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Abstract

Modern buildings should provide some degree of safety against severe earthquakes. However, it is not economically feasible to 

construct buildings that withstand extreme loads without avoiding damage.  In performance-based design, structural engineers and 

owners work together to achieve the best possible balance between construction cost and seismic performance. In this study, by 

employing a metaheuristic optimization, we have tried to extend the concept of performance-based design to retaining wall structures. 

According to the AASHTO LRFD Bridge Design Specifications, permanent displacement of retaining structures are tolerable, as long as 

the movement does not lead to unacceptable damage to the structure or facilities located in or near the moving earth. The decision 

on performance expectations needs to be made by owners with structural engineers providing a realistic assessment of the cost of 

designing to avoid the movement. To make this assessment possible, we developed a multi-objective optimization framework for 

simultaneous minimization of the construction cost and the permanent displacement of cantilever retaining walls. The effectiveness 

of the proposed framework was evaluated in the design of a typical cantilever retaining wall of 8 meters in height, once with both a 

toe and heel slab and once with either of them. The results indicated that obtaining the Pareto front of optimal solutions for these 

objectives, provides useful information that helps owners to select a solution that is the most economical in a trade-off between the 

construction cost and performance expectation.
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1 Introduction
Retaining wall is a structure designed and constructed to 
resist the lateral pressure of soil when there is a desired 
change in ground elevation that exceeds the angle of repose. 
Gravity, semi-gravity and cantilever retaining walls are the 
most common types of concrete retaining walls. The sta-
bility of gravity walls depends on their weight and any soil 
located on the stem and the base. Cantilever walls include 
reinforcing steel to minimize the thickness of the wall. 
Semi-gravity walls are a blend of the gravity and the can-
tilever type, without requiring extensive reinforcement [1]. 

Given the direct relation between the amount of con-
crete and reinforcing steel used and the total construction 
cost, performing size optimization for retaining walls is of 

particular importance. Thus in recent decades, many stud-
ies have been conducted to provide cost-efficient designs. 
Saribas and Erbatur [2] applied a nonlinear programming 
method to solve a seven design variables problem, in which 
the weight of reinforced concrete retaining walls was con-
sidered as a objective function. Ceranic et al. [3] employed 
Simulated Annealing (SA) to minimize the construction 
cost of cantilever retaining walls. Yepes et al. [4] conducted 
a parametric study using SA on optimum design of cantile-
ver retaining walls, formulating the problem containing 20 
design variables. Particle Swarm Optimization (PSO) algo-
rithm was used by Ahmadi-Nedushan and Varaee [5] for 
separate weight and cost optimization of reinforced concrete 
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retaining walls. An improved version of Harmony Search 
(HS) algorithm was proposed by Kaveh and Shakouri-
Mahmud-Abadi [6] for optimum cost design of cantile-
ver retaining walls. A procedure was developed by Camp 
and Akin [7] for designing low-cost cantilever retaining 
walls using Big Bang–Big Crunch optimization (BB-BC). 
Talatahari and Sheikholeslami [8] enhanced Charged 
System Search (CSS) algorithm for optimization of grav-
ity and cantilever retaining walls. Kaveh and Soleimani 
[9] employed Colliding Body Optimization (CBO) and 
Democratic Particle Swarm Optimization (DPCO) for min-
imization of the cost of material used in reinforced concrete 
retaining walls. Kaveh and Farhoudi [10] demonstrated the 
superiority of Dolphin Echolocation Optimization (DEO) 
over the previously used algorithms in the cost optimization 
of cantilever retaining walls.

Undoubtedly, the economic objective is the main concern 
of owners and structural engineers at the beginning of a con-
struction project. However, it could not address all the con-
cerns for the whole expected service duration of a structure. 
For example, in reinforced concrete structures, bar conges-
tion complicates steel placement, hinders concrete placement 
and as a result leads to improper consolidation of concrete 
around bars affecting the integrity of the structure. Kaveh et 
al. [11] studied the importance of high constructability in the 
optimal design of cantilever retaining walls. They developed 
a multi-objective genetic algorithm considering minimiza-
tion of the construction cost and the reinforcing bar con-
gestion as the two objectives of the optimization problem.

Significant earthquakes can cause serious damage in struc-
tures which may lead to extensive consequences in terms of 
human losses (deaths and serious injuries), direct economic 
losses (building repair or replacement cost), and indirect 
losses (repair time and downtime). In performance-based 
design, structural engineers communicate seismic perfor-
mance levels to owners. Therefore, owners could identify a 
specific performance level for serviceability and strength; the 
new building is then designed to ensure compliance with the 
agreed level. By choosing an appropriate performance level, 
based on the location and function of the building, the prob-
able seismic damage and the resulting losses from potential 
future earthquakes would be limited and under control [12].

For retaining structures, the movement of the struc-
ture during earthquakes may cause severe damage to the 
wall or the adjoining structures. A comprehensive study 
on retaining wall displacements during ground motions 
and the subsequent damages has been reported by Lai 
[13] and Li et al. [14]. For instance, arterial roads that are 

high-capacity urban routes intended for through traffic in 
emergency situations, should be designed such that after 
significant earthquakes their function as a transport corri-
dor is served and the potential damage does not undermine 
their strategic role. Excessive movements of the retaining 
walls, where they directly support roads as bridge abut-
ments or in highway structures, have a negative impact on 
the efficiency, safety, and function of the arterial roads. 
Limiting the permanent displacement of retaining walls, 
not only ensures road safety and avoids traffic disruption, 
but also reduces the probable economic losses [15].

The conventional approach to design retaining walls has 
two basic requirements: "external stability" which means 
the structure as a solid should retain the backfill mass with 
respect to geotechnical requirements, and "internal stability" 
which is ensured by providing sufficient resistance against 
bending moments and shear forces as determined by con-
crete codes [1]. The existing AASHTO specifications use an 
empirical equation based on Newmark sliding block analy-
ses to compute wall displacements. In most cases, limiting 
displacements under seismic loading needs larger capacity 
in the wall than required to satisfy the internal and external 
stability criteria. Consequently, an optimal solution for min-
imizing construction cost is not simultaneously optimal for 
minimizing wall displacement. In the optimization literature, 
these objective functions are said to be conflicting, and there 
exists a number of Pareto optimal solutions instead of one 
single solution. A solution is called Pareto optimal if none 
of the objective functions can be further improved without 
degrading the other objective functions. The set of all Pareto 
optimal solutions forms a surface called a Pareto front [16].

This paper presents a multi-objective framework for the 
optimal design of cantilever retaining walls, considering 
construction cost and permanent wall displacement as two 
objective functions to be minimized at the same time. The 
goal is to find a representative set of Pareto optimal solu-
tions to help structural engineers communicate with owners 
and demonstrate the nature of trade-offs between the two 
conflicting objectives. The non-dominated sorting genetic 
algorithm (NSGA-II) [17] is used as an optimizer to search 
the Pareto optimal solutions. Visualizing the Pareto front 
assists owners in selecting an optimal solution that ensures 
the expected performance within the budget constraints. 

2 Optimal design problem
The present optimization problem deals with a bi-objective 
optimization of the construction cost and the permanent 
displacement of cantilever retaining walls, expressed by:
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where x = {x1, x2, …, xn} are the design variables and g(x) 
represents all the constraints and requirements must be sat-
isfied by the design code. The first objective function, as 
defined by Eq. (2), is the construction cost, where p is the 
unit prices, m measures the items the construction proce-
dure of a common cantilever retaining wall is divided into, 
and r is the total number of these items. The cost function 
includes materials cost (concrete and steel) and the cost of 
all construction items required to evaluate the total cost 
of a wall per meter of length, e.g., earth removal, backfill, 
formwork, concrete placing and rebar installation. Table 1 
lists the unit prices considered for the materials and the 
construction items, which are provided by a local Iranian 
contractor in road construction in September 2017.

Cost(x) = ∑pi × mi . (2)

Cost-based optimization of retaining walls generally 
provides optimal solutions that have lower construction 
cost than others among all possible scenarios. However, the 
basic goal of structural engineers is to design structures that 
are both economical and safe against probable earthquakes, 
which conflict with each other [18]. As explained earlier, 
permanent displacement of a retaining wall is of particular 
importance to keep the safety of using the wall as a part of 
a bridge or a highway structure. The second objective func-
tion PermDisp(x) computes the permanent displacement of 
cantilever retaining walls under the design earthquake. The 
calculation procedure is described in details in Sect. 4.4. 

Table 1 Unit prices for materials and construction items.

Item Price (US$)

Cubic meter of earth removal 11.41

Cubic meter of backfill 38.1

Kilogram of steel – Grade 40 (275.79 MPa) * 1.54

Kilogram of steel – Grade 60 (413.69 MPa) 1.51

Cubic meter of concrete – C20 (20 MPa) * 94.45

Cubic meter of concrete – C25 (25 MPa) 99.49

Cubic meter of concrete – C30 (30 MPa) 104.51

Cubic meter of concrete – C35 (35 MPa) 108.53

Cubic meter of concrete – C40 (40 MPa) 118.05

Square meter of foundation formwork 36.82

Square meter of stem formwork 37.08

Cubic meter of concrete placing 35.48

Kilogram of rebar installation 0.98
* For steel materials indicates the specified yield strength and for 
concrete materials indicates the specified compressive strength.

(a) Schematic view

(b) Reinforcement configuration
Fig. 1 Analytical model of cantilever retaining walls

3 Structural modeling
The analytical model used in this study to represent cantile-
ver retaining walls comprises of 9 design variables, which 
define the geometry of the wall and the strength grade of 
the concrete materials. Fig. 1(a) shows a schematic view of 
this model. The design variables include seven geometric 
variables, i.e., the bottom thickness of the stem wbottom, the 
thickness of the base slab hslab, the length of the heel wheel, 
the length of the toe wtoe, the thickness of the shear key wkey, 
the depth of the shear key hkey, and the location of the shear 
key bkey. The top thickness of the stem wtop is assumed to 
be constant. As well, two separate variables represent the 
grade of concrete used: one for the stem and one for the 
base slab. The strength of a concrete mix is measured in 
grades that the grade of concrete means the concrete com-
pression resistance after 28 days ( fc). 
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Since reinforcement costs directly impacts on the total 
construction cost of cantilever retaining walls, it should be 
included in the cost function. In the proposed framework, 
the seven geometric and the two grade variables are only 
evolved by the optimization algorithm and the reinforce-
ment setup for each solution should be calculated through 
another procedure. Reinforcement requirements are deter-
mined in accordance with ACI-318 [19]. Three types of 
reinforcing bars are required for cantilever retaining walls: 
longitudinal bending reinforcement, transverse shear rein-
forcement, and secondary reinforcement to avoid shrink-
age and thermal effects. 

Reinforcement configuration of the analytical model 
is shown in Fig. 1(b). As indicated in this figure, differ-
ent reinforcement sets are considered in different parts of 
the stem and the base slab. Each set is identified by two 
parameters, one indicating the diameter of the reinforc-
ing bars (D), and the other, the spacing between them (S). 
In total, 15 parameters represent the bars' diameter, and 
11 parameters represent the spacings. The difference in 
the number of parameters assigned to the diameters and 
the spacings is for the attention to the ease of reinforcing 
bar installation; since it is desirable that the extra and the 
existing bars are bundled together. In Fig. 1(b), the rein-
forcement sets that have the same spacing are separated by 
an identical number. For more detailed information about 
the reinforcement configuration and the numbers assigned 
to each set, refer to Kaveh et al. [10]. To provide a more 
precise cost evaluation of the reinforcement setup, both 
the development and anchorage length are added to the 
required length of the longitudinal bars wherever needed, 
in accordance with ACI-318 [19].

4 Structural evaluation 
In the proposed framework, when a solution is generated 
and the corresponding structure is modeled, results from the 
structural analysis of the new structure are checked against 
a set of predefined constraints. Structures that meet all the 
constraints are labeled feasible solutions, and those that do 
not, are labeled unfeasible ones, which are discarded.

There are two types of constraints in the design pro-
cedure of a common cantilever retaining wall. Firstly, the 
structure as a whole is checked for external stability, i.e., 
it is examined for possible "overturning", "sliding", and 
"bearing" failures. The purpose of the external stability 
check is to ensure that the size of the wall and the implied 
geotechnical capacity is sufficient. Secondly, each com-
ponent of the wall is checked for internal stability and the 

required reinforcing bars of each component is verified. 
The purpose of the internal stability check is to ensure 
that structural components function properly under the 
increased dynamic loads from future earthquakes [15].

AASHTO LRFD Bridge Design Specifications [20] 
uses a number of partial safety factors on loads and resis-
tances for the design of bridge structures and compo-
nents. Each factor relates to a limit state. Four limit states 
are specified in the LRFD specifications: service limit 
state; fatigue and fracture limit state; strength limit state; 
extreme event limit state. Limit states are expressed by 
functional requirements such as the limiting deformation, 
stress or cracks, or by safety requirements such as the 
maximum strength. The design shall be investigated for 
any combination of the factored forces that may produce 
the most severe condition of loading.

Many of the AASHTO LRFD load combinations need 
not be considered in the design of conventional retain-
ing walls. According to NCHRP-12-70 [21], Load com-
binations Strength I and Extreme Event I are controlling 
the design process. Two sets of load factors for Strength I 
load combinations are used to check the stability. One set 
induces the maximum eccentricity on the foundation, while 
the other set induces the maximum bearing pressure. These 
load combinations are differentiated by Strength I-a and 
Strength I-b designations. Load and resistance factors for 
these two load combinations and for Extreme Event I are 
listed in Table 2.

In what follows, a brief description of determining the 
external stability of retaining walls is provided. For more 
details, refer to AASHTO LRFD [20] and Das [1]. Checks 
for the internal stability can be found in any textbook on 
reinforced concrete.

The seismic behavior of retaining walls entirely depends 
on the total lateral earth pressure that develops during earth-
quake ground movements. This pressure includes both the 
static gravitational exists before an earthquake occurs, and 
the transient dynamic pressure induced by an earthquake. 
AASHTO LRFD [20] specifies that for the estimation of the 
seismic earth pressure either the Mononobe-Okabe (M-O) 
method or the Generalized Limit pressure that Equilibrium 
(GLE) method could be used. The implementation of the 
M-O method is acceptable only where the wall is free to 
move enough in order to mobilize the active pressure con-
ditions, and the backfill is cohesionless and unsaturated. 
In this study, despite the limitations, the M-O method that 
is frequently used by most structural engineers, is adopted 
for the calculation of the seismic earth pressures. 
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Fig. 2 Main forces in the M-O method

4.1 Mononobe-Okabe method
The M-O method is a pseudo-static approach, taking into 
account horizontal and vertical inertial forces acting on 
soil masses and retaining walls. Fig. 2 demonstrates the 
key forces in the M-O method: total weight of wall (W1), 
weight of backfill (W2), weight of soil on the toe (W3 ), sur-
charge load (ω), inertial forces in the horizontal direction 
(khW1, khW2) and in the vertical direction (kvW1, kvW2), and 
finally seismic active and passive earth pressure (PAE, PPE). 
The seismic active and passive earth pressure are computed 
as follows [20]:
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where
H = height of backfill;
ϕ = friction angle of soil; 
β = slope of rear face of stem (negative in value); 
δ = wall backfill interface friction angle;
i = backfill slope angle with respect to the horizontal;
kh = vertical seismic acceleration coefficient;
kv = horizontal seismic acceleration coefficient; and
θ = arctan (kh /(1 – kv ).

NCHRP-12-70 [21] recommends kh = FgpaPGA and kv = 0  
are appropriate to use with the M-O method. PGA is the 
peak ground acceleration coefficient and Fgpa is a site factor 
for the PGA.

4.2 External stability 
As described above, three constraints check the external 
stability of a wall for possible overall failures. AASHTO 
LRFD [20] recommends using limiting equilibrium 
methods of analysis for evaluation of the external stabil-
ity. Eccentricity constraint controls whether the resisting 

Table 2 Load and resistance factors

Load
Load factor

Strength I-a Strength I-b Extreme Event I

Active earth pressure, horizontal component 1.50 0.90 1.00

Active earth pressure, vertical component 1.00 1.35 1.00

Vertical soil pressure 1.00 1.35 1.00

Dead load of structural component 0.90 1.25 1.00

Sliding 
Resistance factor

Strength I-a Strength I-b Extreme Event I

Passive earth pressure, horizontal component 0.50 0.50 1.00

Passive earth pressure, vertical component 0.50 0.50 1.00

Cohesion, c 0.80 0.80 1.00

Friction angle of soil, φ 0.80 0.80 1.00

Bearing capacity
Resistance factor

Strength I-a Strength I-b Extreme Event I

Cohesion, c 0.60 0.60 1.00

Friction angle of soil, φ 0.55 0.55 1.00
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moments are greater than the overturning moments to pre-
vent rotation of a wall about the toe or not. The resisting 
moments result mainly from the self-weight of structure 
and the weight of backfill, whereas the main source of over-
turning moments is the seismic active earth pressure and the 
horizontal inertial forces. This constraint is as follows [20]:

e w M M
F

R O

V

= −
−∑ ∑
∑2

, (5)

where
e = eccentricity of resultant force from the centerline of 
foundation;
w = width of foundation;
∑MO = sum of moments of factored horizontal forces tend-

ing to overturn about overturning point;
∑MR = sum of moments of factored vertical forces tending 

to resist overturning; and
∑FV = sum of factored vertical forces.

According to AASHTO LRFD [20], a satisfactory 
design requires the wall to satisfy the eccentricity criteria 
as follows:

• e/w ≤ 1/6 for Strength I load combination on soil;
• e/w ≤ 1/4 for Strength I load combination on rock; 
• e/w ≤ 1/3 for Extreme event I load combination.
Sliding failure occurs if the force effects due to the hor-

izontal component of loads exceeds the more critical of 
either the factored shear resistance of the soils or the fac-
tored shear resistance at the interface between the soil and 
the foundation. Sliding constraint may be taken as [20]: 

F
F
R

D

∑
∑

>1 , (6)

where
∑FR = sum of factored resisting forces; and
∑FD = sum of factored driving forces.

In order to increase the sliding resistance of retaining 
walls, other than providing a large self-weight or a large 
retained soil mass, shear keys can be installed at the base. 
The main purpose of the installation of shear keys is to 
increase the extra passive resistance developed by the 
height of shear keys [1].

Lastly, the bearing resistance of the foundation soil 
must be large enough to resist the pressures transmitted to 
the soil by the base slab. The bearing constraint, where the 
wall is supported by a soil foundation, is expressed as [20]: 

qR
Vσ
>1 , (7)

  

σV
VF

w e
=

−
∑

2
, (8)

qR = φbqn , (9)

where
qR = factored bearing resistance; 
φb = bearing resistance factor; 
qn = nominal bearing resistance; and
σV = vertical bearing stress.

The nominal bearing resistance should be estimated 
using accepted soil mechanics theories based on measured 
soil parameters. AASHTO refers to Munfakh et al. [22] in 
order to calculate the nominal bearing resistance. In this 
study, we applied the detailed procedure as specified in 
Article 10.6.3.1 of AASHTO LRFD [20].

4.3 Internal stability
The internal stability deals with the flexural and shear 
strength of the structural system. The strength calculations 
of retaining walls are performed per linear meter for the 
ultimate flexure and shear at different sections of the stem 
and the base slab in accordance with ACI-318 [19]. These 
sections are identified in Fig. 2 with dotted lines. Although 
critical sections for bending and shear is at the bottom of 
the stem and in the base are taken at the face and back of 
the stem (Section 1, 2 and 3 in Fig. 2), the required reinforc-
ing bars at these sections do not need to be extended along 
the whole length of the stem, the heel or the toe. Therefore, 
in the analytical model used in this study four extra sec-
tions – two sections in the stem and one section in the heel 
and in the toe – are taken which are denoted by number  
4, 5, 6 and 7 in Fig. 2.

For strength calculations, AASHTO LRFD [20] speci-
fies that lateral loads acting on a wall – including the seis-
mic active earth pressure and the horizontal inertial forces 
- shall be the same earth pressures used for the external 
stability calculations. Whenever the flexural and shear 
capacity are verified at each section, it must be checked 
whether the secondary reinforcement of the stem and the 
base comply with the minimum requirements of provi-
sions for the thermal and shrinkage effect or not.

4.4 Permanent displacement
About the effects of wall sliding during ground motions, 
in the displacement-based design approach of AASHTO 
LRFD [20], the Newmark sliding block analysis is used 
to compute displacements when ground accelerations 
exceed the yield acceleration for a wall-backfill system. 
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The yield acceleration is a horizontal acceleration corre-
sponds to the acceleration level for a sliding factor of safety  
of 1.0, i.e.,

FS
b w e b

k W W Pslidig
key V key

h AE

=
+ − − ′

+ +
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where
ky = yield acceleration; and
δ' = friction angle between soil and foundation (δ' < ϕ).

Various researchers have proposed different relation-
ships for predicting the permanent displacement of earth 
structures subjected to seismic loadings. Based on regres-
sion analyses, NCHRP-611 [15] recommends that the per-
manent displacement, for soil sites, can be estimated by:

log( ) . . log( ) . log( )

. log(
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−
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where
d = permanent displacement (in inches); 
kmax = maximum seismic acceleration coefficient; and
PGV = peak ground velocity; 

The peak ground velocity is determined using PGV = 
55FvS1 (in/sec), where S1 is the spectral acceleration at 1 
second and Fv is the site class adjustment.

4.5 Acceptable displacements for retaining walls
An important question in any approach that involves per-
manent deformations is the amount that is acceptable. The 
specifications and commentaries to the NCHRP-12-70 [21] 
leave this decision to owners, who must weigh a number 
of factors in reaching this decision. To make the decision 
possible, NCHRP provide a detailed strategy for owners to 
use when determining the amount of permanent displace-
ments that is acceptable for certain retaining wall types 
during seismic events. 

Permanent displacements are generally associated with 
sliding and rotation of the retaining walls, where the entire 
soil mass with the wall moves. This movement could affect 
the internal and external stability of the retaining walls 
and induce structural damage or collapse. The factors that 
should be considered when deciding on acceptable levels 
of the permanent displacement, range from implications of 
the movement to the wall geometry and the type of soil [15]. 

When considering these factors, owners should evaluate 
both the relative consequences of movement and, as appro-
priate, the cost of designing to avoid the movement. In other 
words, expecting higher performance from a wall would 
cost owners a larger initial investment. This is where opti-
mization comes into play. Some of the main factors are as 
follows [15]:

• Walls in urban locations usually can tolerate less 
movement than walls located in the countryside. Part 
of this relates to the effects of wall movement on utili-
ties, sidewalks, pavements and other nearby facilities, 
and part relates to aesthetics;

• Walls that support a heavily traveled roadway should 
usually be designed for smaller displacements 
than walls that are part of a less traveled roadway. 
Roadways with heavy use will result in significant 
traffic and economic disruption if they are out of ser-
vice for even a few hours;

• Generally, shorter walls can tolerate more permanent 
displacement than taller walls;

• Walls that are designed with a batter are better able to 
handle permanent movement than walls with a verti-
cal face;

• Displacement of walls located on stiff clays or dense 
cohesionless soils will likely have higher reliability 
than for softer soils.

As summarized above, many factors must be considered 
when deciding on the acceptable level of displacement for 
a retaining wall. These factors make the development of 
a simple strategy for establishing the permanent displace-
ment difficult. NCHRP-12-70 [21] specifies as soon as the 
displacement exceeds 1 to 2 inches, owners should perform 
a comprehensive review of the possible consequences of 
the movement to the wall and facilities located in proxim-
ity to the wall. In this study, 1.5 inches (3.81 centimeters), 
as an average value, is supposed to be an upper bound for 
the acceptable range. 

In the proposed framework, whenever Pareto optimal 
solutions are provided by the NSGA-II optimizer, each 
solution on the Pareto front is labeled a high- or low-risk 
solution, regarding the performance level of the solution.  
Solutions with acceptable permanent displacement are 
considered to have a low-risk, and the others a high-risk 
performance level. The former means the post-earthquake 
damage state in which very limited structural damage has 
occurred. The wall retains nearly all of its pre-earthquake 
strength and stiffness. The risk of life-threatening injury 
as a result of structural damage is very low, although some 
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minor structural repairs may be appropriate. On the other 
hand, the latter means the post-earthquake damage state 
in which significant damage to the wall has occurred. 
Some structural elements and components are severely 
damaged. Injuries may occur during the earthquake. 
The general descriptions of the both damage states are in 
accordance with the specifications of NCHRP-12-70 [21], 
Appendix Ax, in which a strategy is identified that can be 
followed by owners when establishing performance levels 
for a rigid or semi-rigid retaining wall.

5 Optimization algorithm: NSGA-II
The detailed implementation procedure of NSGA-II algo-
rithm can be found in [23]; in what follows, a general 
description of this algorithm is presented.  Once a popula-
tion is initialized, two fitness values are assigned to each 
individual. First, NSGA-II uses a "non-dominated sort-
ing" algorithm for fitness assignment in which all individ-
uals that are not dominated by any other individual are 
assigned front number 1; all individuals only dominated 
by the individuals in front number 1 are assigned front 
number 2, and so on. Then, a value called "crowding dis-
tance" is calculated for each individual; it is a measure of 
how close an individual is to its neighbors. A higher fitness 
value is assigned to individuals located on the sparsely 
populated part of a front [23].

Parent selection is made using a "binary tournament 
selection" based on the assigned fitness values. This selects, 
between two random individuals, the one with the lowest 
front number, if the two individuals are from different fronts. 
When the individuals are from the same front, the individ-
ual with the highest crowding distance is selected. Then, 
the selected individuals generate offsprings using genetic 
operators. The genetic operators applied in this study are 
differential evolution (DE) operator for crossover and poly-
nomial mutation operator (for details, see [23] and [16]). 

In the next step, the offspring population is combined 
with the current generation's population and forms an 
intermediate population. Then, "replacement" is per-
formed to set the individuals of the next generation. Since 
all previous and current best individuals are included, elit-
ism is ensured. According to the replacement policy, the 
intermediate population is sorted based on the non-dom-
ination rule, then the new generation is filled with fronts, 
one after another until the population size exceeds the 
given size. If by adding all the individuals from the ith 
front, the population size exceeds, then individuals in the 
ith front are selected based on their crowding distance in 

descending order until the population is formed. This pro-
cess is repeated to generate the subsequent generations 
until the "termination criterion" is met [23].

To handle the given constraints, a relatively simple 
scheme is adopted. Whenever two individuals are com-
pared for sorting population in different fronts, first, they 
are checked for constraint violation. If both are feasible, 
the non-domination rule is directly applied to decide the 
winner. If one is feasible and the other is infeasible, the 
feasible dominates. If both are infeasible, the one with the 
lowest amount of constraint violation dominates the other. 
This is the approach developed by [23] and [23] for con-
straint handling. 

6 The proposed framework
Now, all of the components introduced in the previous 
sections are incorporated in a simple framework, which 
makes it possible to solve the optimal design problem. The 
main procedure that is based on the NSGA-II algorithm, 
is as follows:

Main procedure {
1. Set parameters.

1.1. Set NSGA-II user-defined parameters, e.g., pop-
ulation size, number of parents, number of offsprings, 
number of generations, etc.

1.2. Set input parameters required for structural 
modeling, analysis and design process.

2. Initialize a population.
2.1. Generate a random individual.
2.2. Evaluate the new individual.

3. Sort the initial population based on the non-domina-
tion rule and calculate crowding distances.

4. Select parents using the binary tournament selection.
5. Generate offsprings by performing genetic operators.

5.1. Generate a new individual.
5.2. Evaluate the new individual.

6. Form an intermediate population by merging the cur-
rent population with the offsprings.

7. Sort the intermediate population based on the 
non-domination rule and calculate crowding distances.

8. Perform replacement on the intermediate population 
to determine a new population.

9. Stop if the termination criterion is met, otherwise go 
to step 4.

};
Evaluate {

1. Construct a corresponding structural model for the 
new individual.
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2. Perform structural evaluation.
2.1. Check external stability.
2.2. Check internal stability.

3. Calculate constraint violation.
4. Calculate objective functions.

4.1. Compute construction cost.
4.2. Compute permanent displacement.

5. Determine performance level of the new individual.
}.

7 Case study
The proposed framework was implemented in MATLAB® 
[25] and a computer program was developed for the opti-
mal design of cantilever retaining walls. In what follows, 
the design of a typical wall of 8 meters in height and 10 
meters in length is investigated as a test example in three 
different cases: (I) with both a toe and a heel slab, (II) with-
out a heel slab, and (III) without a toe slab. The detailed 
description of the example is provided for case I, whereas 
the differences are only noticed in cases II and III. 

7.1 Case I: a wall with both a toe and a heel slab
The test structure is located in Los Angeles, California, and 
the type of soil profile is assumed to be D (stiff soil) at the 
site. Table 3 gives a list of parameters used in this example 
and their corresponding values. The ground motion param-
eters were selected using U.S. Seismic Design Maps [26].

Table 3 Parameters of the test example 

Parameter Value

Height of backfill (H) 8 m

Top thickness of the stem (wtop) 0.5 m

Height of soil on the toe (hfront) 0.8 m

Surcharge load (ω) 1000kg/m2

Backfill slope (i) 0o

Friction angle of soil (ϕ) 30o

Wall backfill interface friction angle (δ) 0o 

Friction angle between soil and foundation (δ') 24o

Unit weight of soil (γs) 1850kg/m3

Unit weight of concrete (γc) 2400kg/m3

Vertical acceleration coefficient (kv ) 0

Horizontal acceleration coefficient (kh ) 0.3

Maximum acceleration coefficient (kmax) 0.6

Peak ground acceleration (PGA) 0.6

Peak ground velocity (PGV) 109.2cm/s

Site factor (Fpga) 1

Bearing resistance factor (φb) 0.8

Table 4 Allowable ranges of the design variables

Design variable Allowable range Unit

wbottom [wtop + 0.02 × hstem: 0.05 : 3] * m

hslab [0.6 : 0.05 : 3] m

wheel [0 : 0.05 : 5] m

wtoe [0 : 0.05 : 5] m

hkey [0 : 0.05 : 2] m

wkey [0 : 0.05 : 2] m

bkey [0 : 0.05 : wheel + w bottom + w toe − w key ] m

fc(stem) {20, 25, 30, 35, 40} MPa

fc(slab) {20, 25, 30, 35, 40} MPa

* Generates numbers from the lower to the upper bound with a constant 
step size (the middle number).

In this example, the entire search takes place in a dis-
crete decision space. The allowable ranges of the nine 
design variables, and the corresponding lower and upper 
bounds are summarized in Table 4. In the optimization 
procedure, regarding constructability issues, if the depth 
of a shear key is obtained to be lower than 0.5 m, the shear 
key is omitted, and all design variables related to the shear 
key are assumed to be zero. Similarly, if the length of a 
heel or a toe slab goes below 1.0 m, that part of the base 
slab is omitted.

Due to stochastic nature of the NSGA-II algorithm, 
the program was run four times. The generated Pareto 
fronts are shown in Fig. 3(a), which displays a trade-off 
between permanent displacement and construction cost. 
Each Pareto front demonstrates the front number 1 solu-
tions found in the last generation of the main procedure for 
a given run of the program. A magnified view is displayed 
in Fig. 3 (b) in order to provide an easier graphical com-
parison between the four Pareto fronts. 

In all runs, a population of 500 individuals was evolved 
for 250 generations. The program consumed, on average, 
3.8 hours to solve this optimization problem, using an 
Intel® Core™ i7@2.0 GHz processor equipped with 8 GBs 
of RAM.

In order to compare the properties of different optimal 
solutions obtained in the four Pareto fronts, two partic-
ular solutions are investigated. These solutions are the 
extreme points correspond to the minimum construction 
cost (Solution A) and the minimum permanent displace-
ment (Solution B). The properties of these two solutions 
are provided in Table 5. As reported in this Table, while 
the construction cost of Solution B is increased by 163.8 % 
in comparison to Solution A, the corresponding perma-
nent displacement is decreased by 82.5 %.  
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7.2 Case II: a wall without a heel slab
In this case, the design of the test structure is repeated with 
no heel slab at the base. In order to provide enough length 
for the base, the maximum length of the toe is increased 
to 10 meters. Except the constraint of the base slab, all the 
constraints are the same as case I. 

The generated Pareto fronts are shown in Fig. 4(a). 
Properties of two extreme Pareto optimal solutions cor-
respond to the minimum construction cost (Solution C) 
and the minimum permanent displacement (Solution D) 
are listed in Table 6. Based on Table 6, the construction 
cost of Solution D is 144.7 % higher than Solution C, while 
the permanent displacement is 82.4 % lower.  

7.3 Case III: a wall without a toe slab
In this case, the design of the test structure is repeated 
with no toe slab at the base. Similar to case II, all the con-
straints are the same as case I, except that the maximum 
length of the heel is increased to 10 meters.

Fig. 4(b) demonstrates the generated Pareto fronts. Pro-
perties of two extreme Pareto optimal solutions correspond 
to the minimum construction cost (Solution E) and the min-
imum permanent displacement (Solution F) are listed in 
Table 7. Based on Table 7, the construction cost of Solution 
F is 75 % higher than Solution E, while the permanent dis-
placement is 70.6 % lower. 

Fig. 5 displays the dimensions and schematic view of the 
optimal designs represented by Solution A and B for case I, 
Solution C and D for case II, and Solution E and F for case III.

7.4 Discussion
The number of Pareto optimal solutions, which form the 
four Pareto fronts in Fig. 3(a), Fig. 4(a) and Fig. 4(b), is 
500 solutions in each figure. To help owners select a solu-
tion that satisfies seismic expectations and keeps within the 
budget, the performance level of each solution should be 
identified. In Fig. 6, Pareto optimal solutions are shown in 
two different colors according to their performance levels 

(a) Full view                                                                                               (b) Magnified view
Fig. 3 Generated Pareto fronts for case I

(a) Case II                                                                                                      (b) Case II
Fig. 4 Generated Pareto fronts for cases II and III
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Table 5 Properties of Solution A and Solution B for case I

Optimal design Reinforcement configuration

no. Design 
variable► Solution A Solution B no. Diameter 

Spacing◄ Solution A Solution B no. Diameter 
Spacing◄ Solution A Solution B

1 wbottom 0.76 0.71 1 D1 , S1 Ø16@30 Ø16@30 10 D10 , S5 Ø16@30 Ø28@15

2 hslab 0.60 3.00 2 D2 , S1 Ø16@30 Ø16@15 11 D11 , S6 Ø16@7.5 Ø28@15

3 wheel 2.35 5.00 3 D3 , S1 Ø16@15 Ø20@15 12 D12 , S6 Ø16@30 Ø28@15

4 wtoe 3.80 5.00 4 D4 , S2 8Ø8@15 9Ø8@15 13 D13 , S7 5Ø8@15 5Ø10@15

5 hkey 2.00 2.00 5 D5 , S3 Ø16@15 Ø16@15 14 D14 , S8 Ø12@30 Ø12@30

6 wkey 0.50 2.00 6 D6 , S3 Ø16@30 Ø16@30 15 D15 , S9 Ø16@30 Ø25@15

7 bkey 6.40 2.35 7 D7 , S4 Ø20@15 Ø20@15

8 fc(stem) 25 35 8 D8 , S4 Ø18@15 Ø12@25

9 fc(slab) 25 30 9 D9 , S5 Ø20@15 Ø28@15

Objective function evaluation

Construction cost Permanent diplacement Performance level

Solution A 51293 $ 11.40 cm High-risk

Solution B 135300 $ 1.99 cm Low-risk

► Units are the same as Table 4.
◄ Both diameters and spacings are in mm.

Table 6 Properties of Solution C and Solution D for case II

Design variables ►

wbottom hslab wheel wtoe hkey wkey bkey fc(stem) fc(slab)

Solution C 1.00 0.70 0.00 9.50 2.00 0.55 7.50 25 25

Solution D 1.00 3.00 0.00 10.00 1.80 2.00 9.00 20 20

Objective function evaluation

Construction cost Permanent displacement Performance level

Solution C 50765 $ 14.29 cm High-risk

Solution D 124220 $ 2.52 cm Low-risk

► Units are the same as Table 4.

Table 7 Properties of Solution E and Solution F for case III

Design variables

wbottom hslab wheel wtoe hkey wkey bkey fc(stem) fc(slab)

Solution E 0.76 0.60 7.00 0.00 2.00 2.00 7.10 25 25

Solution F 0.71 3.00 10.00 0.00 1.95 0.50 7.25 30 35

Objective function evaluation

Construction cost Permanent diplacement Performance level

Solution E 88867 $ 5.99 cm High-risk

Solution F 155480 $ 1.76 cm Low-risk

► Units are the same as Table 4.

for cases I, II and III. Solutions that have permanent dis-
placements in the acceptable range are classified as "low-
risk" solutions, and they are shown in green; and solutions 
beyond that range, as "high-risk" solutions, in yellow. For 
instance, if the wall is located in the countryside, where 
large amounts of damage from the permanent movement 
are acceptable, it is recommended that owners select a yel-
low solution with a minimal construction cost. On the other 

hand, if the wall is located in a heavily traveled urban area, 
where it is very important to limit displacement to levels 
that will have negligible disruption to service, it is better 
to select a green solution with a minimal permanent dis-
placement.  In cases between these two extreme situations, 
the decision should be made taking into consideration the 
required amount of capital investment and the risk that the 
wall could pose to the traffic safety.
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Fig. 5 Construction plans for cases I, II and III

(a) Solution A (b) Solution B

(c) Solution C (d) Solution D

(e) Solution E (f) Solution F
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(a) Case I

(b) Case II

(c) Case III
Fig. 6 Performance level of Pareto optimal solutions for cases I, II  

and III

8 Conclusions
This study used the NSGA-II algorithm to extend the con-
cept of performance-based design to retaining wall struc-
tures. A framework was proposed, in accordance with the 
seismic provisions of NCHRP-611, in which minimization 
of the construction cost and the permanent displacement 
of cantilever retaining walls were investigated as two sep-
arate objectives of the optimization problem. Obtaining 

Pareto fronts of optimal solutions for these objectives, pro-
vides valuable information that helps owners or insurance 
companies to make the best decisions. Among the Pareto 
optimal solutions, they can select the one that is the most 
economical in trade-offs between financial burdens and 
seismic performance expectations. In this study, we have 
tried to follow most of the relevant constraints specified in 
the guidelines, so that the results may be useful for struc-
tural engineers in real-life projects.

Two performance levels were established for the seismic 
evaluation of cantilever retaining walls: low-risk and high-
risk performance level. If the permanent displacement of a 
wall is calculated to be in the acceptable range, the wall is 
supposed to achieve the low-risk performance level; oth-
erwise, the performance is at the high-risk level. The low-
risk level anticipates a very light damage. The force resist-
ing system of the wall retains most of its pre-earthquake 
strength and stiffness. Some disruption to normal oper-
ation may be expected; however, the wall remains func-
tional. At the high-risk level, damage may range from mod-
erate to extensive. Strength and stiffness of the wall may 
be reduced but still provide a margin of safety against col-
lapse. Significant disruption to service is possible.

A computer program was developed based on the pro-
posed framework and operated for the design of a cantile-
ver retaining wall of 8 meters in height. This problem was 
investigated in three different cases; firstly with both a 
toe and heel slab, secondly without a heel slab, and thirdly 
without a toe slab. For each case, four Pareto fronts made 
up of totally 1500 Pareto optimal solutions were obtained. 
Then, for each case, the properties of two extreme solu-
tions located at the left and right end of the fronts were 
investigated in details and their construction plans were 
prepared. Uniform distribution of the Pareto optimal solu-
tions and strong convergence, demonstrate that by using 
the proposed framework, convenient Pareto fronts of pos-
sible optimal solutions could be obtained.
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