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Abstract

In this paper, a robust topology optimization method presents that insensitive to the uncertainty in geometry. Geometric uncertainty 

can be introduced in the manufacturing variability. This uncertainty can be modeled as a random field. A memory-less transformation 

of random fields used to random variation modeling. The Adaptive Sparse Grid Collocation (ASGC) method combined with the geometry 

uncertainty models provides robust designs by utilizing already developed deterministic solvers. The proposed algorithm provides a 

computationally cheap alternative to previously introduced stochastic optimization methods based on Monte Carlo sampling by using 

the adaptive sparse grid method. The method is demonstrated in the design of a minimum compliance Messerschmitt-Bölkow-Blohm 

(MBB) and cantilever beam as benchmark problems.
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1 Introduction
Structural optimization, an essential element of engineering 
design structures to improve performance and reduce costs. 
The main components of structural optimization in general, 
are divided into three levels, namely, optimizing the size, 
shape, and topology. The purpose of the classic topology 
optimization is to obtain an optimal distribution of material 
or structural design parameters in a range of nominal mate-
rial properties, geometry and loading conditions.

SIMP and ESO methods are known as two ways very 
popular in topology optimization and many articles by 
using these methods have been presented. It is essential 
to note these methods are formulated based on elemental 
design variables. Although the use of these variables in 
the formulation of material distribution was seen natural, 
cause some problems in topology optimization can also be 
expressed as follows: (1) checkerboard patterns, (2) mesh 
dependency, (3) local optimum.

To overcome these problems, various methods have 
been proposed. For example, Matsui and Terada [1] have 
presented the CAMD model (a continuous approximation 
of material distribution) that combined with homogeneous 
topology optimization methods. Kang and Wang [2] have 

proposed another approach in this area based on a Shepard 
function interpolation with higher-order elements to main-
tain the physical meaning of variable density is used in 
structural topology optimization.

 Traditionally, the structural topology optimization is 
done in a certain manner and known in the design as a deter-
ministic topology optimization (DET), regardless of deter-
mining the various sources of uncertainty [3]. However, 
designs found by deterministic approaches are often sen-
sitive to variations of the system and operating parame-
ters, and therefore of limited value in practice. To mitigate 
this issue, safety factors are traditionally introduced into 
the formulation of the design optimization problem, often 
leading to unknowingly unsafe or overly conservative 
designs. Thus, a strong need exists to consider the effect of 
uncertainty on optimum structural topology design.

Ben-Tal et al. [4] presented an approach based on 
semi-definite programming for strong structural truss 
topology optimization according to the requirements 
uncertain load. Guest and Igusa [5] considered topology 
optimization with the uncertainty of the size and loca-
tion of applied loads and with small uncertainties in the 
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structural nodes. In their research to resolve the problem of 
loading uncertainty, the method of weighted average mul-
tiple load patterns has been developed.

Kogiso et al. [6] considered uncertainty in the direction 
of the driving force and examined the optimization of the 
complaint mechanisms. Variations were studied based on 
the sensitivity of the evaluated variance by using the first 
derivative. Dunning et al. [7], Cherkaev [8], Logo [9] and 
Logo et al. [10], Zhao et al.[11], Zhao et al. [12], were also 
studied robust topology optimization under uncertainty 
loading. 

Chen et al [13] by using the level set method proposed 
a robust design method for structures. They considered 
a robust design for minimum compliance and complaint 
mechanisms. The robust shape and topology optimization 
(RSTO) by taking into account uncertainties in loading 
and material properties have been studied in their work. 
The novel aspect of their approach is the use of the spec-
tral stochastic finite element method (SSFEM) to the 
model random field. Important work has very recently 
been done on the robust shape and topology optimization 
of two-dimensional structures (Tootkaboni et al. [14]) for 
mass minimization, using a polynomial chaos approach. 

Modeling geometric uncertainty in topology and shape 
optimization has been the focus of some researchers using 
both level set and density-based methods [13, 15, 16]. In 
density based topology optimization these uncertainties 
that are attributed to manufacturing tolerances are com-
monly modeled via the Heaviside thresholding approach 
[17–20]. In earlier studies [20, 21], due to over and under 
etching, the authors consider manufacturing variances as 
a uniform threshold field. Their approach uses a min-max 
design, a formulation that considers the nominal, over-
etched and under-etched scenarios. These studies have 
since been extended and they are considered non-uniform 
variations. In non-uniform consideration, the threshold is 
represented by a random field that is parameterized by a 
Karhunen Loeve Expansion (KLE). 

Chen and Chen [15] by using a level-set approach 
extended topology optimization in the geometric uncertain-
ties field. They have presented an RDO for topology optimi-
zation of structures using level-sets. They used Hamilton-
Jacobi equations for modeling a stochastic velocity field. 
Then, random geometry variations are modeled through the 
velocity field. The stochastic moments of the design criteria 
are evaluated using an efficient quadrature rule. After solv-
ing analytically derived adjoint equations, the shape sensi-
tivities for the uncertain geometry are computed. 

Lazarov et al. [19] used the stochastic perturbation 
method to model geometric uncertainty. The main assump-
tion is that the random variability of the system parame-
ters, the inputs, and the solution is small. The method pro-
vides a computationally cheap alternative to MC, however, 
the requirement for small variability imposes restrictions 
on the general applicability. 

Keshavarzzadeh et al. [22] present a systematic 
approach to topology optimization under uncertainty in 
loading and in geometry. They used that integrates non-in-
trusive polynomial chaos expansion with design sensi-
tivity analysis for reliability-based and robust topology 
optimization. By using of thresholding technique, the 
manufacturing variability is modeled. In this method, the 
threshold field is demonstrated as a reduced dimensional 
random field. Response metrics such as compliance and 
volume are characterized as polynomial chaos expansions 
of the underlying uncertain parameters, thus allowing 
accurate and efficient estimation of statistical moments, 
failure probabilities and their sensitivities.

This paper organized as follows. First the determinis-
tic (DET) optimization problem and then the Stochastic 
optimization approach for obtaining robust designs 
are presented. In the next section, modeling of geomet-
ric uncertainty is discussed. Next, Adaptive Sparse Grid 
Collocation methods and its features are introduced. The 
optimization algorithm is presented in the next section and 
finally, its applicability in topology optimization of robust 
minimum compliance is demonstrated. 

2 Problem definition
One of the issues that are commonly discussed in topol-
ogy optimization is the minimum compliance optimiza-
tion. The formulation of this field is given as 
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where K is the stiffness matrix obtained by finite element 
discretization, u and f is the solution and the input vectors 
for the system Ne are the set of all elements and ρi  are the 
physical density associated with. Vi is a volume of element 
i, V is the total volume of the design domain and V * is the 
fraction of the total volume which can be occupied with 
the material. The individual elements contributions to the 
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tangent matrix K are calculated as Ki = EiK0 where K0 
is the element stiffness matrix for unit stiffness and Ei is 
the material stiffness obtained by using the so-called solid 
isotropic material interpolation with penalization (SIMP) 
given as

E E E Ei min i
p

min= + −( )ρ
0

, 	 (2)

where E0 indicates the stiffness of places that occupied 
with the material, p is the penalization factor and ρi  is 
the physical density of element i. The vector l in Eq. (1) 
will have different values for different problems. In the 
test case that discussed minimum compliance design, l = f.

Problems governed by the mechanical stiffness suffer 
from numerical instabilities, such as checkerboard patterns 
and mesh dependency solution. Density filtering makes it 
possible to achieve independent designs of the mesh. 

Here the mesh independent density filtering (Bruns and 
Tortorelli [23]) is used as a basis to ensure the existence 
of solutions. The basic idea is to determine the physical 
element density to be a weighted average of the neighbor-
ing design variables, where the neighborhood is defined 
by a circle in 2D or sphere in 3D with the specified radius. 
Applying regularization to the original problem causes 
gray areas with a moderate density of 0 to 1.

In the following, the filtered density is denoted with ρi  
and physical density with ρi . The filtered density for i-th 
element is calculated as
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where the neighborhood set of elements, locating within 
the filter domain for the element i am represented by, the 
weighting function w(x) is defined as

w Rj jx x x( ) = − − i . 	 (4)

In the above relation, R the specified filter radius and, 
xi and xj are central coordinates of the design elements 
i and j respectively. The sensitivity of filtered density ρi

with respect to the design variables is calculated as
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However, if the physical density is shown by the filtered 
density, the design of the gray areas will be formed, which 
will be difficult to interpret. Projection schemes should be 
used to convert these gray areas to white and black areas. In 

this research, a Heaviside projection procedure is used for 
projecting these gray areas. In this method firstly a thresh-
old η is defined and then all values below threshold are pro-
jected for 0 and above the threshold to 1. As the Heaviside 
function is not differentiable, it is approximated by a 
smooth approximation controlled by relaxation parameter β.  
A Heaviside projection utilized here is given as
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The derivative of the physical density ρi with respect to 
the filtered density ρi is calculated as
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The physical density ρi is a function of the filtered den-
sity ρi and the sensitivities of the objective function in Eq. 
(1) with respect to the original design variables are calcu-
lated as follows
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3 Stochastic optimization 
When a stochastic system is discussed, its properties such 
as excitations, material or manufacturing errors will have 
a random nature (depending on the type of problem). 
Therefore the response u becomes a stochastic field and the 
objective in Eq.(1) becomes a random variable. The stochas-
tic compliance objective function in robust form is com-
monly determined by using of the mean and standard devi-
ation of the compliance in the form of the weighted sum.

Min
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where E[C] is the expected value of the compliance, the vari-
ance of the compliance is shown with Var[C] and κ repre-
sented the weighting coefficient that chosen by the user. In 
deterministic loading condition, the mean value (Expectancy) 
and the variance of the compliance of are given by

E C E ET[ ] =   = [ ]f u f uT

0
, 	 (10)

ρ
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Var C Var T[ ]  = f u . 	 (11)

The sensitivities of the objective function with respect 
to the design variables ρ are found by using the adjoint 
method as follows 

In the following sections first, the representation of the 
uncertainties as a stochastic field is discussed and then 
the solution of the stochastic state problem by using the 
Probabilistic collocation method is presented in more 
details.

4 Manufacturing uncertainty via random field 
We now consider uncertainty geometry in the above opti-
mization problem. As mentioned above, geometric uncer-
tainties are modeled by introducing randomness to the 
threshold parameter η. This approach is model uncertainty 
in structures that are fabricated via etching. The etching 
process causes errors in the form of over- or under-etch-
ing which produces structures that are either thinner or 
thicker than intended. To model this uncertainty the 
Heaviside threshold is applied. The etching can cause, 
a more realistic assumption, a non-uniform variation of 
errors in the design domain. In the present paper this vari-
ation represents by replacing the random variable η with 
the random field such that: 

η ξ α ξ αx Z x, , ,( ) = ( ) +1 2
 	 (13)

where Ẑ(x,ξ)[0,1] is a random field, α1 and α2 control the 
mean and range of the process η such that η(x,ξ)[0,1].

We use a truncated KLE to model the random field η. 
The KLE provides a mapping from a relatively small num-
ber of independent random variables to the types of ran-
dom fields that are common in many physical processes. 
Random field Z as a result of KLE, however, does not 
have the optimal range for topology optimization which 
we need to η values between 0 and 1. As such, an inverse 
transform sampling is applied to Z to ensure the desirable 
variation of random variables Ẑ and thus η.

To obtain the KLE expansion for the random field Z its 
correlation function is assumed to be of the squared expo-
nential form i.e.

	 (14)

where d = |x – x| is the Euclidean distance between loca-
tions x and x , lc is the correlation length. We discretize 
our space so x and x are the finite element centroids to 
obtain the correlation matrix R. The n eigenvalue-eigen-
vector pairs (λi, γi ) of the correlation matrix are subse-
quently used to generate the KL decomposition of a zero 
mean process as

Z x x x
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where φi are random variables and γi(x) is interpolated from 
the eigenvector γi as piecewise uniform over the elements. 
The expansion is truncated to the first nmode < n modes for 
the purpose of dimensionality reduction. It is noted that 
the number of modes nmode is dependent on the correlation 
length lc and the type of the correlation function.

Ultimately the random variables φi are used to gener-
ate the random field Z via Eq. (15). To that end, we assign 
uniform random variables to each φi with zero mean and  
unit variance, i.e.ϕ ξ ξi i U( ) = = −


3 3, . This zero mean 

and unit variance choice ensures that the same correlation 
matrix R can be reconstructed from the random field Z of 
Eq. (15). 

Unfortunately, realizations of the KLE Z x, ,ξ( )∉[ ]0 1  
and this is noteworthy. Indeed, our geometric uncertainty 
is introduced by randomly varying the threshold parame-
ter η and we require η(x, ξ)  [0,1]. To generate the random 
field Ẑ of Equation (13) such that Ẑ(x, ξ)  [0,1] we use the 
fact that the Cumulative Density Function (CDF) of any 
continuous random variable, e.g. Z(x, ξ) is a uniform ran-
dom variable, ranging from 0 to 1 i.e. U[0, 1]; this is ideal 
for modeling thresholds. In other words, for every reali-
zation of Z(x, ξ) there is a unique CDF transformed value 
that belongs to the range [0, 1]. The ensemble of these CDF 
transformed values has a uniform distribution from which 
the transformed process Ẑ is defined such that

Z x CDF Z x, , .ξ ξ( ) = ( )( ) 	 (16)

5 Adaptive sparse grid collocation methods 
5.1 Sparse grid 
The sparse grid method was introduced by Smolyak is a 
most popular method that very useful in multidimensional 
quadrature and interpolation. The sparse tensor product 
is the basis of this method. In following this method con-
struction is represented. Suppose that Ql

(1)f a family of 
quadrature rules and will have:
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Note that ∆l f
1( )  is also a quadrature rule. For nested 

formulas, ∆l f
1( )  contains the set of nodes of Ql

(1)f with 
weights equal to the difference of weights between level 
l and l −1.

By introducing the multi-index l = (l1,..., lN)  NN can 
construct the sparse cubature, and define

l ≡
=
∑
i

N

il 	 (18)

At level l this multi-index is used and then the sparse 
cubature formula is represented as
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where multi-index expressed of the support nodes is |l|, 
(|l| = l1+…+ ld). The dimension of function f is shown by 
N. By using a recursive manner the interpolant expressed 
as follows:
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The weight wi corresponding to the ith collocation point 
ξi is defined with by the Smolyak algorithm, 
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Then, the mean and standard deviation of the objective 
of the sparse grid method can be computed by

E f w f

Var f E f E f

k
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5.2 Adaptive sparse grid 
The conventional sparse grid collocation treats all dimen-
sions equally. In most physical problems that one deals 
with, there usually exists some structure (additive, near-
ly-additive, anisotropic, discontinuous) that can be taken 
advantage of to reduce the number of function evaluations. 
However, the specific kind of structure that the particular 
solution exhibits are not known a priori. Thus, one must 
construct an approach that automatically detects which 
dimensions require more nodal points or where the dis-
continuity happens. The basic proposition of an adaptive 

sparse grid collocation method is to assess the stochastic 
dimensions differently, according to the error of interpo-
lation in that dimension.

One way to perform adaptation and refinement is on 
the level of the hierarchical subspace. This leads to the 
so-called dimension-adaptive (anisotropic) sparse grids. 
This approach detects important dimensions and places 
all the collocation points along the important dimension. 

Sequential construction of the multi-index set is the basis 
of the adaptation, which is progressively enriched starting 
from I = {1 = (1,…,1)}. At first, the notion of the admissible 
multi-index set will be introduced. Suppose that an index 
set I is admissible if for each multi-index I  I we have I – 
ej  I , for 1 ≤ j ≤ N, lj > 1, where ej is j-th unit vector ((ej )
i = δij ). This condition means that in all directions any ele-
ment of I has a predecessor. Based on this feature the tele-
scope sum expansion when defining a sparse grid curvature 
is validated in terms of differing rules. In Fig.1, for the case 
of N = 2 admissible and non-admissible multi-index sets 
are shown. The adaptive sparse grid method requires that 
the progressive enrichment of the multi-index set maintains 
the admissibility. In addition, the enrichment should reduce 
the integration error in the most efficient way. To this end, 
which multi-index should be added to I is determined by 
using an indicator. The indicator error denoted as gk which 
associated to a multi-index k. The gk combines information 
from the associated difference term, ∆k

N f( ) , with the com-
putational complexity involved in its estimation. The latter 
is measured by nk defined as the number of cubature nodes 
in the evaluation of ∆k

N f( ) . A convenient form for gk is:

g
n

n
k

k

k

≡ −( )


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


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( )max f
f

N

Nα α
∆
∆
1

11, , 	 (23)

where 0 ≤ α ≤ 1 weight the difference contribution and 
computational cost.

The enrichment of I with this indicator can proceed. 
Suppose that for a given step of the adaptation an admis-
sible multi-index set I have constructed, and for l  I its 
forward neighborhood Fl defined as

Fig. 1 Examples of admissible and non-admissible multi-index sets in 
two dimensions
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F j Nl l≡ + ≤ ≤{ }e j , .1 	 (24)

The next multi-index denoted k, is to be selected based 
on the following conditions

k

k

k
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l
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{ }
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F b
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I
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( )

. ( )




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Based on these conditions, (a) k should be a new 
multi-index, (b) taken in the forward neighborhood of I, 
whose inclusion leaves I admissible (c). This method is 
effectively implemented with two subsets O and A.

The "old" multi-indexes represented by the set O which 
need not be tested anymore, while those who are candi-
dates for inclusion in I are in a set A. The set O is initialized 
to {1} and A to F1. We then select the multi-index having 
the highest indicator in A, say l. The multi-index l is added 
to the O and removed from A; then A is completed by the 
multi-indexes in the forward neighborhood F1 that main-
tain I = OÈA admissible, and for the new multi-indexes in 
A, the error indicators gk Ï F1 of are computed. The proce-
dure is repeated when the global error indicator η, 

η ≡
∈
∑
l

lg
A

	 (26)

is greater than a prescribed error tolerance Ï.	

6 Optimization algorithm
All figures must be embedded in the document when the 
paper is submitted to review. In the final version, however, 
we need figures in separate files. 

The optimization algorithm using the Adaptive Sparse 
Grid Collocation methods can be written as follows: 

1.	 Problem discretize and initialization progress were 
performed

2.	Stochastic field discretization – KL by Eq. (15).
3.	 M integration points and the corresponding weights 

using the adaptive sparse grid method Generated.
4.	 Optimization loop performed until the convergence 

criterion is satisfied:
•	 For k = 1…M computes Kkuk = fk and ∂Ck/∂ρ.
•	 The mean and the variance Estimated from Eq. (23) 
•	 The mean and variance sensitivities with respect to 

design variable evaluated 
•	 The robust objective sensitivities computed from Eq. 

(12)
•	 Update ρ.

The mean and the variance gradients are computed 
based on the gradients of the samples. For each sample, the 
standard adjoint sensitivity analysis is used for estimating 
the sensitivities of the objective ∂Ck/∂ρ and the constraints.

Keeping the solution vectors uk can become very expen-
sive in terms of memory. Their contribution to the expec-
tation and the variance, as well as to the sensitivities, can 
be added during the loop through the collocation points.

7 Numerical examples 
The presented methodology is demonstrated in the design of 
a 2D cantilever and an MBB beam. The results are obtained 
with a modulus of elasticity, E = 1.0, a penalization parame-
ter p =3, and Emin = 10–4. All optimizations start with, and the 
projection parameter is doubling every 50 iterations. The 
final projection parameter is β = 10. Control parameters in 
Eq. (13), have been considered as α1 = 0.5 and as α2 = 0.25 
. The design variables are updated using optimality criteria 
(OC) method. The optimization process is terminated when 
the largest change in the design variables becomes smaller 
than 1%. The topology optimization process is performed 
using MATLAB software [24]. The first 100 eigenvalues of 
the correlation matrix R over a uniform mesh are shown in 
Fig. 2, where their fast modal decay is apparent. 

Fig. 2 Correlation eigenvalues of random field Z 

Fig. 3 Design domain and boundary condition for a cantilever beam
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Fig. 4 Design obtained for deterministic (right) and robust design 
optimization (RDO)(left)

Fig. 5 Robust designs obtained with κ = 1 (top), κ =3, κ = 5 (bottom)

In practice, we truncate (KL) to first N terms. We used 
the ratio λ λii

n
ii

nmode
/

= =∑ ∑( )
1 1

 to check the sufficiency of 
the number of truncated modes which indicates the first 
nmode modes to represent the random field. This measure 
for nmode = 4 is 0.9566, i.e. this truncation yields a 96% Z 
representation which we deem sufficient.

7.1 Robust design of a cantilever beam 
The design domain, the boundary conditions for the state 
problem are shown in Fig. 3. The simulations are performed 
with beam height L= 1. The applied force is F = 0.1. The 
volume fraction of the solid material is set to 50% of the 
total volume.

Optimized designs for a single uniformly distributed 
threshold ηÈ[0.3,0.7] are shown in Fig.4. The designs 
do not possess features comparable with the mesh size. 
The designs are obtained with deterministic and RDO are 
shown in Fig 4.

Increasing the weight of the standard deviation in the 
objective results in not be critical for small κ, as its contri-
bution to the robust objective Eq. (9) is small. The results of 
the increase in κ are denoted in Table 2. for ηÈ [0.3,0.7]. 

Increasing the weight κ in the objective given in Eq. (9), 
decreases the mean compliance and decreases its variation. 
Therefore, the mechanism response becomes more robust 
with respect to variations in the geometric variation.

To validate the present method, a comparison has been 
done between this method with Perturbation method 
(Lazarov work). The results of this comparison in are 
denoted in Table 3 and shown in Fig. 5. RDO results related 
to three designs with weight parameter κ = 1, κ = 3, and κ = 5.

From the results of Table 3 can be seen that the mean 
compliance of structure decreased with increasing in κ. 
Therefore, these methods have the same response. But, from 

Table 1 Minimum Compliance of deterministic and robust design

Compliance 

3.7354 Deterministic.

3.6157 RDO( K = 1)

Table 2 The effect of increasing in κ statistical moment and 
Compliance 

STD Mean Objective

0.2920 3.2508 3.6157 κ =1

0.2859 3.1869 4.2591 κ =3

0.2803 3.1453 5.0499 κ =5

Table 3 Comparison of the robust design of different methods

ASGC Perturbation Mont Carlo

3.2508 3.59 3.58 κ =1

3.1869 3.67 3.60 κ =3

3.1453 3.83 3.62 κ =5

Table 4 The effect of increasing the threshold interval for κ =3 

Present work Monte Carlo method

Mean STD Mean STD Interval 

3.1805 0.2843 3.69 0.42 [0.1,0.9]

3.1881 0.2857 3.70 0.59 [0.2,0.8]

3.1869 0.2859 3.70 0.51 [0.3,0.7]

3.2465 0.2918 3.74 0.66 [0.4,0.6]

Fig. 5 can be concluded my method has a better answer 
compared with the other two methods. It can be seen that 
when the weight parameter κ increased, in perturbation 
method inside of the structure changed significantly but 
in the ASGC method, this changed smoothly occurred. 
This means that the structure becomes more robust with 
respect to variations in the geometric variation.  

Results of increasing the threshold interval are denoted 
in Table 4 for κ = 3. As expected, the standard deviation 
is decreasing with expanding the support domain of the 
threshold distribution this means that a larger thresh-
old interval leads to a more robust behavior. Therefore, 
expanding threshold interval has a similar effect with 
increasing in κ. 

7.2 MBB beam
All dimensions are in centimeters as shown by Table 1. 
The goal in this example is to investigate the effect of 
geometric uncertainty on the optimal design of the 200 × 
50 MBB beam shown in Fig. 6. As explained previously, 
the geometric uncertainty is modeled by representing the 
threshold η via a random field to model spatially varying 
manufacturing tolerances.
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Fig. 6 The MBB-beam. Top: full design domain, bottom: half design 
domain with symmetry boundary conditions 

Fig. 7 Design obtained for deterministic (right) and robust design 
optimization (left)

Fig. 8 Robust designs obtained with κ = 1 (top), κ = 5 (bottom)

The deterministic topology optimization of the MBB 
beam uses the symmetry of the domain whereby only half 
of the structure is optimized. In the stochastic analysis, 
however, this assumption needs to be scrutinized. We 
minimize the sum of the mean and standard deviations of 
volume subject to the RDO mean compliance constraint.

The results of these optimizations show no signifi-
cant difference and it is concluded in this example that 
the designs obtained using the half and full domains are 
equivalent. As such, in the following examples, we only 
design on the 100 × 50 half-domain. A comparison of DET 
designs with RDO designs is shown in Fig.7. The objec-
tive functions of these designs are expressed in Table 5. 
Optimized designs are obtained for a uniformly distrib-
uted threshold η∈ −


 3 3, . 

Table 5 Performance comparison of Deterministic with robust designs

Compliance Method 

104.4844 Deterministic

103.3042 RDO (K=1)

Table 6 The effect of increasing in weight parameter κ

Compliance Mean. STD

103.3042 101.0525 2.2517 κ =1

108.3264 97.2514 2.2150 κ =5

Table 7 Robust design Comparison of different methods

ASGC non-intrusive PCE

103.3042 120.00 κ =1

108.3264 120.00 κ =5

0.333 0.3995 Opt Vol

41 81 Numberof points

Table 8 Comparison ASGC with Monte Carlo method

ASGC  Mont Carlo

103.3042 105.8673 Compliance 

41 105 Point number

The effect of increasing in weight parameter κ in opti-
mization is denoted in Table 6. According to these results, 
increasing the weight κ decreases the mean compliance 
and decreases its variation. Therefore, we have a more 
robust structure with respect to variations in the geometric 
variation.

In following, a comparative study has been done between 
the present method and a method that used in Kshavrzzadeh 
research. Results are shown in Fig. 8 and denoted in  
Table 7.

Although both methods are used of sparse grid method, 
according to this result can be realized the effectiveness of 
the multivariate hierarchical formulation. The conventional 
sparse grid collocation treats all dimensions equally. Thus, 
one must construct an approach that automatically detects 
which dimensions require more nodal points or where the 
discontinuity happens. The basic proposition of an adap-
tive sparse grid collocation method is to assess the stochas-
tic dimensions differently, according to the error of inter-
polation in that dimension. The smaller optimum volume 
that expressed in Table 8 can be expected according to the 
results shown in Fig. 8.

To demonstrate the effectiveness of this method, we com-
pare the compliance obtained for the RDO design with the 
present method and the Monte Carlo method. The results 
are denoted in Table 8. 
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It is evident that Monte Carlo analysis with nsamples = 105 

is in close agreement with the non-intrusive PCE, which 
only requires 81 simulations, but the ASGC method 
by using a point number less than another method that 
achieves a better answer. Based on these results we can 
conclude this method can save time and cost.

8 Conclusions
Although a conclusion may review the main points of the 
paper, do not replicate the abstract as the conclusion. A 
conclusion might elaborate on the importance of the work 
or suggest applications and extensions.

A systematic approach for topology optimization under 
uncertainty is introduced that relies on the Adaptive Sparse 
Grid Collocation methods (ASGC) for uncertainty propa-
gation of the cost and constraint functions. The expres-
sions of the stochastic objective and its sensitivities are 
derived, and the main computational steps are presented 
in details. Different numerical examples for topology opti-
mization under uncertainty are considered. The compu-
tation of the random threshold field is elucidated in the 
numerical examples. In these examples, geometric uncer-
tainty is modeled by using a random threshold field that is 
characterized by a truncated Karhunen-Loeve expansion. 

Comparing ASGC with some method such as Monte 
Carlo, Perturbation and sparse grid based non-intrusive 
PCE. It is demonstrated that the computational burden of 
ASGC is orders of magnitude smaller than the above-men-
tioned methods. For a single random variable, the presented 
approach is faster than optimization based on a sampling 
method based on Monte Carlo with 105 realizations.

 It is also shown that the optimum volume and minimum 
compliance obtained by using this method is smaller than 
other method. As well as the effect of increasing of weight 
parameter, κ, was discussed and showed by increasing 
this parameter the structure become robust and mean and 
standard deviation of compliance are decreased. It was 
shown that in comparing ASGC method and sparse grid 
based non-intrusive PCE, however, both methods are used 
of sparse grid method, but ASGC automatically detects 
which dimensions require more nodal points and not treats 
all dimensions equally.
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