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Abstract

Genetic Algorithm (GA) is one of the most widely used optimization algorithms. This algorithm consists of five stages, namely population 

generation, crossover, mutation, evaluation, and selection. This study presents a modified version of GA called Improved Genetic 

Algorithm (IGA) for the optimization of steel frame designs. In the IGA, the rate of convergence to the optimal solution is increased by 

splitting the population generation process to two stages. In the first stage, the initial population is generated by random selection 

of members from among AISC W-shapes. The generated population is then evaluated in another stage, where the member that 

does not satisfy the design constraints are replaced with stronger members with larger cross sectional area. This process continues 

until all design constraints are satisfied. Through this process, the initial population will be improved intelligently so that the design 

constraints fall within the allowed range. For performance evaluation and comparison, the method was used to design and optimize 

10-story and 24-story frames based on the LRFD method as per AISC regulations with the finite element method used for frame 

analysis. Structural analysis, design, and optimization were performed using a program written with MATLAB programming language. 

The results show that using the proposed method (IGA) for frame optimization reduces the volume of computations and increases the 

rate of convergence, thus allowing access to frame designs with near-optimal weights in only a few iterations. Using the IGA also limits 

the search space to the area of acceptable solutions.

Keywords

optimization, genetic algorithm, steel frame, optimum design

1 Introduction
Optimization is the process of finding the best solution 
of a problem subject to one or several constraints. In the 
optimization of structural designs, the choice of variables 
and specifically the decision to use continuous or discrete 
variables has a great impact on the volume of computa-
tions needed to reach the optimal solution. There are many 
different methods and algorithms for solving optimization 
problems, and recent decades have witnessed a steady 
increase in the number and quality of methods available 
for this purpose [1]. With the scientific progress in the field 
of optimization, new approaches have been introduced to 
reduce the volume of computations as well as the time 
needed to carry out computational operations. Regardless 

of the approach, one of the shared goals of optimization 
methods and algorithms is to reach the optimal solution in 
the shortest possible time by performing the least amount 
of computations possible. In the field of structural design, 
designers now have access to a wide variety of design 
optimization methods. Nevertheless, the final choice of 
optimization approach and algorithm heavily depends on 
the type of problem and the number of variables.

Search algorithms are a variety of optimization algo-
rithms that greatly reduce the volume of computations and 
the size of design space. These algorithms can be divided 
into two broad categories of stochastic search algorithms 
and deterministic search algorithms, each with their own 
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advantages and disadvantages. Stochastic search tech-
niques do not need to obtain the derivatives of objective 
functions and constraints, as they converge to the opti-
mum by checking random solutions [2]. Today, easy access 
to powerful computers and computer programs has made 
it easier to obtain an optimal solution in the shortest pos-
sible time through the generation of random solutions [3]. 
Hence, recent years have seen a growing interest in the use 
of stochastic search techniques in combination with the 
principles of probability theory in order to develop more 
effective optimization algorithms. The choice of algo-
rithm to be used for a problem depends on the number 
of variables and constraints as well as the problem size. 
For large-scale problems, the use of stochastic search algo-
rithms dramatically increases the rate of convergence to 
the optimal solution [4]. Major advantages of genetic algo-
rithm over other optimization algorithms include the abil-
ity to use both discrete and continuous variables, flexibil-
ity in defining constraints, the ability to search large-scale 
spaces, reduced data processing time, and the ability to 
use parallel techniques to reach the optimal solution [5].  
Genetic algorithm decreases the volume of computations 
by reducing the search domain at successive iterations; a 
feature that makes this algorithm very useful for large-
scale problems with a large number of variables. Given 
its simplicity and outstanding features, genetic algorithm 
has been used as the core of many optimization methods 
developed for specific problems [6]. For example, Kaveh 
et al. used the genetic algorithm for the optimization of 
steel moment-resisting frames with simple and clamped 
supports [7].

It is reasonable to claim that the nature of the genetic 
algorithm makes it more suitable than other algorithms for 
solving large-scale problems [8]. However, as the search 
space grows, the rate of convergence of this algorithm to 
the optimal solution decreases. In this paper, the rate of 
convergence to the optimal solution of a structural design 
problem is increased by defining the formulations so that 
if the evaluation of the initial population reveals a failure 
to satisfy the design constraints, the population members 
will be replaced with stronger members and this process 
will continue until all design constraints for every member 
are met. As a result, the initial population will turn into an 
improved population where all design variables fall within 
their respective allowed ranges. Design and optimization 
of frame members are performed using the LRFD method 
and based on AISC regulations. The sections to be used in 
the design are selected from the group of AISC W-shapes.

2 Genetic algorithm
The genetic algorithm generally consists of five stages: 
population generation, crossover, mutation, evaluation, 
and selection. Since the introduction of this algorithm by 
Holland and its formulation by Goldberg, these five stages 
have evolved to address different needs in different venues 
of optimization [9]. The genetic algorithm is among the 
most popular algorithms for the optimization of structural 
designs, especially for steel structures.

The major methods developed for different stages of 
the genetic algorithm include: binary method [10], con-
tinuous method [11], hybrid method [12], variable length 
method [13], and multidimensional method [14] for the 
population generation stage; single-point crossover [15], 
multi-point crossover [16], heuristic method, and hybrid 
method [17] for the crossover operation; direct adaptive 
mutation [18] and power mutation [19] for the mutation 
operation; single-objective approach [20] and multi-objec-
tive approach [21] for the evaluation process; and tourna-
ment method [22], roulette wheel methods [23], and rank/
merit based methods [24] for the selection operation. In 
fact, the choice of the method to be used at each stage of 
the genetic algorithm has a significant impact on its effi-
ciency and effectiveness and how well it can converge to 
the optimal solution with the least amount of computation 
[25]. This choice also depends on the type of optimization 
to be carried out. To solve project scheduling problem with 
resource constraint, a new hybrid meta-heuristic ANGEL 
was first developed by Tseng and Chen [26]. Moreover, 
in addition of developing ANGLE method, Csebfalvi [27] 
introduced an effective hybrid metaheuristic to deal with 
discrete size optimization for stability constrained truss 
structures [28]. It is generally emphasized that the main 
mission of Angle method [29] is to combine practices of 
different methods such as gradient-based local search (L) 
strategy, ant colony optimization (ACO) and genetic algo-
rithm (GA) [30]. According to the literature, for compar-
ison of efficiency in population-based heuristic methods, 
Csebfalvi proposed another approach which is correct sta-
tistically. Such methodologies can lead to more proper 
solutions for huge number of optimization problems in a 
rational time range [31].

 In the present study, the initial population is generated 
using the random binary method, and is then improved 
through an intelligent process until all the design crite-
ria are satisfied. The crossover operation is performed by 
the simultaneous use of three different methods, namely 
single-point crossover, two-point crossover, and uniform 
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crossover. The direct adaptive mutation method is used 
for the mutation operation, and single-objective approach 
is used for the evaluation. The selection operation is car-
ried out by the simultaneous use of three methods, namely 
rank/merit based selection, tournament selection, and ran-
dom selection.

3 Formulation of the optimization problem
In the proposed formulation, the problem variable is the 
cross-sectional area of the members and the objective 
function is the weight of the structure. Given the direct 
relationship between volume and weight, the objective 
function is defined as Eq. (1A). The problem constraints, 
including the limits on compressive force, tensile force, 
shear force, the simultaneous effect of axial force and 
bending moment, slenderness, cross sectional area, and 
story drift, are defined based on the LRFD design method 
as per AISC (2016) regulations. These constraints are pre-
sented as Eqs. (1B) to (1L) [32,33]. 
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In Eq. (1A), w is the frame weight, ρ is the density, A is 
the cross-sectional area, and L is the length of the mem-
bers. In Eqs. (1B) and (1C), which represent the axial force 

constraints of the members, Pu is the factored compres-
sive/tensile force of the member, Pn is the nominal com-
pressive/tensile strength of the member, ϕt is the tensile 
strength reduction factor, which is 0.90 for yield and 0.75 
for fracture, and ϕc is the compressive strength reduction 
factor, which is equal to 0.9.

In Eq. (1D), which expresses the shear force constraint 
of the members, ϕv is the shear strength reduction factor, 
which is equal to 0.9, Vu is the factored shear force of the 
member, and Vn is the nominal shear strength of the mem-
ber, which must be equal to the smallest value calculated 
based on shear yielding and shear buckling states.

Equations (1E) and (1F) are the constraints for the 
members that are subject to both axial force and bending 
moment. In these equations, Pu is the compressive force, 
Pc is the design compressive strength of the member, ϕc 
is the compressive strength reduction factor, which is 0.9, 
Mux is the bending moment about the strong axis x, Muy 
is the bending moment about the weak axis y, Mcx is the 
design bending strength about the strong axis x, and Mcy 
is the design bending strength about the weak axis y. The 
design compressive strength of the members is equal to 
ϕcPn, and the design bending strengths of the members 
about the axes x and y are ϕbMnx, and ϕbMny, respectively. 
The strength reduction factor ϕb is equal to 0.9 and Mnx and 
Mny are the nominal bending strengths of the members.

Equations (1G) and (1H) are the slenderness con-
straints for the members under compressive axial force. 
In these equations, K is the effective length factor given 
by Dumonteil’s equation [34], L is the length without lat-
eral anchorage, and r is the radius of gyration of the cross 
section. For tensile members, the slenderness ratio should 
not exceed 300. The extra constraints defined to prevent 
cross-sectional areas from becoming zero and to keep 
them in the normal range are expressed by Eq. (1I). In this 
equation, Aj is the cross-sectional area of the columns at 
upper stories, Aj–1 is the cross-sectional area of the col-
umns at lower stories, and nc is the number of columns.

The constraints related to relative and total drifts are 
expressed in Eqs. (1J) and (1K). In these equations, δj is the 
displacement of the story j, δj–1 is the displacement of the 
story below the story j, hj is the height of the story j, Δj is the 
total drift of the story j relative to the base floor, δju and Δmax 
are the maximum allowed relative and total story drifts as 
per AISC 360-16, and ns is the number of stories. Equation 
(1J) limits the inter-story drift to δju and Eq. (1K) limits the 
total drift of each story to Δmax. According to AISC 360-
16, the maximum relative drift should be between h/200 

(1E)

(1F)

(1G)

(1H)
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and h/600 and the maximum total drift should be between 
H/100 and H/600 (where h is the height of each story and 
H is the elevation of each story from the base floor). In the 
above equations, the only design variable is the cross sec-
tional area of the members, and other problem parameters 
such as Ix, Iy, Sx, Sy, rx, ry are expressed as a function of 
cross-sectional area of the members. After quantifying the 
degree of violation of constraints in each population mem-
ber using Eq. (1), the sum of g1 to g8 for each population 
member is obtained by the following equation:

g g
i

i9

1

8

=
=
∑ .  (2)

In Eq. (2), a positive g9 is indicative of the violation of 
constraints. When g9 is positive, it will be used to calculate 
a penalty function for the corresponding population mem-
ber using the following equation:

v gz
i

m
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9
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In Eq. (3), vz is the penalty value that will be applied 
to the population members (designs) that violate the con-
straints. To act as a penalty, the normalized value of vz will 
be added to the weight of the structure:

w w v wt z= + × .  (4)

The weight value obtained from Eq. (4) will be con-
sidered as the final weight of the selected design. In Eqs. 
(3) and (4), m is the number of members, w is the frame 
weight, and wt is the final frame weight after the applica-
tion of the penalty function.

In the evaluation stage of the Improved Genetic 
Algorithm (IGA), any population member that results in 
the violation of constraints, that is, Eq. (1) becoming pos-
itive, will be immediately replaced with a stronger mem-
ber. In other words, the initial population will be improved 
until all design constraints of the members are satisfied. 
Therefore, the improved population obtained after the eval-
uation stage is guaranteed to meet all of the constraints. 
This changes the domain of search for   frame designs from 
the area of all possible solutions to the area of acceptable 
solutions. As a result, the value of vz approaches zero.

4 Program algorithm
The algorithm of the analysis program is written based 
on the force-displacement approach. Using this approach, 
the internal forces of each member are determined with 
the help of the finite element method. Having the internal 

Fig. 1 Main flowchart of the program

Fig. 2 Flowchart of IGA-based optimum design generation

forces and the design constraints, the optimal cross sec-
tional area of the members is then determined using the 
improved genetic algorithm. The program developed for 
analysis and optimization is written in MATLAB pro-
gramming language. The general flowchart of the pro-
posed program is illustrated in Fig. 1.

The flowchart of the presented optimization algorithm 
is shown in Fig. 2. In this algorithm, the crossover proba-
bility is 0.85, mutation probability is 0.3, and mutation rate 
for each population is 0.05. The parent members to be used 
in the crossover operation are selected by three methods: 
random selection, rank/merit based selection, and tourna-
ment selection. This operation is performed by simultane-
ous use of three crossover methods, namely single-point 
crossover, two-point crossover, and uniform crossover, in 
order to benefit from the features of all of them in creating 
optimal solutions.
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4.1 Population generation
The initial population is generated by random selection of 
members from 132 AISC W-shapes. After the generation 
of the initial population, the finite element method will be 
used to analyze the frame based on the sections allocated 
to its members. Once the internal forces are determined, 
the design constraints will be checked for each member. 
If any of the design variables are not within the allowed 
range (when a constraint is violated), the improved genetic 
algorithm (IGA) will replace the member with a stronger 
counterpart. This process will be repeated for every con-
straint and every member to ultimately transform the ini-
tial population into an improved population. The frame 
weight will be determined based on this population and 
the process will be repeated for other populations. This 
modification in the evaluation of the initial population sig-
nificantly increases the rate of convergence to the optimal 
solution. In other words, the obtained values will   approach 
the optimal solution after a few iterations.

4.2 Selection
After determining the frame weight for each improved 
population, some of the populations must be selected for 
crossover. In this paper, this selection is performed by 
using random selection, rank/merit based selection, and 
tournament selection together. In the random selection, all 
populations have equal chance of being selected. In the 
rank/merit based selection, the chance of a population 
being selected depend on the objective function value.

P Pr I ii = ={ }.  (5)

In Eq. (5), Pi is the probability of population i being 
selected. In the rank/merit based selection, the probability 
of selection must satisfy the three following conditions:
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In Eq. (6), npop is the number of populations, P is the 
probability of each population, and W is the frame weight 
resulting from the population (with the penalty function 
taken into account). Equation (6) states that the proba-
bility of each population being selected is a value in the 
range [0,1], the sum of the probabilities for all populations 
is 1, and if the final frame weight of population i (with the 
penalty function taken into account) is less than that of 

a) single-point crossover        b) two-point crossover
Fig. 3 schematic diagram of the crossover operation

population j, there is a greater probability for the selection 
of population i than for the selection of population j. In 
Eq. (6), Pi is determined based on the roulette wheel. In 
the tournament selection, first three populations will be 
selected at random (with equal probability), then the best 
among them will be announced as the final selection. In 
the worst case scenario, the two populations that give the 
worst solutions will be discarded.

4.3 Crossover
In the presented algorithm, single-point crossover, two-
point crossover, and uniform crossover are applied simul-
taneously. In the single-point crossover, the two popula-
tion members that are selected as parents will be split at a 
random point and the resulting segments will be swapped 
with each other (Fig. 3a). In the two-point crossover, par-
ents will be split at two random points and the middle seg-
ments will be swapped with each other (Fig. 3b).

In the uniform crossover, the two parents will be com-
bined randomly. More specifically, for two parents such as 
X1 and X2, where:
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the children, Y1 and Y2, where:

Y Y Y Y
Y Y Y Y

n

n

1 11 12 1

2 21 22 2

=( )
=( )







.

.

...

...
 (8)

will be calculated as follows:

Y X X

Y X X

i
i

n

i i i i

i
i

n

i i i i

1

1

1 2

2

1

2 1

1

1

= + −( )

= + −( )










=

=

∑

∑

a a

a a

=( ) ∈{ }a a a a a
1 1

0 1. . . .... n

 (9)

In Eq. (9), α is a random number between 0 and 1, which 
ensures that the parents are combined uniformly.
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Fig. 4 Topology of the one-bay, 10-story frame

4.4 Mutation
Mutation plays a key role in the rate of convergence to the 
optimal solution. In the mutation operation, a percentage 
of the population will be selected to be replaced with other 
members of the population. In other words, this operation 
ensures a degree of randomness and diversity in the gen-
erated solutions. The mutation rate usually ranges from 5 
to 20% depending on the problem. In the present study, the 
mutation rate is set to 5%.

5 Design examples
To illustrate the performance of the proposed method, this 
section presents the results obtained by designing a one-
bay 10-story frame and a three-bay 24-story frame with 
the Genetic Algorithm (GA) and the Improved Genetic 
Algorithm (IGA). The results are also compared with the 
results of other works. Through these two examples, we 
will show that the improved genetic algorithm is much 
more effective in optimizing the frames with a higher 
number of members. In the first example, the members 
were selected from a group of 132 AISC W-shapes, but 
in the second one, they were selected from a group of 283 
AISC W-shapes. The design was performed using the 
LRFD method based on AISC 340-16 and AISC 360-16 
regulations. Design, analysis, and optimization operations 
were carried out simultaneously using a program written 
with MATLAB programming language. In this program, 
frame analysis was performed using the finite element 
method and optimization was carried out based on either 

Genetic Algorithm (GA) or Improved Genetic Algorithm 
(IGA). At each stage, frame analysis was performed based 
on the sections generated by the Genetic Algorithm (GA) 
and improved by the Improved Genetic Algorithm (IGA).

5.1 One-bay 10-story frame
The loading in the one-bay 10-story frame is shown in Fig. 
4. This frame consists of 30 members designed and opti-
mized using the LRFD method in accordance with AISC 
(2016) regulations. Here, members were assumed to have 
a modulus of elasticity of 200 (GPa) and yield stress of 240 
(MPa), and steel density was assumed to be 7680 (N/m3).

The initial population for the optimization under the 
loads of Fig. 4 was formed by random selection from a 
group of 132 AISC W-shapes. The optimum frame weight 
obtained after 100 iterations of Genetic Algorithm (GA) 
was 265.8 (KN) while the one obtained using the improved 
genetic algorithm (IGA) was 258.9 (KN). The diagram of 
convergence to the optimal solution in both algorithm is 
displayed in Fig. 5.

a) GA

b) IGA
Fig. 5 Optimum weight of one-bay, ten story frame
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As shown in Fig. 5, it takes the genetic algorithm 40 
iterations to approach the frame weight of 400 (KN), but 
the improved genetic algorithm does that in just four iter-
ations. Also, since the selection, crossover, and mutation 
operations of the IGA are performed on improved popula-
tions, the optimum weight is lower than what is achieved 
with the standard GA.

Fig. 6 shows the values of constraint violation mea-
sures g1 to g9. The results show that in the GA, these val-
ues approach zero after about 40 iterations, but in the IGA, 
the improvement of the initial population has led to these 
values becoming zero at the very first iteration. In other 
words, while it takes about 40 iterations for the genetic 
algorithm to improve the population, the improved genetic 
algorithm does this at the beginning of its operation. As 
shown in Fig. 6, the total constraint violation measure, Vz, 
is obtained by summing up the individual constraint viola-
tion values calculated for each frame member.

As instructed in AISC 340-16, story drift is limited to 
H/300. The story drift values obtained for this frame are 
shown in Fig. 7.

Fig. 7 Drift of stories in the one-bay, ten-story frame

In Table 1, the results of the proposed method are com-
pared with the results of the methods of Pezeshk et al., 
Camp et al., Degertekin, Kaveh and Talatahari [35–38], 
which operate based on ant colony optimization, harmonic 
search, and improved ant colony optimization algorithms 
(for the same frame). This comparison shows that the opti-
mal weight obtained by the IGA is 2.6% lower than the one 
obtained using the standard GA.
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Fig. 6 Constraint violation values obtained for one-bay, 10-story frame

a) GA

 
0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

Iteratin

D
rif

t(m
)

 

 
Roof Storey



148|Baradaran and Madhkhan
Period. Polytech. Civ. Eng., 63(1), pp. 141–151, 2019

Table 2 Optimum weight of three-bay, 24 story frame (AISC W-Shape)

Saka 
[40]

Camp 
[36]

Degertekin 
[37]

Kaveh 
[38]

Present work

GA IGA

958.75 980.63 955.74 884.88 884.98 877.98

Fig. 8 Topology of the three-bay, 24 story frame

5.2 Three-bay 24-story frame 
Fig. 8 shows the diagram of the three-bay 24-story frame 
under gravitational and lateral loading. This frame was first 
designed by Davison and Adams [39]. In a study by Saka and 
Kameshki, they used the genetic algorithm to calculate the 
minimum weight of this frame based on BS 5950 code [40]. 

In other studies, Camp et al. optimized this frame with the ant 
colony optimzation algorithm [36] and Degertekin optimized 
it with the harmonic search algorithm [37]. In 2012, this 
frame was optimized by Kaveh and Talatahari using a mod-
ified version of the ant colony optimization algorithm [38]. 
The frame shown in Fig.8 was optimized using the Genetic 
Algorithm (GA) and the Improved Genetic Algorithm 
(IGA) with 200 initial populations. The optimal frame 
weight obtained from these algorithm and other similar 
methods are presented in Table 2. This frame consists of 
168 members. For this frame, modulus of elasticity was 
assumed to be 200 (GPa), yield stress was assumed to be 
240 (MPa), and steel density was assumed to be 7680 (N/
m3). It should again be mentioned that the frame members 
were designed and optimized based on the LRFD method 
as per AISC 341-16 and AISC 360-16.

The results show that the frame obtained with the IGA 
is 8% lighter than the one obtained using the GA. The 
convergence diagram of this frame is plotted in Fig. 9. As 
shown in this diagram, the IGA approaches the optimal 
weight after about 16 iterations and ultimately reaches the 
best weight at 43th iteration. In the GA, however, the ran-
dom selection of the initial population leads to a far more 
gradual movement toward the optimal weight, which is so 
slow that it takes 100 iterations for the algorithm to reach 
the solution. Fig. 9 shows the convergence rate of the IGA 
compared to that of the GA.

Fig. 10 shows the drift of the stories in this frame. In 
ASCE 341-16 code, the maximum allowed total story drift 
is between H/100 and H/600 and the maximum allowed rel-
ative drift is between h/200 and h/600 (where H is the ele-
vation of each story from the base floor and h is the height 

Table 1 Optimum weight of one-bay, ten story frame (AISC W-Shape)

Pezeshk [35] Camp [36] Degertekin [37] Kaveh [38]
Present work

GA IGA

33×1183* 30×1083 33×1183 30×903 27×1784 21×1011 27×1783 18×712

30×903 30×903 30×993 27×843 27×1462 21×571 24×1622 24×681

27×843 27×543 24×763 27×843 27×1024 18×1191 27×1462 24×552

24×551 21×441 18×461 21×441 24×1311 18×761 24×1311 18×501

14×2334 14×2334 14×2114 40×2154 24×841 18×602 27×1142 10×121

14×1764 14×1764 14×1764 30×1734 24×764 18×551 24×1041

14×1594 14×1454 14×1454 24×1464 24×621 14×821 27×1022

14×994 14×994 14×904 21×1114 24×553 12×721 18×972

12×794 12×654 14×614 12×874 21×1111 27×848

Total weight of frame (KN)

289.72 278.5 275.18 271.33 265.82 258.95
* (Member count)
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a) GA

b) IGA
Fig. 9 Optimum weight of three-bay, 24-story frame

of each story). In the present study, the maximum allowed 
drift was considered to be H/300. As shown in Figs. (10-
A) and (10-B), with the IGA, the story drift falls in the 
allowed range right from the start, but it takes many itera-
tions for the GA to reach an acceptable drift.

The values of constraint violation measures g1 to g9 in 
the design of three-bay 24-story frame are plotted in Fig. 
11. As shown in Fig. 11, with the IGA, these values have   
approached zero from the beginning, and this has led to 
an increase in the rate of convergence.  This is because of 
the improvement of the initial population at the evaluation 
stage by controlling the constraints.

6 Conclusions
Genetic algorithm (GA) is among the most popular and 
most widely used metaheuristic algorithms used for opti-
mization. This algorithm has shown to be particularly 
effective in solving design optimization problems with 
a high number of members. Because of the great size of 
the randomly generated initial population, this algorithm 
imposes significant computational burden when solving 
the problems with large number of variables. In this paper, 
the randomly generated initial population of the GA is 
improved through a modification in the evaluation stage 
in order to achieve better performance for the structural 
design optimization problem. As a result of this modifi-
cation, the initial population will be improved at the first 

a) IGA

b) GA
Fig. 10 Drift of stories in the one-bay, 24-story frame

Fig. 11 Constraint violation values obtained for three-bay, 24-story 
frame

evaluation stage through the replacement of the undesir-
able members with the members that satisfy the design 
constraints. This technique reduces the volume of compu-
tations and increases the rate of convergence to the opti-
mal solution. The results show that as the number of sto-
ries and bays in the frame increases, the improved genetic 
algorithm exhibits better convergence to the design with 
the optimal frame weight. This approach of the IGA also 
limits the search space to the area of acceptable solutions.
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The use of three different types of crossover and popu-
lation evaluation methods in the IGA leads to the genera-
tion of diverse solutions. In order to avoid uniformity in the 
improved populations, at each step of the algorithm, new 
random solutions are added to the initial population. Also, 
the simultaneous use of three different crossover opera-
tions, namely single-point crossover, two-point crossover, 
and uniform crossover, along with three different selec-
tion methods, namely random selection, rank/merit based 
selection, and tournament selection, has allowed the meth-
ods to obtain optimal designs with lower weights.

References
[1] Lógó, J. "New type of optimal topologies by iterative method", 

Mechanics Based Design of Structures and Machines, 33(2), pp. 
149–171, 2005. 

 https://doi.org/10.1081/SME-200067035
[2] Lógó, J., Ghaemi, M., Vasarhelyi, A. "Stochastic compliance con-

strained topology optimization based on optimality critera method", 
Periodica Polytechnica Civil Engineering, 51(2), pp. 5–10, 2007. 

 https://doi.org/10.3311/pp.ci.2007-2.02
[3] Dao, S. D. "Modelling and intelligent optimisation of production sche- 

duling in VCIM systems", 1st ed., Springer, Cham, Switzerland, 2018.  
https://doi.org/10.1007/978-3-319-72113-2

[4] Zhang, C., Lin, Q., Gao, L., Li, X. "Backtracking Search Algorithm 
with three constraint handling methods for constrained optimization 
problems", Expert Systems with Applications, 42(21), pp. 7831–
7845, 2015. 

 https://doi.org/10.1016/j.eswa.2015.05.050
[5] Paul, P. V., Moganarangan, N., Kumar, S. S., Raju, R., Vengattaraman, 

T., Dhavachelvan, P. "Performance analyses over population seed-
ing techniques of the permutation-coded genetic algorithm: An 
empirical study based on traveling salesman problems", Applied 
Soft Computing, 32, pp. 383–402, 2015. 

 https://doi.org/10.1016/j.asoc.2015.03.038
[6] Alberdi, R., Khandelwal, K. "Comparison of robustness of meta-

heuristic algorithms for steel frame optimization", Engineering 
Structures, 102, pp. 40–60, 2015. 

 https://doi.org/10.1016/j.engstruct.2015.08.012
[7] Kaveh, A., Ghafari, M. H., Gholipour, Y. "Optimum seismic design 

of steel frames considering the connection types", Constructional 
Steel Research, 130, pp. 79–87, 2017. 

 https://doi.org/10.1016/j.jcsr.2016.12.002
[8] Kaveh, A. "Advances in metaheuristic algorithms for optimal design 

of structures", 2nd ed., Springer, Cham, Switzerland, 2017.
 https://doi.org/10.1007/978-3-319-46173-1
[9] Goldberg, D. E. "Genetic Algorithms in Search, Optimization, and 

Machine Learning", 1st ed., Addison-Wesley Longman Publishing, 
Boston, Massachusetts, USA, 1989.

[10] He, Y., Hui, C.-W. "A binary coding genetic algorithm for multi-pur-
pose process scheduling: A case study", Chemical Engineering 
Science, 65(16), pp. 4816–4828, 2010.

 https://doi.org/10.1016/j.ces.2010.05.032

[11] Csébfalvi, A. "A hybrid meta-heuristic method for continuous engi-
neering optimization", Periodica Polytechnica Civil Engineering, 
53(2), pp. 93–100, 2009. 

 https://doi.org/10.3311/pp.ci.2009-2.05
[12] Chen, C., Xia, J., Liu, J., Feng, G. "Nonlinear inversion of 

potential-field data using a hybrid-encoding genetic algorithm", 
Computers and Geosciences, 32(2), pp. 230–239, 2006. 

 https://doi.org/10.1016/j.cageo.2005.06.008
[13] Dao, S. D., Marian, R. M. "Modeling and optimization of prece-

dence-constrained production sequencing and scheduling for multi-
ple production lines using genetic algorithm", Computer Technology 
and Application, 2(6), pp. 487–499, 2011. 

 https://doi.org/10.17265/1934-7332/2011.06.009
[14] Dao, S. D., Abhary, K., Marian, R. "Optimisation of partner selection 

and collaborative transportation scheduling in Virtual Enterprises 
using GA", Expert Systems with Applications, 41(15), pp. 6701-
6717, 2014. 

 https://doi.org/10.1016/j.eswa.2014.04.030
[15] Dao, S. D., Marian, R. M. "Optimisation of precedence-constrained 

production sequencing and scheduling using genetic algorithms", 
In: International Multi Conference of Engineers and Computer 
Scientists, Hong Kong, China, 2011, pp. 59–64.

[16] Esen, İ., Koç, M. A. "Optimization of a passive vibration absorber 
for a barrel using the genetic algorithm", Expert Systems with 
Applications, 42(2), pp. 894–905, 2015. 

 https://doi.org/10.1016/j.eswa.2014.08.038
[17] Suresh, S., Huang, H., Kim, H. J. "Hybrid real-coded genetic algo-

rithm for data partitioning in multi-round load distribution and 
scheduling in heterogeneous systems", Applied Soft Computing, 24, 
pp. 500–510, 2014. 

 https://doi.org/10.1016/j.asoc.2014.07.021
[18] Tang, P.-H., Tseng, M.-H. "Adaptive directed mutation for real-

coded genetic algorithms", Applied Soft Computing, 13(1), 600–
614, 2013. 

 https://doi.org/10.1016/j.asoc.2012.08.035
[19] Deep, K., Thakur, M. "A new mutation operator for real coded 

genetic algorithms", Applied Mathematics and Computation, 
193(1), pp. 211–230, 2007. 

 https://doi.org/10.1016/j.amc.2007.03.046
[20] Faghihi, V., Reinschmidt, K. F., Kang, J. H. "Construction schedul-

ing using genetic algorithm based on building information model", 
Expert Systems with Applications, 41(16), pp. 7565–7578, 2014.

 https://doi.org/10.1016/j.eswa.2014.05.047
[21] Aiello, G., La Scalia, G., Enea, M. "A nondominated ranking 

multi-objective genetic algorithm and electre method for unequal 
area facility layout problems", Expert Systems with Applications, 
40(12), pp. 4812–4819, 2013. 

 https://doi.org/10.1016/j.eswa.2013.02.026
[22] Castelli, M., Vanneschi, L. "Genetic algorithm with variable neigh-

borhood search for the optimal allocation of goods in shop shelves", 
Operations Research Letters, 42(5), pp. 355–360, 2014. 

 https://doi.org/10.1016/j.orl.2014.06.002
[23] Lipowski, A., Lipowska, D. "Roulette-wheel selection via stochastic 

acceptance", Physica A: Statistical Mechanics and its Applications, 
391(6), pp. 2193–2196, 2012. 

 https://doi.org/10.1016/j.physa.2011.12.004

https://doi.org/10.1081/SME-200067035
https://doi.org/10.3311/pp.ci.2007-2.02
https://doi.org/10.1007/978-3-319-72113-2
https://doi.org/10.1016/j.eswa.2015.05.050
https://doi.org/10.1016/j.asoc.2015.03.038
https://doi.org/10.1016/j.engstruct.2015.08.012
https://doi.org/10.1016/j.jcsr.2016.12.002
https://doi.org/10.1007/978-3-319-46173-1
https://doi.org/10.1016/j.ces.2010.05.032
https://doi.org/10.3311/pp.ci.2009-2.05
https://doi.org/10.1016/j.cageo.2005.06.008
https://doi.org/10.17265/1934-7332/2011.06.009
https://doi.org/10.1016/j.eswa.2014.04.030
https://doi.org/10.1016/j.eswa.2014.08.038
https://doi.org/10.1016/j.asoc.2014.07.021
https://doi.org/10.1016/j.asoc.2012.08.035
https://doi.org/10.1016/j.amc.2007.03.046
https://doi.org/10.1016/j.eswa.2014.05.047
https://doi.org/10.1016/j.eswa.2013.02.026
https://doi.org/10.1016/j.orl.2014.06.002
https://doi.org/10.1016/j.physa.2011.12.004


Baradaran and Madhkhan 
Period. Polytech. Civ. Eng., 63(1), pp. 141–151, 2019|151

[24] Boudissa, E., Bounekhla, M. "Genetic algorithm with dynamic selec-
tion based on quadratic ranking applied to induction machine param-
eters estimation", Electric Power Components and Systems, 40(10), 
pp. 1089–1104, 2012. 

 https://doi.org/10.1080/15325008.2012.682246
[25] Dao, S. D., Abhari, K., Marian, R. "An innovative framework 

for designing genetic algorithm structures", Expert Systems with 
Applications, 90, pp. 196–208, 2017. 

 https://doi.org/10.1016/j.eswa.2017.08.018
[26] Tseng, L.-Y., Chen, S.-C. "A hybrid metaheuristic for the resource 

constrained project scheduling problem", European Journal of 
Operation Research, 175(2), pp. 707–721, 2006. 

 https://doi.org/10.1016/j.ejor.2005.06.014
[27] Csébfalvi, A. "Hybrid metaheuristic methods in truss optimization: A 

review", Computational Technology Reviews, 8, pp. 63–92, 2013.
 https://doi.org/10.4203/ctr.8.3
[28] Csébfalvi, A. "Angel method for discrete optimization problems", 

Periodica Polytechnica Civil Engineering, 51(2), pp. 37–46, 2007.
 https://doi.org/10.3311/pp.ci.2007-2.06
[29] Csébfalvi, A. "Optimal design of frame structures with semi-rigid 

joints", Periodica Polytechnica Civil Engineering, 51(1), pp. 9–15, 
2007. 

 https://doi.org/10.3311/pp.ci.2007-1.02
[30] Csébfalvi, A. "ANGEL: A Simplified Hybrid Metaheuristic for Struc-

tural Optimization", In: Ant Colony Optimization, 1st ed., IntechOpen 
Access Publisher, London, United Kingdom, 2013, pp. 107–128. 
https://doi.org/10.5772/52188

[31] Csébfalvi, A., Csébfalvi, G. "Fair Comparison of Population-
based Heuristic Approaches - The Evils of Competitive Testing", 
In: Proceedings of the 4th International Joint Conference on 
Computational Intelligence, Barcelona, Spain, 2012, pp. 306–309.

 https://doi.org/10.5220/0004168403060309
[32] ANSI/AISC 360-16 "Specification for Structural Steel Buildings", 

American Institute of Steel Construction, Chicago, Ilinois, USA, 
2016.

[33] ANSI/AISC 341-16 "Seismic Provisions for Structural Steel 
Buildings", American Institute of Steel Construction, Chicago, 
Ilinois, USA, 2016.

[34] Dumonteil, P. "Simple equations for effective length factors", 
Engineering Journal, AISE, 29(3), pp. 111–115, 1992. 

[35] Pezeshk, S., Camp, C. V., Chen, D. "Design of nonlinear framed struc-
tures using genetic algorithms", Journal of Structural Engineering, 
126(3), pp. 382–388, 2000. 

 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
[36] Camp, C. V., Bichon, J., Stovall, S. P. "Design of steel frames using 

ant colony optimization", Journal of Structural Engineering, ASCE, 
131(3), pp. 369–79, 2005. 

 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
[37] Degertekin, S. O. "Optimum design of steel frames using harmony 

search algorithm", Structural and Multidisciplinary Optimization, 
36(4), pp. 393–401, 2008. 

 https://doi.org/10.1007/s00158-007-0177-4
[38] Kaveh, A., Talatahari, S. "An improved ant colony optimization for 

the design of planar steel frames", Engineering Structures, 32(3), pp. 
864–873, 2010. 

 https://doi.org/10.1016/j.engstruct.2009.12.012

[39] Davison, J. H., Adams, P. F. "Stability of braced and unbraced 
frames", Journal of Structural Division, 100(2), pp. 319–324, 1974.

[40] Saka, M. P., Kameshki, E. S. "Optimum design of multi-story sway 
steel frames to BS 5950 using a genetic algorithm", In: Advances 
in Engineering Computational Technology, Civil-Comp Press, 
Edinburgh, United Kingdom, pp 135–141, 1998. 

 https://doi.org/10.4203/ccp.53.3.6

https://doi.org/10.1080/15325008.2012.682246
https://doi.org/10.1016/j.eswa.2017.08.018
https://doi.org/10.1016/j.ejor.2005.06.014
https://doi.org/10.4203/ctr.8.3
https://doi.org/10.3311/pp.ci.2007-2.06
https://doi.org/10.3311/pp.ci.2007-1.02
https://doi.org/10.5772/52188
https://doi.org/10.5220/0004168403060309
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
https://doi.org/10.1007/s00158-007-0177-4
https://doi.org/10.1016/j.engstruct.2009.12.012
https://doi.org/10.4203/ccp.53.3.6

	1 Introduction 
	2 Genetic algorithm 
	3 Formulation of the optimization problem 
	4 Program algorithm 
	4.1 Population generation 
	4.2 Selection 
	4.3 Crossover 
	4.4 Mutation 

	5 Design examples 
	5.1 One-bay 10-story frame 
	5.2 Three-bay 24-story frame  

	6 Conclusions 

