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Abstract

Many industrial buildings require large spans and high height, and the use of a frame with inclined roofs with non-prismatic elements 

can reduce the usage of steel. Pitched roof frame with single spans are optimized using different meta-heuristic algorithms. In this 

paper, the optimal design of industrial frames with two and three spans under gravity and lateral loads is performed. Five efficient 

and widely accepted optimization algorithms are used to optimize each frame. The convergence histories and design results of these 

algorithms are compared and the most suitable algorithm is determined. In each frame, the effect of increasing the apex height is 

evaluated on the optimal weight and the best angle is determined for optimum weight.
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1 Introduction
In industrial structures due to the need for high eleva-
tion, inclined beams are often utilized. In these frames, 
the members of the frame are considered as non-prismatic 
to reduce the required material. The use of non-prismatic 
members in industrial structures with large spans has a 
significant effect on reducing the weight of the structure. 
In the past, many researchers have studied industrial struc-
tures. Some researchers have focused on designing these 
types of frames, and some other researchers studied the 
stability and behavior of the frame under various loads, 
and some of them optimum designed industrial struc-
tures. Among the researchers who have worked on opti-
mum design of industrial frames, were O’Brien and Dixon 
[1]. They minimized the weight of a two-dimensional steel 
frame under the constraints of the Kinematic Theorem 
of plastic collapse using a linear programming method. 
Fraser [2] proved that non-uniform or haunched members 
are economic solutions for warehouses and factory build-
ings for a wide range of spans. Phan et al. [3] evaluated 
the effect of deflection limits on optimum weight. They 
optimized the frame weights with both ultimate and ser-
viceability limit states, using a real-coded niching genetic 

algorithm. They concluded that real-coded niching genetic 
algorithm is effective and reliable. Phan et al. [4] evalu-
ated the topographic effect on the weight or cost of the 
frame per meter length of building. They used real-coded 
genetic algorithm to optimize the portal frame. Saka [5] 
optimized the pitched roof steel frames with haunches for 
the rafters in the eaves. He used genetic algorithm to opti-
mization. Saka determined optimum sections, also opti-
mized the haunch height and haunch length in the eaves 
for more economical design. Kravanja et al. [6] optimized 
a single-story industrial building, taking into account the 
specifications of Eurocode. They used the mixed-inte-
ger non-linear programming (MINLP) to optimization.  
Avdelas [7] investigated the effect of the haunches in 
plastic analysis of frames using an elasto-plastic method. 
McKinstray et al. [8] optimized steel beams for large 
spans. They considered ultimate and serviceability limit 
states and used the genetic algorithm for optimum design. 
Kaveh et al. [9] compared some pitched roof frames with 
different tapered type utilizing different meta-heuristic 
algorithms. Kaveh and Ghafari [10] optimized single span 
pitched roof frames with nine meta-heuristic algorithms 
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and compared their convergence histories and results. 
They also evaluated the effect of increasing the apex 
height and the tapered length on the optimum weight of 
the one span pitched roof frame.

2 Structural design
2.1 Load combinations
According to the ASCE7 specifications [11], the structure 
must be able to sustain the combination of the following 
loads:

1.4DL
1.2DL+0.5SLR
1.2DL+1.6SLR+0.5WL
1.2DL+WL+0.5SLR
1.2DL+EL+0.2SL
0.9DL+EL

where DL, EL, WL are dead, earthquake, wind loads, 
respectively. SLR means SN or LR, where SN and LR are 
snow and roof live load.

2.2 Analysis
Structural analysis is performed taking into account the 
effects of P-∆, and the second-order effects are considered 
by effective length method.

2.3 Strength, stiffness and construction criteria
a) According to AISC360-10 [12], the following conditions 
must be checked. Double symmetric section elements 
against minor and major bending and compression axial 
forces must satisfy the following equations:
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b) In the columns, the starting section must be smaller 
than or equal to the end section, and for the beams the 
middle section must be smaller than or equal to the two 
end sections.

h h
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where h1, h2 are the height of the bottom and top of the 
column, h3 and h4 are height of the middle and end of the 
beam.

Table 1  Feasible range of variables

Variable Feasible values

Web height (m) 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2

Web thickness (m) 0.008, 0.01, 0.012

Tapered length ratio (%) 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45

Flange width (m) 0.2

Flange thickness (m) 0.01

3 Problem definition
3.1 Objective function
The objective function is defined as the total weight of the 
structure, which is expressed as:

Weight L Aini
i

NOE

i i=
=
∑

1

r  (5)

where NOE, ρ, L and A are the number of elements, steel 
density, length and area of the elements, respectively.

3.2 Variables
The cross section of the beams and columns is i-shaped, 
which include parameters such as height of web, thickness 
of web, width of flange, thickness of flange, and also there 
is another parameter called tapered length ratio (TLR) in 
the beams. Among these parameters, the height of web, the 
thickness of web and tapered length ratio are considered as a 
variable, and the other parameters have a constant value. The 
values that these variables can have are shown in Table 1. 

3.3 Constraints
a. The strength of the structural elements is that the 

load on each element should not violate Eq. (1) or 
Eq. (2).

b. The criterion of construction requires the Eq. (3) and 
Eq. (4) not to be violated.

c. The displacement of the frames should be limited to 
the following values:

dva
L for dead loads− <
360

0  (6)

dva
L for live and dead loads− <
240

0  (7)

dh
h for lateral loads− <
200

0  (8)

where δva and δh are vertical displacement of apex and lat-
eral displacement of the frame, respectively. L and h are 
half-span length and height of column which are defined 
in Fig. 1.
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Fig. 1 Geometric parameters of half span in both frames

4. Optimization algorithms
The meta-heuristic algorithms search optimal solution 
among all the available solutions, Kaveh [13]. These algo-
rithms perform this with trial and error approach. At each 
stage, new solutions are generated using the result of the 
previous steps. The difference between different meta-al-
gorithms is how to generate a new answer. The meta-al-
gorithms convert constrained problems using the penalty 
function to unconstrained problems. For this reason, it is 
better to use them for problems that have complex con-
straints. Some applications of meta-heuristic algorithm 
can be found in [14, 15, 16]. The selected meta-heuristic 
algorithms used in this paper are from the well-established 
and widely used meta-heuristics. This can be seen from 
the comparative studies performed in literature [13].

4.1 Teaching-Learning Based Optimization
TLBO is a nature-based inspired algorithm. This method 
focuses on the relationship between teacher and students 
in the classroom. This method has two phases. In the first 
phase, the relationship between teacher and students is sim-
ulated, and in the next phase, the relationship between a 
student and another student is simulated. In the first phase, 
the initial answer, which has the best objective function, is 
chosen as a teacher, and in the next step, new students are 
created using the following equation:

X X r X T Xnew i i
teacher F mean

, = + −( )  (9)

where X new,i and X i are the new and existing ith solution, r 
is a random number varying [0, 1], TF is a teaching factor 
being either 1 or 2, and Xmean is the mean of the solutions, 
Togan [17].

In phase II, each student randomly communicates with 
another student, and new students are created with the 
help of the following equations:

X X r X X if f f
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where X j is the any solution to be different from X i.
Finally, if the new student is better than the previous 

one, it will be replaced.

4.2 Colliding Bodies Optimization
This technique uses a body collision to make new answers, 
and in the feasible solutions space, it searches for the opti-
mal answer. The initial answers are divided into two 
groups. The answers are sorted in increasing order, the 
first half of those who have better answers, are the sta-
tionary group and the second half of the group are mov-
ing. According to the energy and momentum laws, the 
speed of each body depends on the speed of the moving 
body and the mass of each body. New solutions are made  
as follows:

X X rand v i n ni
new

i n i= + ⋅ = +
−
2

2
1', ,...,  (11)

where Xi
new  and vi' are the new position and the velocity 

after the collision of the ith moving CB, respectively; X i n
-

2
 

is the old position of the ith stationary CB pair, Kaveh & 
Mahdavi [18].

X X rand v i n
i
new

i i= + ⋅ =', ,...,1
2

 (12)

where Xi
new , Xi and vi' are the new position, old position 

and the velocity after the collision of the ith stationary CB, 
respectively. rand is a random vector uniformly distrib-
uted in the range (1, 1), Kaveh & Mahdavi [18].

4.3 Enhanced Colliding Bodies Optimization
Enhanced Colliding Bodies Optimization (ECBO) is 
an advanced version of the CBO that uses a memory to 
save a number of historically best CBs and also utilizes a 
mechanism to escape from local optima, Kaveh and Ilchi 
Ghazaan [19]. Utilizing this enhanced version requires to 
specify the colliding memory size and a random parameter.

4.4 Vibrating Particles System
The VPS is a population-based algorithm which simulates 
a free vibration of single degree of freedom systems with 
viscous damping, Kaveh & Ilchi Ghazaan [20]. In this 
method, three groups of answers are used to generate new 
answers: The historically best position of the entire popu-
lation (HB), a good particle (GP), and a bad particle (BP). 
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To measure the effect of the damping level on the vibra-
tion, the parameter D is defined. And the equations for 
generating the new answers are as follows:

X w D A rand HB
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where Xi
j is the jth variable of the particle i. w1, w2, and w3 

are three parameters to measure the relative importance of 
HB, GP and BP, respectively. rand1, rand2, and rand3 are 
random numbers uniformly distributed in the range of [0, 1], 
 Kaveh & Ilchi Ghazaan [21].

Sometimes, for increasing the speed of the convergence, 
the BP effect is considered in the update of the answers, and 
in each particle with probability ρ, w3 = 0 and w2 = 1–w1.

4.5 Harmony search
Harmony Search (HS) is based on finding the best har-
mony by musicians, Geem et al. [22]. In this method, the 
generation of new solutions is more diverse than other 
methods and shows that its performance is better than 
other methods in finding the optimal global response. 
In this algorithm, each of the solution variables can be 
selected from the harmony memory with the probability 
of HMCR (harmony memory consideration rate), and with 
the probability of 1. HMCR is randomly selected. Also, 
each new answer can be changed with the probability of 
PAR (pitch adjustment rates), by the following equations, 
or not changing with the probability of 1–PAR.

Fig. 2 Element groups of the 2 spans frame

Fig. 4 Wind load on the 2-span frame

Fig. 3 Variables of the 2-span frame



Kaveh et al.
Period. Polytech. Civ. Eng., 63(1), pp. 77–86, 2019|81

X Xi
j

i
j= ±d  (16)

d= FW rand*  (17)

FW VarMax VarMin= −( )0 1. *  (18)

where Xi
j is the jth variable of the harmony i. FW is fret 

width, and VarMax, VarMin are the maximum and mini-
mum bounds of the variables, respectively.

5 Numerical examples
Two examples are studied in this section. In the first exam-
ple, the frame has two spans, and the number of elements 
group is four, and for the second example the frame has 
three spans and five groups of elements. MATLAB - 
software is used for modeling the optimization process. 
SAP2000 - software is utilized for modeling, analysis 
and design of the structures. The modulus of elasticity of 
steel and its yield stress is 2039000 kg/m2 and 2531 kg/m2 
respectively. The parameters of the algorithms are deter-
mined as follows:

TLBO: In this algorithm, Tf (teaching factor) can be 1 
or 2 and randomly selected between 1 and 2.

CBO: This algorithm depends on no internal parameter.
ECBO: In this algorithm, colliding memory size and 

random number are 6 and 0.6, respectively.
VPS: The probability of considering the effect of BP 

in updating is 0.3. Harmony memory consideration rate, 
pitch adjustment rate and neighbor are 0.95, 0.1 and 0.1, 
respectively. Also, α, w1, w2 and w3 are 0.05, 0.3, 0.3 and 
1–w1–w2, respectively. 

HS: Harmony memory consideration rate, pitch adjust-
ment rate and fret width damp ratio are 0.85, 0.1 and 0.995, 
respectively. 

To compare the performance of algorithms, a frame is 
optimized with different algorithms, and their results are 
compared, for both examples. Then the effect of increas-
ing the apex height on the optimal weight of the two-span 
and three-span frames are evaluated.

5.1 Example 1
In this example, in the first step, a frame with an apex 
height of 8.1 m and a span length of 16 meters with dif-
ferent algorithms is optimized and the results are com-
pared. The optimal weights of each of the algorithms are 
shown in Table 2. Then, the frames with different apex 
heights and the same length of span are optimized, and the 
effect of increasing the apex height of the frame is eval-
uated on the optimum weight. Minimum and maximum 
apex heights are considered as 6.5 m and 8.5 m resulting 
in 3.58° and 17.35° for the minimum and maximum roof 
angle, respectively. In Example 1, the columns are in two 
groups of elements and the beams are also in two groups, 
and element groups are shown in Fig. 2. Frame dimensions 
and problem variables are shown in Figs. 1 and 3, respec-
tively.  The feasible range for variables is shown in Table 
1. Roof gravity distributed loads, including dead, live and 
snow loads, are 480, 576, and 900, respectively. Seismic 
load is considered as 150- and 100-kg/m uniformly dis-
tributed load on the X direction in the rafter and column, 
respectively. Wind load is considered in accordance with 

Table 2 Optimum weight of different algorithms

HS VPS CBO ECBO TLBO

Number of analysis 960 960 960 960 1920

Best Cost (kg) 3323.48 3324.77 3444.92 3335.2 3305.93

Mean Cost (kg) 3323.48 3324.77 3444.92 3335.2 3308.3

Worst Cost (kg) 3323.48 3324.77 3444.92 3335.2 3313.3

SD 0 1.36E-12 0 0 5.02

Table 3 Optimum weights for different roof angles

Apex height (m) Optimum weight (kg)

6.5 3090.57

6.9 3145.25

7.3 3168.83

7.7 3262.92

8.1 3305.93

8.5 3408.66
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Table 4 Optimum value of the variables

Apex height (m) TLR1(%) TLR2(%) h1(m) h2(m) h3(m) h4(m) h5(m) h6(m) h7(m) Tw(m)

6.5 15 40 0.4 0.6 0.4 1 0.4 0.4 0.4 0.008

6.9 25 30 0.4 0.8 0.4 0.9 0.4 0.4 0.4 0.008

7.3 20 35 0.4 0.7 0.4 0.9 0.4 0.6 0.4 0.008

7.7 25 35 0.5 0.8 0.4 1 0.4 0.4 0.4 0.008

8.1 25 35 0.5 0.8 0.4 1 0.4 0.5 0.4 0.008

8.5 20 35 .5 .8 .4 0.9 .4 0.9 0.4 0.008

Where h1, h2, h3, h4, h5, h6 and h7 are the height of sections 1, 2, 3, 4, 5, 6 and 7, respectively. 

Fig. 6 Optimum weight of the frames with 2 spans in terms of the roof angle

Fig. 5 Comparison of the convergence histories for the utilized algorithms
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Fig. 4. The optimum weights of the frames with different 
roof angles are given in Table 3. The optimal values for 
variables for each roof angle is provided in Table 4. The 
optimal weight of frames in terms of the roof angles is 
shown in Fig. 6. The population size and the number of 
iterations for all algorithms are 16 and 60, respectively.

5.2 Example 2
In this example, the frame with three spans is evaluated. 
The number of element groups in this frame is five as 
shown in Fig. 7. Variables of the frame are shown in Fig. 

8. Also, the wind load is illustrated in Fig. 9. Gravity and 
seismic loads and load combinations are the same as in the 
previous example. Initially, the frame with an apex height 
of 7.7 meters has been optimized using various algorithms 
and their results are compared in Fig. 10. Also, the optimal 
weights of the algorithms are provided in Table 5. Then, 
the optimal weight of the frames is determined with differ-
ent apex height, and their results are shown in Table 6. The 
optimal weight of the frames with three spans in terms of 
the roof angle is shown in Fig. 11. The optimal values for 
variables at each roof angle are shown in Table 7.

Fig. 7  Element groups of the 3-span frame

Fig. 8  Variables of the 3-span frame

Fig. 9  Wind load on the 3-span frame

Table 5  Optimum weight of each algorithm for the frame with 3 spans

HS VPS CBO ECBO TLBO

Number of analysis 1560 1560 1560 1560 3120

Best Cost (kg) 4891.647 4898.329 4867.67 4831.34 4864.71

Mean Cost (kg) 4908.509 4907.2 4867.67 4856.71 4869

Worst Cost (kg) 4928.341 4978.7 4867.67 5015.51 4887.2

SD 12.3 17.24 0 41.91 5.29
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Table 6 Optimum weight for each apex height for the frame with 3 spans

Apex height (m) Optimum weight (kg)

6.5 4491.44

6.9 4603.666

7.3 4738.66

7.7 4831.34

8.1 4946.282

8.5 5001.68

Table 7 Optimum value of the variables for the frame with 3 spans

Apex height(m) TLR1 TLR2 TLR3 h1 (m) h2 (m) h3 (m) h4 (m) h5 (m) h6 (m) h7 (m) h8 (m) h9 (m) Tw (m)

6.5 20 30 30 0.4 0.7 0.4 0.9 0.4 0.5 0.4 0.4 0.4 0.008

6.9 20 30 40 0.4 0.7 0.4 0.9 0.4 0.5 0.5 0.4 0.4 0.008

7.3 15 35 30 0.5 0.8 0.4 0.9 0.5 0.6 0.4 0.4 0.5 0.008

7.7 20 40 30 0.6 0.9 0.4 0.9 0.4 0.6 0.4 0.4 0.6 0.008

8.1 25 40 40 0.6 0.9 0.4 1 0.4 0.6 0.4 0.4 0.4 0.008

8.5 30 35 40 0.7 1 0.4 1 0.4 0.4 0.4 0.4 0.4 0.008

Where h1, h2, h3, h4, h5, h6, h7, h8 and h9 are the height of sections 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively.

6 Conclusions
Optimization of the non-prismatic multi-spans frame with 
different apex heights is performed using different algo-
rithms. In the first example, the two-span frame was opti-
mized with various algorithms, which showed that the per-
formance of all algorithms is appropriate. Then, the effect 
of increasing the roof angle on the optimum weight of the 
frame was investigated, showing that the best optimum 
weight in this frame occurs at the roof angle 3.58o. In the 
second example, the three-span frame was optimized with 

different algorithms, and the best optimum weight was 
obtained by the ECBO algorithm and other algorithms had 
0.6-1.3% difference with the best solution. Also, the effect 
of increasing the roof angle on the optimum weight of the 
frame was investigated. In this frame, the best roof angle 
for optimum weight is around 3.58o. In both frames, criti-
cal load combination was 1.2DL+1.6SLR+0.5WL, indicat-
ing that the gravity load has the greatest impact in deter-
mining the size of the frame elements.

Fig. 10  Comparison of the convergence histories for the utilized algorithms
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Fig. 11 Optimum weight of frames with three spans in terms of the roof angle
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