predicting UCS 
and E:

UCS BPI CPI Is=− + + + ( )6 479 3 425 0 639 7 889
50

. . * . * . *  (2)

E BPI CPI Is= + − + ( )0 709 0 205 0 066 0 579
50

. . * . * . *  (3)

where UCS is a uniaxial compressive strength (MPa), E is 
the modulus of elasticity (GPa), Is(50) is the point loading 
index (MPa), BPI is the block punch index (MPa), and CPI 
is the cylindrical punch index (MPa).

Fig. 3 presents the accuracy of the predicted UCS and 
E based on the coefficient of determinations, which are 
R2 = 0.875 and R2 = 0.730, respectively. The difference 
between the predicted UCS and E (from Eqs. 2–3) and 
their observed values are presented in Fig. 3.

3.1.2 Multiple Nonlinear Regression 
In statistics, nonlinear regression is a form of regression 
analysis in which observational data are modified using 
a function, which is a nonlinear combination of model 
parameters and depends on one or more independent vari-
ables. These nonlinear relationships are extracted based 
on the dispersion of UCS and E against independent vari-
ables. Therefore, the MNLR method was used to design 
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Table 1 Mechanical properties of the used sample data in this study

Sample 
No.

BPI
(MPa)

CPI
(MPa)

Is(50) 
(MPa)

UCS
(MPa)

E
(GPa)

Sample 
No.

BPI
(MPa)

CPI
(MPa)

Is(50) 
(MPa)

UCS
(MPa)

E
(GPa)

M1-1 2.42 2.74 0.21 9.56 0.75 M5-1 5.47 3.86 0.78 27.20 1.99

M1-2 2.55 2.84 0.30 9.75 1.24 M5-2 4.13 2.93 0.90 18.83 2.14

M1-3 2.58 3.18 0.34 9.83 0.96 M5-3 3.79 2.25 1.05 16.51 2.33

M1-4 2.78 3.39 0.38 9.90 1.00 M5-4 3.94 2.77 1.09 18.50 2.36

M1-5 2.81 3.60 0.43 10.07 1.20 M5-5 5.29 3.72 1.10 27.09 2.43

M1-6 2.97 3.66 0.46 10.29 0.84 M5-6 5.83 4.36 1.18 27.80 2.45

M1-7 3.08 3.67 0.50 14.33 2.16 M5-7 3.26 2.25 1.26 15.80 2.56

M1-8 3.11 4.09 0.55 14.64 1.77 M5-8 5.03 2.93 1.38 18.90 2.59

M1-9 3.24 4.16 0.76 15.07 1.89 M5-9 3.24 2.18 1.43 14.35 2.66

M1-10 3.44 4.72 0.81 16.23 1.74 M5-10 6.09 4.55 1.59 29.10 2.94

M2-1 3.75 3.54 1.09 26.68 2.46 M6-1 4.86 8.40 2.27 47.07 2.47

M2-2 4.00 4.24 1.21 26.98 1.98 M6-2 5.14 10.23 2.52 51.17 2.80

M2-3 4.14 5.47 1.26 27.26 1.63 M6-3 8.07 11.35 2.91 52.63 2.97

M2-4 4.39 5.65 1.36 28.88 2.40 M6-4 5.06 10.09 3.09 49.54 3.35

M2-5 4.44 5.89 1.47 30.49 1.63 M6-5 10.15 13.36 3.98 83.87 4.04

M2-6 5.55 6.23 1.56 30.99 2.28 M6-6 8.73 11.39 4.24 54.39 4.14

M2-7 7.15 6.25 1.77 34.99 2.35 M6-7 6.18 10.61 4.82 52.17 4.32

M2-8 7.24 6.66 1.79 36.79 2.73 M6-8 9.13 11.91 4.95 81.66 4.40

M2-9 7.32 7.22 2.12 37.35 2.65 M6-9 9.43 12.11 5.03 82.57 5.28

M2-10 7.34 7.64 2.26 38.04 3.18 M6-10 9.00 11.80 5.78 79.40 5.61

M3-1 3.60 3.87 0.93 13.40 1.07 M7-1 2.34 3.57 0.39 7.39 1.32

M3-2 2.95 3.03 1.36 11.74 1.17 M7-2 2.69 3.86 0.49 12.63 1.61

M3-3 3.41 3.82 1.49 11.97 1.24 M7-3 2.31 3.45 0.53 7.13 1.63

M3-4 4.52 5.88 1.57 19.49 1.26 M7-4 3.00 4.12 0.54 17.61 1.64

M3-5 3.89 4.72 1.58 14.08 1.36 M7-5 2.47 3.81 0.58 11.81 1.67

M3-6 3.98 5.74 1.68 14.71 1.48 M7-6 2.79 3.95 0.61 12.69 1.83

M3-7 5.17 5.93 1.70 20.66 1.52 M7-7 3.61 4.61 0.66 17.63 2.03

M3-8 5.77 6.42 1.82 21.42 1.58 M7-8 3.72 4.71 0.69 17.63 2.03

M3-9 3.81 4.50 2.05 14.00 1.63 M7-9 2.85 4.01 0.73 16.77 2.07

M3-10 5.20 6.26 2.13 21.08 1.72 M7-10 3.83 4.83 0.85 18.51 2.37

M4-1 1.75 2.36 0.44 6.15 0.46 M8-1 3.68 6.53 0.96 12.36 1.49

M4-2 1.81 2.50 0.53 6.76 1.26 M8-2 4.06 6.55 1.11 12.62 1.50

M4-3 1.91 2.68 0.57 7.56 0.94 M8-3 4.52 6.84 1.17 13.42 1.57

M4-4 2.21 3.18 0.59 8.51 1.11 M8-4 4.84 6.86 1.30 14.96 2.00

M4-5 2.31 3.44 0.60 9.02 1.22 M8-5 4.98 6.87 1.43 15.37 1.53

M4-6 2.57 3.63 0.62 9.44 1.18 M8-6 5.04 7.01 1.60 16.17 2.07

M4-7 2.58 3.67 0.65 14.66 0.86 M8-7 5.15 7.11 1.62 24.50 4.58

M4-8 2.97 3.71 0.81 15.28 1.59 M8-8 5.24 7.69 1.71 25.01 1.84

M4-9 3.28 4.01 0.88 15.54 2.53 M8-9 5.74 9.45 1.76 25.10 2.89

M4-10 3.93 5.18 0.95 15.64 1.39 M8-10 5.82 10.28 2.14 25.79 2.25
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new prediction to UCS and E. In order to design the non-
linear multiple regression model, input variables should be 
similar to inputs of linear multiple statistical model. This 
model can be written as Eq. (4):

Y c b X b X b X b Xc c c
n n

c= + + + +…+
1 1

1

2 2

2

3 3

3 4  (4)

where Y is the predicted values for the response, C is the 
width from the origin, X1, X2, X3, and Xn are the predictors, 
b1, b2, b3, and bn are regression coefficients of X1, X2, X3, 
and Xn, and c1, c2, c3, and cn are powers of X1, X2, X3, and Xn, 
respectively.

Two nonlinear regression models were developed to 
predict UCS and E (Fig. 4). The equations obtained are 
shown in Eqs. (5–6):

UCS BPI CPI Is=− + + + ( )0 099 4 126 0 013 0 134
3

50

3
. . * . * . *   (5)

E BPI CPI Is= + − + ( )0 723 0 275 0 0000035 0 0133
3

50

3
. . * . * . *   (6)

The correlation coefficients between the measured and 
predicted (R2) values for UCS and E models are 0.903 and 
0.737, respectively. As can be seen, the UCS can be pre-
dicted better using the MNLR method rather than E.

Table 2 Basic descriptive statistics of the parameter

Variable Observations Minimum Maximum Mean Std. deviation

UCS (MPa) 80 6.147 83.872 23.536 17.755

E (GPa) 80 0.457 5.611 2.089 1.011

BPI (MPa) 80 1.753 10.147 4.405 1.898

CPI (MPa) 80 2.180 13.358 5.481 2.733

Is (50) (MPa) 80 0.214 5.784 1.448 1.152

Fig. 3 a) and b) The relationship between actual and predicted UCS and E from MLR analysis (Eqs. 2–3)

Fig. 4 a) and b) Relationship between actual and predicted UCS and E from MNLR analysis (Eqs. 5–6)
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Fig. 5 The structure of the ANN used in this study

3.2 Neural Network Analysis 
The artificial neural networks (ANNs) are a subset of the 
artificial intelligence system that has made significant prog-
ress in recent years such that it is even used in rock mechanic 
and engineering geology. The most important feature of the 
ANNs, which makes them a powerful and preferential tool, 
is its ability to learn directly from the processing data. An 
ANN can be defined by three basic components: transfer 
function, network architecture, and learning rule. Defining 
these components is the key to solve statistical issues. The 
simplest and most common form of ANNs used in many 
engineering sciences is a multilayer perceptron (MLP) net-
work. To MLP used in this study was designed in Matlab 
Environment. This software provides the ability to design, 
construct, learn, and evaluate ANNs. The networks used in 
this study are MLP with Back Propagation (BP) learning 
law [33]. The architecture of this network is schematically 
illustrated in Fig. 5. MLPs have three layers of neurons; i.e., 
input, hidden, and output layers. The input layer is designed 
to provide data to the network, which receives the data layer 
from various sources, Therefore, the number of neurons in 
the input layers depends on the number of resources in the 
input. In order to estimate UCS and E as dependent vari-
ables, independent variables BPI, CPI, and Is(50) were used 
as network inputs. To find the optimum number of neurons 
in the hidden layer, we used trial and error method. In each 
step of the analysis, the number of neurons in the search for 
the optimal model was increased. Since the weight is a ran-
dom value, the learning process may be trapped in the local 
minima. Hence, each developed network was trained sev-
eral times and then the best model was selected. The learn-
ing process stops when the total square error minimizes 
or falls to an acceptable level. Both ANN models devel-
oped for the prediction of UCS and E have a three-layered 
architecture that includes an input layer (with 3 neurons), a 

hidden layer (with 7 neurons), and an output layer (1 neu-
ron) (Fig. 5). The parameters of the ANN models are pre-
sented in Table 3. The structures of the ANNs designed in 
this work are as follows (7–8):

UCS f BPI CPI Is= ( )( ). .
50

 (7)

E f BPI CPI Is= ( )( ). .
50

 (8)

Figs. 6 and 7 show the correlation values of the designed 
ANN for UCS and E prediction in the training, validation, 
and testing phases and the entire network. As shown in Fig. 
6, the UCS values predicted using the ANN have a high 
correlation with the measured values. However, in Fig. 7, 
there is a lower correlation between the predicted and the 
measured values of E compared to the ones reported for 
UCS index. 

3.3 Adaptive neuro-fuzzy inference (ANFIS)
ANFIS is a popular hybrid intelligent method that com-
bines ANN and fuzzy logic for producing a reliable pre-
dicting system. The method is capable of constructing an 
input-output network consisting of several nodes through 
which data are processed by if-then algorithms. Such algo-
rithms are mainly applied to obtain the faults of impre-
cise models by reviewing the data patterns identified from 
the previous patterns. As stated by Maiti and Tiwari [30], 
ANFIS employs the neural training process to adjust the 
membership function and the associated parameters. In the 
current study, five layers, each having several nodes having 
specific functions (Table 4), formed the initial network. The 
ANFIS model proposed in this study was designed using 
the Matlab software [31] (Fig. 8). In FIS, three descrip-
tive terms (i.e., soft, moderate, and strong) were assigned 
to input variables. Grid partition was applied to make the 
propositions of the fuzzy rules. In the training process, the 
dataset was randomly used. To determine a selected range 
of inputs, a minimum and maximum input variable were 
defined for each variable. A total of 80 datasets were col-
lected and the model was optimized by checking and test-
ing data combined with a hybrid learning algorithm. The 
results of the ANFIS model tests are presented in Fig. 9. 

Table 3 The structures of the ANN models for the prediction of UCS and E

Model Number of input 
neuron

Number of hidden 
neurons

Number of the output 
neuron Network type Training parameters Training algorithm

UCS 3 7 1 Feed-forward 
backpropagation

Learning rate epochs 
26

LM (Levenberg-
Marquardt)

E 3 7 1 Feed-forward 
backpropagation

Learning rate epochs 
10

LM (Levenberg-
Marquardt)
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Fig. 6 Regression coefficients for training, validation, testing, and 
network phases to UCS

Fig. 7 Regression coefficients for the training, validation, testing, and 
network phases to E

Fig. 8 ANFIS structure employed in the study to predict UCS and E

Fig. 9 Relation between predicted and measured for a) UCS (MPa) and 
b) E (GPa) by ANFIS model

Table 4 Different parameter and their corresponding values used for 
ANFIS 

ANFIS parameter type Value of UCS Value of E

MF type Triangular Trapezoidal

Number of MFs 3 3

Output function Constant Constant

Number of fuzzy rules 27 27

Number of training data 56 56

Number of checking data 12 12

Number of testing data 12 12

3.4 Performances analysis of models
In this research, the performances of models designed by 
ANN, linear multiple regression, and nonlinear multiple 
regression were assessed using determination coefficients 
(R2), mean absolute percentage error (MAPE), and vari-
ance account for (VAF) (Eqs. 9–10).
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MAPE
N

x x
xi

N
i i

i

= ×
−











=
∑100

1

'

 (9)

VAF
var x x
var xi

i i

i

= −
−( )
( )
















×1 100

'

 (10)

where N is the total number of the measured data point and 
xi and xi′ are the measured and predicted values, respec-
tively [6–15]. The model will be excellent when MAPE has 
the smallest value and VAF is 100%. The obtained values 
of VAF and MAPE and the comparison of VAF, MAPE, and 
R2 for predicting UCS and E are shown in Table 4.

As shown in Table 5, ANFIS model provided the most 
accurate values in predicting the desired values (MAPE = 
13.89%, VAF = 95.6%, and R2 = 0.957 in predicting UCS 
and MAPE = 17.96%, VAF = 79.10%, and R2 = 0.793 in pre-
dicting E). Moreover, the ANN model (MAPE = 15.81%, 
VAF = 91.27%, and R2 = 0.920 in predicting UCS and 
MAPE = 20.45%, VAF = 78.25%, and R2 = 0.782 in pre-
dicting E) represents the second best results for the pre-
diction of the UCS and E values compared to other statisti-
cal models applied in this study. Finally, MNLR (MAPE = 
19.45%, VAF = 90.34%, and R2 = 0.903 in predicting UCS 
and MAPE = 24.18%, VAF = 73.73%, and R2 = 0.737 in 

Table 5 The obtained values of VAF and MAPE for the MLR, MNLR, 
ANN and ANFIS models

Analysis 
method UCS (MPa) E (GPa)

MAPE 
(%)

VAF 
(%) R2 MAPE 

(%)
VAF 
(%) R2

MLR 24.72 85.76 0.875 24.08 63.10 0.730

MNLR 19.45 90.34 0.903 24.18 73.73 0.737

ANN 15.81 91.27 0.920 20.45 78.25 0.782

ANFIS 13.89 95.60 0.957 17.96 79.10 0.793

Fig. 10 Strengths of relation between input and output parameters to 
UCS and E

predicting E) and MLR (MAPE = 24.72%, VAF = 85.76%, 
and R2 = 0.875 in predicting UCS and MAPE = 24.08%, 
VAF = 63.10%, and R2 = 0.730 in predicting E) models 
have ranked as the third and fourth best models respec-
tively for predicting the UCS and E values in this study.

4 Sensitivity analysis 
Relative impact for parameters of network system was 
predicted using the sensitivity analysis in cosine ampli-
tude method [43]. For this purpose, data array X was built 
according to the data pairs in the following pattern:

X x x x xn={ }
1 2 3
, , ,...,  (11)

where xi in the array X is the length vector of m as:

x x x x xi i i i im={ }
1 2 3
, , ,...,  (12)

Eq. (13) presents the strength of the relation (rij) 
between the data sets Xi and Xj.

r
x x

x ik x ik
ij

k

m
ik jk

k

m

k

m
= =

= =

∑
∑ ∑

1

1

2

1

2

 (13)

Fig. 10 shows the strengths of the relations (rij values) 
between the input and output (UCS and E) variables. The 
results indicate that among the three independent vari-
ables, Is(50) has the greatest impact on UCS with BPI CPI 
being in the next rankings. The BPI has the highest impact 
on the E, Is(50), and CPI in the order of their appearance.

5 Conclusions 
In this paper, ANFIS, ANN, and multiple statistics were 
used to predict the UCS and E parameters of Aghajari cal-
careous mudstones. According to the results of linear and 
nonlinear regression analyses, a strong statistical relation-
ship was found between UCS and the mechanical proper-
ties. The R2 value for MLR, MNLR, ANN, and ANFIS 
models to predict UCS indicate a more accurate perfor-
mance compared to E models, due to the strong rela-
tionship between BPI, CPI, and Is(50) compared to E. In 
addition to validating the statistical models, when the R2 
values are close to each other, VAF and MAPE are effec-
tive in the performance assessment of a variety of models. 
Comparing the observed and estimated measures based 
on the goodness of fit statistics demonstrated that the 
ANFIS models outperform the statistical models in pre-
dicting actual UCS and E values. Furthermore, the MAPE 
and VAF values for the ANFIS models were found to be 
higher than the multiple regression models. For the ANFIS 
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model, VAF and MAPE were calculated 95.6 and 13.89 for 
UCS, and 79.1 and 17.96 for E, respectively. It was con-
cluded that the ANFIS results indicate very close agree-
ment for the UCS and E with the laboratory datasets as 
compared with the multiple regression models predictions. 
Four equations were proposed based on the multiple linear, 
nonlinear regressions, ANN, and ANFIS analyses for pre-
dicting UCS and E of the calcareous mudstones. However, 
it has to be noted that the predicted equations derived by 
the authors are valid only for the studied calcareous mud-
stones or soft rocks with similar characteristics. So, addi-
tional studies are needed to verify these relationships.
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