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Abstract

For most rock materials, there exists a strong coupling between plastic flow caused by sliding along micro-crack faces and damage 

evolution due to nucleation and growth of wing-cracks. The aim of this article is to develop the self-consistent based micromechanical 

model by taking into account the coupling between frictional sliding and damage process under dynamic compressive loading. The 

developed model algorithm was programmed in the commercial finite difference software environment for numerical simulation 

of rock material to investigate the relationship between the mechanical behaviour and microstructure. Eventually while the stress 

intensity factor at flaw tips exceeds the material fracture toughness, the wing-cracks are sprouted and damage evolution occurs. 

For frictional closed cracks, an appropriate criterion for the onset of frictional sliding along micro-cracks was proposed in this paper. 

Also, plastic strain increments were determined by the flow rule, consistency condition and normality rule within the thermodynamic 

framework. The simulation results demonstrate that the developed micromechanical model can adequately reproduce many features 

of the rock behaviour such as hardening prior to the peak strength, softening in post-peak region, damage induced by wing-cracks and 

irreversible deformations caused by frictional sliding along micro-cracks. Furthermore, the softening behaviour of material in post-

peak region is affected and the material undergoes higher values of strains and damage up to the residual strength. Therefore, the 

rock sample simulation with the coupled frictional sliding-damage model could increase plasticity and ductility of the rock in post-peak 

region because of regarding plastic strains caused by the frictional sliding along micro-cracks.
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1 Introduction
Under compression dominated loading, frictional sliding 
along closed micro-crack faces and propagation of micro-
cracks are commonly considered as main dissipative 
mechanisms that govern inelastic deformation, damage 
evolution and progressive failure of cohesive geo-materi-
als [1]. The dominant micro-mechanism that commonly 
characterizes damage in brittle materials is attributed to 
the frictional sliding on pre-existing micro-cracks faces 
and presence of intrinsic flaws such as micro-crack, pores 
and mismatches in grain boundaries. The frictional slid-
ing and micro-crack growth leading to damage evolu-
tion are inherently coupled each other during irrevers-
ible processes involving the dissipation of energy and the 
evolution of microstructure [2, 3]. Due to the preferential 

direction of the wing-crack nucleation from initial flaw 
tips, anisotropy and volume dilatancy are induced in dam-
aged material by damage accumulation [4].

Generally, two kinds of damage models are commonly 
implemented in the literature to describe mechanical dete-
rioration, softening and damage processes. The first type 
is the phenomenological damage model, and the other con-
sists of models based on the micro-mechanical approaches. 
In the framework of phenomenological damage mod-
els, the material free energy is interpreted as a function 
of a number of internal variables, such as plastic strain, 
together with a scalar variable representing isotropic dam-
age, or a second or fourth order tensor representing aniso-
tropic damage. Actual physical mechanisms e.g. unilateral 
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effects due to opening and closure of micro-cracks, cou-
pling between friction and damage on the crack faces, as 
well as interactions between cracks that have fundamen-
tal role in overall materials behaviour and damage due to 
cracks propagation are difficult to take into account in this 
kind of the model. Furthermore, a large number of input 
parameters have usually to be determined in phenomeno-
logical damage models, and many of them have physically 
unclear sense. In order to overcome shortcomings of phe-
nomenological damage models, micromechanical damage 
models have been proposed. In micromechanical damage 
models, physical mechanisms are scaled from micro-scale 
to macroscopic behaviour  with effective homogenized 
material properties. 

Initial micromechanical damage models are gener-
ally limited to dilute distribution of micro-cracks and 
then are not able to take into account interaction between 
micro-cracks. Chen et al. (1996) developed a microme-
chanical damage model under biaxial dynamic compres-
sive loading, without considering the micro-cracks inter-
action, which randomly distributed sliding micro-cracks 
activate when the mode-I stress intensity factor  reaches 
its critical value [5, 6]. Horii and Nemat-Nasser (1986) 
developed a damage model specifically for closed cracks 
with frictional sliding on the crack interface, which con-
sider the dilute distribution of micro-cracks for materials 
under dynamic compression loading. The dilute scheme 
has been used in various works to determine the effective 
properties of micro-cracked materials, e.g. [7, 8, 9, 10, 11, 
12, 13, 14and 15].

In order to overcome the shortcomings of dilute distri-
bution, other Eshelby-based homogenization procedures 
such as Mori-Tanaka (1973), Ponte-Castaneda and Willis 
(1995) and self-consistent have been implemented in the 
literature [15, 16].

Zhu et al. (2008, 2011) used the Ponte-Castaneda and 
Willis (PCW) (1995) and Mori-Tanaka (1973) homoge-
nization schemes to study the materials behaviour with 
closed frictional micro-cracks under compressive load-
ing [17, 18]. In homogenization with PCW and Mori-
Tanaka schemes, the materials containing pre-existing 
micro-cracks are analyzed as the matrix and micro-cracks 
composition. These researchers proposed a formulation 
including frictional sliding along micro-cracks associated 
with damage evolution for rock containing micro-cracks 
under compressive loading. It is largely admitted that 
rational determination of damage evolution law is still one 
of the open issues in this kind of micromechanical damage 

models. Although damage criteria based on strain energy 
release rate have been widely adopted as a compromise, 
the damage resistance function involved therein is still 
empirical by now [1].

On the other hand, Paliwal and Ramesh (2008) estab-
lished a micromechanical damage model based on the 
self-consistent homogenization scheme accounted for 
two-dimensional slit-like micro-cracks embedded in ellip-
tical inclusion surrounded by homogenized solid matrix. 
This model is capable of capturing the influence of the 
statistically pre-existing flaws distribution and the applied 
strain rate on the rock response [19].

Graham-Brady (2010) developed Paliwal and Ramesh 
(2008) model and suppose that each element can be treated 
as a meso-scale continuum with constitutive properties 
that reflect the characteristics of the underlying micro-
structure. For this purpose, Graham-Brady (2010) uti-
lized a method that employed probability distributions to 
these element properties [20]. Katcoff and Graham-Brady 
(2014) developed the Paliwal and Ramesh (2008) model to 
study the compressive dynamic failure of brittle materials 
with circular flaws [21]. 

In compared with Zhu et al. (2008, 2011) models, the 
damage evolution law in models based on the work of 
Paliwal and Ramesh (2008) is also determined rationally 
based on the dynamic fracture mechanics principle. 

However, in compared with Zhu et al. (2008, 2011) 
and Qi et al. (2016) models based on the PCW and Mori-
Tanaka homogenization schemes, the coupled micro-crack 
frictional sliding and damage evolution has not yet imple-
mented in the micromechanical damage models based on 
the self-consistent homogenization scheme [1]. Although 
Hu et al. (2015) proposed a plastic-damage model based on 
the self-consistent homogenization scheme, matrix plas-
tic strain due to dislocation in crystalline network is only 
considered in this model and material degradation and 
inelastic deformation are more popularly characterized 
separately [23]. 

Nemat-Nasser and Obata (1988) developed a micro-
mechanical damage model for calculation of dilitancy in 
brittle materials. They were supposed that the total strain 
consists of an elastic strain due to the elastic deformation 
of the matrix, plus an inelastic strain due to slip and dila-
tancy of the preexisting flaws, accompanied by inelastic 
strain due to micro-cracking. The computed mode-I stress 
intensity factor in theirs works related to a pair of collin-
ear concentrated forces (F) denoted by (KI) and the mode-I 
stress intensity factor associated with the gaps and in the 
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presence of applied stresses denoted by (KI'). In the sug-
gested damage model by Nemat-Nasser and Obata (1988), 
the total inelastic strain were calculated  based on com-
plex physical phenomena in micro-flaw tips e.g. micro-
crack surfaces, back slipping and wedge effect. The new 
researchers used the Nemat-Nasser and Obata (1988) for-
mulation for considerations of inelastic strain and speci-
fied the condition for micro-crack surface sliding and cou-
pling between sliding and damage accumulation [40]. 

Ayyagari et al. (2018) proposed a three-dimensional 
generalized anisotropic constitutive model for brittle 
solids contain of the spatial evolution of planar wing-
cracks subjected to dynamic compressive loading. They 
are assumed self-consistent scheme for accounting crack 
interactions for in the compliance measuring. Also the 
coupling between the planar flaw and the wing-crack is 
considered within the definition of second-order damage 
tensor and was found effective in describing the contribu-
tion of damage to compression-induced dilation Ayyagari 
et.al (2018) is defined a fully three-dimensional anisotro-
pic compliance tensor and evaluated considering the wing-
crack mechanism, using a mixed-approach. They were 
expressed the crack sliding displacement due to micro-
cracks surfaces sliding and damage evolution in terms of 
the wedging force, the principal stress, and the wing-crack 
and crack sizes [22].

Liu and Graham-Brady (2016), Improved the over pre-
viously proposed models suggested by Nemat-Nasser 
and Obata (1988). They were proposed a physics-based 
closed-form solution for the instantaneous compliance of 
a wing-crack damaged material under compressive load-
ing, which has been verified and parameterized through 
a periodic unit-cell finite element model. In compared to 
previous work studying the wing-crack model under com-
pressive load, such as Nemat-Nasser and Obata (1988) , 
the work done by  Liu and Graham-Brady (2016), takes 
the pre-existing flaw into account when defining the wing- 
crack model, instead of further simplifying it by a straight 
line crack. The straight line crack model leads to a very 
limited increment of the compliance along the loading 
direction, and thus is not an appropriate equivalent model 
for the wing-crack problem [41].

 The aim of this study is to develop the micro-mechan-
ical damage model originally proposed by Paliwal and 
Ramesh (2008) to take into account coupling between 
frictional sliding along micro-cracks and damage due to 
micro-cracking under dynamic compressive loading.

The developed model in this paper incorporates the 
plastic deformations due to frictional sliding along closed 
micro-cracks surfaces accompanied by volumetric dila-
tancy and damage evolution as a result of wing-crack 
nucleation from flaw tips.

In this way, shear plastic strains due to frictional sliding 
along micro-crack faces lead to increase the stress inten-
sity factor at flaws tips. When the stress intensity factor in 
mode-I of loading reaches the critical value (toughness), 
growth and coalescence of micro-cracks occur via nucle-
ation of wing-cracks from the pre-existing flaw tips. 

The proposed coupling between frictional sliding along 
closed micro-crack faces and damage evolution is formu-
lated in the framework of a micromechanical model based 
on the self-consistent homogenization scheme which was 
programmed and implemented into a commercial code. 
Accordingly, the proposed model was applied to the sim-
ulation of brittle rocks behaviour under dynamic loading.

The simulated stress-strain curves based on the origi-
nal model of Paliwal and Ramesh (2008) and the proposed 
model in this paper were investigated and compared under 
applied high strain rate.

2 Description of theoretical framework
2.1 Self-consistent homogenization scheme (SCS)
Brittle materials like rock inherently have distributed flaws 
that are weaken links and lead to mechanical properties 
deterioration under applied loading. Fig. 1 demonstrates 
a representative volume element () of material containing 
cracks with randomly sizes and orientation, occupying a 
domain  limited by its external boundary surface.  is used 
for communication between macro and micro scales of 
material behaviours. The homogenization process for brit-
tle rock materials containing distribution of in-homogene-
ities in solid matrix is illustrated in Fig. 1.

Fig. 1 Homogenization process from micro to macro scale [24]
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In a situation that the micro-cracks are close to each 
other, the self-consistent scheme can be used to determine 
the effective mechanical properties [25].

According to Fig. 2, in self-consistent scheme it is 
assumed the presence of an elliptical inclusion surround-
ing each individual flaw inside of which the material is 
undamaged. Material outside of the ellipse has the effec-
tive homogenized properties accounting for the damage 
associated with the entire flaw population. The interactions 
among different flaw families are accounted through the 
means of crack-matrix-effective-medium approach, which 
the self-consistent scheme plays a crucial role in determin-
ing the local (effective) stress field around the individual 
flaws. Budiansky and O’Connell (1976) suggested effec-
tive Young modules and shear modulus for calculation of 
damaged matrix [19]:
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here, E and G are the Young’s and shear modulus of the pris-
tine material, respectively. Also, v and Ω are the Poisson’s 
ratio and damage parameter, respectively. Meanwhile the 
effective Poisson’s ratio was assumed constant during dam-
age process [19]. Van and Vasharhelyi (2014) calculated 
deformation modulus of rock mass from the GSI value and 
disturbance factor. In fact, if the deformation modulus of 
the intact rock (E) is known, the damaged modulus of rock 
mass (Ē) can be determined from disturbance factor that 
plays the damage parameter roles [42, 44].

2.2 Damage parameter
All of rock materials contain intrinsic flaws that have a dif-
ferent sizes and orientation. According to the weakest link 
theory under quasi-static loading condition some of the 
large flaws in the material are activated that affect signifi-
cantly overall behaviour of material. In other words, small 
flaws within the material do not activate crack growth, and 
failure is therefore controlled by large size flaws. In contrast 
with static loading, under dynamic loading the weakest link 
theory is not applicable and the whole families of the flaws 
participate to the mechanical response of brittle solids [26].

The parameter (Ω) is used for assessment of the damage 
in material under applied loading. The damage parameter 
in material depends on micro-cracks characteristics such 

Fig. 2 Self-consistent scheme a) Numerical model, b) RVE, c) Elliptical 
inclusion surrounding individual flaw

as initial length (2s), orientation (φ), areal density (η) and 
wing-crack length (l). As brittle materials like rock contain 
distributed micro-cracks with different size and orientation, 
it could be expressed by statistical functions as follows [19]:

Ω = ∫η ϕ ϕl g s f dsd2 ( ) ( )  (2)

The expresses of g(s) and f(φ) are size and orientation 
statistical distribution functions respectively. For simplic-
ity, the special case of a material whose all flaws have uni-
form distribution of size and orientation in two-dimen-
sional space is assumed throughout this paper. Therefore, 
f(φ) = δ(φ – 50.7°) is selected for distribution of orientation 
because it is the most critical orientation under universal 
compressive loading. 

This assumption does not affect the general trends in 
the proposed model regarding coupling frictional sliding 
along micro-cracks and damage evolution. In the situation 
with uniform distribution of size and orientation, the Eq. 
(2) can be summarized as:

Ω =ηl 2 ,  (3)

Accordingly, the damage parameter evolution can be 
calculated as following:


Ω = 2ηll,  (4)

Ghasempour et al. (2017) was considered exponential 
function for calculation of damage parameter. The dam-
age parameter used in this method begins to increase from 
yielding (Ω = 0) to failure (Ω = 1). The damaged defor-
mation modulus related to intact deformation modulus as:  
(Ω = 1 – Ē/E) [43].

2.3 Review of the self-consistent based 
micromechanical damage model           
In this section, the micromechanical damage model for-
mulation based on the self-consistent homogenization 
scheme is reviewed briefly. The basic idea is that the 
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individual micro-crack is embedded in an elastic ellip-
soidal inclusion surrounded by damaged matrix, and each 
micro-crack experiences an effective local stress field dif-
ferent from that acts on isolated cracks [19]. Rock material 
is assumed to be under remote biaxial compressive load-
ing P as follows:

P = [σ11   σ22   0]T (5)

According to Fig. 3, the micro-crack tractions due to 
remote compressive loading include traction imposed on 
the initial closed flaw (ts' ) and tensile traction applied on 
wing-cracks (tw'

  ) surfaces [19].
The problem of a micro-crack embedded in elliptical 

inclusion surrounded by effective homogenized material 
under compressive loading can be decomposed into two 
sub-problems according to Fig. 4. In the first sub-problem 
(Fig. 4(a)), the imaginary micro-crack is inside the elliptical 
inclusion surrounded by effective homogenized matrix under 
the same remote biaxial loading as the original problem.

In an undamaged matrix, the local stress imposed on 
the elliptical inclusion is the same as the remote stress. 
However, with damaged matrix, the elastic properties of the 
effective homogenized matrix degrade, causing an elastic 

Fig. 3 Schematic illustrations of equivalent medium and tractions acted 
on initial micro-crack and wing-cracks under remote biaxial loading 

(P) [19]

a)                                       b)
Fig. 4 Decomposition of the original problem shown in Fig. 3, into two 

sub-problems based on the superposition principle [19]

properties mismatch at the matrix–ellipsoidal inclusion 
boundaries. This mismatch leads to a local stress state that 
differs from the far-field stress state ) [27]. 

In this paper, the methods introduced by Graham-Brady 
et al. (2015) were implemented to calculate the local stress 
field (P e) imposed on the elliptical inclusion containing an 
isolated micro-crack as a function of the global principal 
stress tensor (P):

P B P Pe e e e e T
= ⋅ =  , ,σ σ σ11 22 12

 (6)

The determination of B  is dependent on the undam-
aged stiffness tensor for the elliptical inclusion (E), stiff-
ness tensor for the damaged matrix material (Ē), Eshelby 
tensor () and elliptical inclusion dimensions as described 
in the Appendix A. 

The traction in the first sub-problem (t r) shown in Fig. 5 
is decomposed into the traction on imaginary micro-crack 
planes ( ts

r  ) and traction on wing-crack surface ( tw
r ), arising 

from the local stress field (P e) acts on the ellipsoidal inclu-
sion boundaries. The traction t eff in the second sub-prob-
lem shown in Fig. 4(b) causes inelastic deformation and 
damage evolution. The traction t eff must be determined in 
the manner that satisfies the superposition principle of two 
sub-problems as follows:

t' = t r + t eff , (7)

As illustrated in Fig. 5, both tractions ( ts
r and tw

r ) can 
be decomposed into the components directed perpen-
dicular and parallel to the surfaces of imaginary micro-
cracks, respectively. According to Fig. 5, the components 
directed perpendicular and parallel to the surface of imag-
inary micro-cracks in the first sub-problem are calculated 
through the stress transformation equation as follows: 

Fig. 5 Decomposition of traction t r applied on the imaginary micro-
crack planes in the first sub-problem [19]
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Furthermore, the vertical and parallel components of 
the traction applied on the wing-crack surface (tw

r  ) can be 
obtained as follows:

t
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The superscripts "^" and "ǀǀ" indicate the directions per-
pendicular and parallel to the surfaces, respectively. Since 
in the second sub-problem the initial micro-crack surface in 
the normal direction is traction free t s

eff( ) =
⊥

0 , the normal 
component of the resolved traction (ts' )

^ illustrated in Fig. 
3 is only due to the first sub-problem and equals the normal 
component of (ts

r). If the Mohr-Coulomb type criterion is 
applied for frictional sliding along closed micro-cracks, the 
following expression can be written for the components of 
traction  acting on the sliding micro-crack surfaces:

′
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where μ is the dry friction coefficient for the closed flaws 
and τc is the cohesion. In the second sub-problem illustrated 
in Fig. 4(b), the effective tractions on flaw surfaces lead-
ing to inelastic deformation and damage evolution can be 
determined based on satisfying the superposition principle 
of two sub-problems. The effective traction components in 
the second sub-problem are depicted in Fig. 6. The effec-
tive traction t s

eff  imposed on the initial micro-crack surface 
causes frictional sliding along micro-cracks. The effective 
traction tw

eff  is also applied to the wing-crack surfaces, lead-
ing to wing-crack opening and rock damage. The following 
equation can be written by using the Eqs. (8) to (10):

t
t t t
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Because of wing-cracks opening during damage pro-
cess, it can be assumed that  and the effective traction 
imposed on the wing-crack surfaces can be written as:

Fig. 6 Components of traction teff in the second sub-problem [19]
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Eventually, the effective shear stress mobilized at the 
micro-crack surface can be calculated by the substitution 
of Eqs. (8) and (10) into Eq. (11) as follows:
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2.4 Frictional sliding criterion and flow rule 
Under dominated compressive loading with closed micro-
cracks, the onset of macroscopically inelastic deformation 
is typically attributed to the activation of frictional slid-
ing along the micro-cracks, which causes wing cracks to 
sprout from their tips [19]. According to Zhu et al. (2008, 
2011) and Qi et al. (2016), the inelastic deformation caused 
by frictional sliding along micro-cracks can be treated as 
plastic strain accompanied with dilatancy in the classic 
plasticity theory framework, and its evolution can be deter-
mined by the normality rule within the thermodynamic 
framework. For frictional closed cracks, an appropriate 
criterion, for instance the Coulomb-type criterion, for the 
onset of frictional sliding along micro-cracks is required. 
As shown in Fig. 7, an appropriate frictional sliding crite-
rion needs to be formulated at the microscopic scale, which 
plays the role of the yielding function for plastic strain evo-
lution in the classic theory of plasticity [28]. In this paper, 
a frictional sliding criterion for micro-cracks is proposed 
and inelastic deformations originated from frictional slid-
ing along the micro-crack faces are calculated by flow rule 
and consistency condition in the classic plasticity theory 
framework. The following general sliding criterion is here 
assumed that consider both of resisting force (R) and driv-
ing force (f) for sliding along micro-crack surfaces:
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Fig. 7 Plastic strains caused by sliding along micro-cracks [19]

g = f(loading) – R(cohesive, friction) (14)

where the yield function (g) determines the evolution of fric-
tional sliding along micro-cracks under local stress field (Pe). 

Ayyagari et.al (2018), Liu and Graham-Brady (2016) 
used the Nemat-Nasser and Obata (1988) approach’s to 
estimate the coefficients of total inelastic strains by equat-
ing the force-driven stress intensity factor (KI), and the 
displacement-driven stress intensity factor (KI') [22, 41].

Based on the analysis performed in the previous section, 
the driving force for frictional sliding along micro-cracks 
is (ts

r)ǀǀ. On the other hand, cohesive and frictional resisting 
forces against sliding along the micro-cracks surfaces can 
be involved in the resistance function (R) as follows:

R tc s
r= − ( )⊥τ µ ,  (15)

where τc and μ are cohesion and dry friction coefficient of 
closed micro-crack respectively. The substitution of driv-
ing and resisting forces into Eq. (14) results in the follow-
ing sliding criterion:

g t ts
r
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Also, the substitution of (ts
r)ǀǀ and (ts

r)^ from Eq. (8) leads 
to the yield function as follows:
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It’s noteworthy that the frictional sliding criterion pro-
posed in Eq. (17) is based on the physical facts at the 
micromechanical scale, for the frictional criterion is for-
mulated using the local stress field. Due to the inelastic 

deformation arisen from sliding along micro-crack sur-
faces, the total strain tensor can be decomposed into elas-
tic ( eij

e ) and plastic ( eij
p sliding( )

) components:

e e eij ij
e

ij
p sliding= +
( )

,  (18)

eij
p sliding( )

 is induced by frictional sliding along micro-crack sur-
faces and not based on dislocation in crystalline matrix net-
work. The plastic strain tensor increment ( ekl

pl ) can be obtained 
from the normality condition of the associated flow rule:
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l pl sliding( ) , is a non-negative multiplier which can be deter-
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By applying the consistency condition (dg = ġ = 0) to 
the sliding criterion, the plastic multiplier for elastoplas-
tic behaviour condition without damage evolution can be 
determined as follows:
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It’s noteworthy that the plastic multiplier is nonnega-
tive under loading and unloading condition. The substitu-
tion of the plastic multiplier from Eq. (21) into the incre-
mental stress-strain relation without damage evolution  
(  σ εij ijkl kl

eE= ) leads to the following fourth order elasto-
plastic tangential stiffness tensor Eijkl

tep  as following:
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2.5 Damage criterion and damage evolution rule
While the rock material is subjected to compressive load-
ing, sliding along closed initial micro-crack surfaces 
leads to increase in the stress intensity factor at flaw tips. 
Subsequently, if the stress intensity factor at flaw tips 
reaches the fracture toughness, the wing-crack nucleation 
from flaw tips occurs [23].

Damage in rock materials occurs with wing-crack 
nucleation, growth and propagation. The damage criterion 
(Fd) indicating the boundary of damage progression in rock 
material consists of two principal components of driving 
and resisting functions. Therefore, it can be expressed in 
the following general form [30]:

Fd =f(loading) – r(resist), (23)

where r represents the current resistance to further 
damage propagation.The driving and resisting functions 
are the stress intensity factor (KI) and the mode-I fracture 
toughness (KIC), respectively. From fracture mechanics 
viewpoint, damage occurs when the stress intensity fac-
torat flaw tips exceeds the fracture toughness. The mode-I 
stress intensity factor at the flaw tips for slit-like micro-
cracks is suggested by Nemat-Nasser and Horii (1982) [7]:

K K K
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cos
,

*

ϕ

π
π  (24)

The parameter (l* = 0.27s) is assumed to avoid singu-
larity of (KI)1 when the wing-cracks are too small (l = 0).

Accordingly, (KI)1 at the flaw tip arises from the resul-
tant shear stress on the closed micro-crack surfaces and 
subsequently sliding and wedging occur. (KI)2 arises from 
the local stress field effect on the wing-crack surfaces 
embedded in an elliptical inclusion. Wedging effect due 
to sliding along pre-existing closed micro-crack surfaces 
is illustrated in Fig. 8(a). Furthermore, Fig. 8(b) depicts 
a single crack BB' of length 2l, subjected at its center 
to a pair of collinear splitting force of same magnitude 
F F s t ffs

e=− ( )( )2
 . These coupling forces illustrate the 

representative tension wing-crack BB' influenced by the 
sliding of pre-existing closed micro-crack AA'.

Substitution of Eqs. (11) and (12) into Eq. (24) leads to 
express the stress intensity factor (SIF) based on the local 
stress components:
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22
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π
σ π

cos ,
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 (25)

a)

b)
Fig. 8 a) Wedging effect due to sliding along micro-crack surfaces, b) 

Tension wing-crack subjected to collinear splitting force [31]

As aforementioned, under dynamical loading condition, 
all of the flaws within the material are approximately acti-
vated. The key factor to study the micro-cracks propaga-
tion under dynamic loading is dynamic stress intensity fac-
tor (KID) in modeling process. Freund (1972) considered a 
semi-infinite mode-I crack running in an infinite block of 
pre-stressed material. In this problem the dynamic stress 
intensity factor only depends on the current crack tip speed 
and static stress intensity factor. According to Freund (1972, 
1990), the mode-I dynamic stress intensity factor can be 
determined for propagating flaws as follows [32, 33]:

K k l KID I= ( ) ,  (26)
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The function k l( )  is a universal function of the propa-
gation rate of micro-cracks tips, which represents the iner-
tial effect on the crack growth [25]:
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here CR and l  are the Rayleigh wave speed and the wing-
crack tips propagation velocity, respectively. Hence the 
damage criterion under dynamic loading condition can be 
expressed as follows:

Fd = KID – KIC , (28)

When the damage criterion is satisfied (Fd = 0) due to 
equivalence between fracture toughness (KIC) and dynamic 
stress intensity factor (KID), the incremental rate of micro-
crack length l  is determined by substituting Eqs. (26) and 
(27) in the damage criterion (Fd = 0):
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2
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, ,  (29)

where cmax is the maximum (terminal) speed of a dynam-
ically propagating wing-crack, α and γ are fitting param-
eters characterizing the toughness-velocity relation. 
The developed model by Andrew and Ramesh (2016) 
showed that under dynamic compression, the simulated 
peak strength is sensitive to the maximum crack growth  
velocity [29].

2.6 Coupling between frictional sliding and damage 
evolution
In fact, for most geo-materials, there exists a strong cou-
pling between plastic flow caused by sliding along micro-
crack faces and damage evolution due to nucleation and 
growth of wing-cracks. When frictional sliding and dam-
age evolution take place simultaneously, these two dissi-
pative mechanisms will interfere each other in a strong 
manner in the sense of the determination of their evolu-
tions. In this paper, the micromechanical damage model 
of Paliwal and Ramesh (2008) was logically extended by 
coupling the two dissipative mechanisms, i.e. damage evo-
lution and frictional sliding, for the case of closed micro-
cracks. According to the generalized Hook’s law, the ten-
sorial stress-strain relation can be written as:

σ εij ijkl kl
eE= ,  (30)

where Eijkl are the components of the secant stiffness ten-
sor, which vary during the loading process (Carol et al., 
2001). Due to simultaneous occurrence of plastic strain 
increment ( ekl

p ) and damage evolution (Ėijkl), the incre-
mental stress-strain relation can be obtained by differenti-
ation of Eq. (30) as below:
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The incremental one-dimensional stress- strain dia-
gram with considering plastic strain increment due to fric-
tional sliding along micro-crack surfaces and damage evo-
lution caused by wing-crack propagation is schematically 
illustrated in Fig. 9.

In Fig. 9, the total strain and stress increments are ( e ) 
and ( s ) respectively. The total strain increment ( e ) can 
be decomposed into elastic and plastic parts. To compute 
the stress tensor increment in Eq. (31), the damage evolu-
tion and plastic flow rule have already been determined 
by Eqs. (4), (19) and (29). Application of the consistency 
condition to the frictional sliding criterion in Eq. (17) and 
using flow rule and the stress-strain relation in Eq. (31) 
lead to calculate the following plastic multiplier due to 
frictional sliding along micro-crack surfaces associated 
with damage evolution: 
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, (32)

Because of interaction between damage evolution and 
plastic flow caused by sliding along micro-cracks, the 
plastic multiplier calculation in Eq. (32) depends directly 

Fig. 9 Schematic illustration of the incremental one-dimensional stress-
strain diagram with considering plasticity and damage evolution
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on the damage evolution ( W ). On the contrary, plasticity 
has a significant role in damage evolution, for the plas-
tic strain increment due to sliding on  micro-crack faces 
leads to increment of initial micro-crack length by (ṡ). 
According to Fig. 8, sliding on initial closed micro-crack 
faces results in wedging effect and increasing of stress 
intensity factor at flaw tips. 

The increment of initial micro-crack length (ṡ) due to 
sliding along micro-cracks is in consistent with a large 
number of experimental results that secondary cracks 
always initiate from the tips of the flaws and propagate 
in a stable manner in a direction coplanar to the f1aw. 
Secondary cracks are always described by many research-
ers as shear cracks or shear zones as schematically illus-
trated in Fig. 10 [34, 35].

Fig. 10 Simplified crack pattern observed in pre-cracked specimens of 
rock materials in uniaxial compression [34]

Fig. 11 Increment of initial micro-crack length by (ṡ)

Secondary cracks play a major role in the cracking pro-
cess of rocks in compression [36]. Therefore according 
to Fig. 11, if plastic strain occurs, the increment of initial 
micro-crack length must be calculated and subsequently 
stress intensity factor (SIF) is computed by the updated 
micro-crack length (s + ṡ).

According to Fig. 11, the plastic strain increments on 
initial micro-crack surface can be calculated by using 
strain transformation relations under rotation of axes from 
global to local corresponding to micro-crack surface. In 
this regard, the local plastic strains on micro-crack sur-
face can be calculated by the following relations:
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The shear plastic strain on micro-crack surface leads to 
increment of initial micro-crack length by (ṡ). Substitution 
of the magnitudes (   e e e11 22 12

pl pl pl, , ) determined from Eq. 
(20) into Eq. (33) and rearranging yields:
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The increment of initial micro-crack length (ṡ) can be cal-
culatedbased on theshear plastic strain increment as follows:
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where s is the half of the initial micro-crack length.

3 Integrated algorithm and computational procedure 
Numerical implementation of the developed microme-
chanical damage model requires integrating the rate form 
of the constitutive relations in the finite time step. The 
classic step by step iterative approach including elastic 
prediction, plastic and damage corrections was imple-
mented to the numerical computation procedure according 
to the developed micromechanical damage model. With 
assuming the increment of total strain at each step, the 
increments of stress, plastic strain and damage parameter 
are calculated in each element and added to their previ-
ous values based on the constitutive equation in rate form. 
The  step of the numerical computational procedure can be 
described as follows:

1. The tensors (σ ε ε εij
n

ij
n

ij
e n

ij
p n−( ) −( ) −( ) −( )1 1 1 1, , , ) and the dam-

age parameter (Ω(n –1)) have been determined at the 
end of previous step (n – 1).
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2. Assuming an increment of total strain (∆eij
n( ) ), the 

total strain tensor can be calculated as:

         e e eij
n

ij
n

ij
n( ) −( ) ( )= +1 ∆  (36)

3. The elastic behaviour without plasticity (sliding) 
and damage process is assumed as the trial elastic 
prediction:

         
σ σ εij
n

ij
n

ijkl
n

kl
nE( ) −( ) −( ) ( )= +1 1∆ ,  (37)

4. The frictional sliding criterion (g) in Eq. (17) and 
damage criterion (Fd < 0) in Eq. (28) are calculated 
and checked.

5. If (g < 0 and Fd < 0), the loading applied to rock 
material is not so high that results in irreversible 
strain and consequent damage evolution. Therefore, 
the rock behaviour is elastic, so the calculated trial 
stress is the real stress.

6. If (g ≥ 0 and Fd < 0), only plastic flow due to sliding 
on micro-crack surfaces occurs in absence of dam-
age evolution. The plastic multiplier is computed 
according to Eq. (21). The increment of plastic strain 
tensor is also calculated based on Eq. (20) and the 
plastic strain tensor is updated. 

In this situation, the plastic strain is only due to slid-
ing on micro-cracks surfaces without damage evolution  
( Ω= 0 ), so the stress tensor is corrected and updated by 
using Eqs. (31) and (37) as follows:

σ σ εij
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n

kl
pE
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( )



1∆ ,  (38)

The initial micro-crack length extension due to plastic 
strain caused by sliding on micro-crack faces is calculated 
by Eq. (35) and the micro-crack length is updated. 

7. If (g ≥ 0 and Fd ≥ 0), the plastic flow and damage evo-
lution occur simultaneously. The plastic multiplier, 
increment of wing-crack length and damage evolu-
tion are computed based on Eqs. (32), (29) and (4) 
respectively. The increment of plastic strain tensor is 
calculated from Eq. (20) and the damage parameter 
is updated at nth step. Eventually the stress tensor is 
corrected based on Eqs. (31) and (37) as follows:
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Increment in micro-crack length due to plastic strain 
caused by sliding on micro-crack surfaces is computed 
and then the stress intensity factor (SIF) is calculated by 
the updated micro-crack length. 

Fig. 12 Schematic illustration of the numerical model under applied 
velocity field [27]

Table 1 The input flaws characteristic parameters and mechanical 
properties used in the numerical simulation.

Parameter Value Parameter Value

E(GPa) 36 τc 0

v 0.2 (α, γ) (1,1)

ρ(Kg/m3) 2600 η(m–2) 106

KIC(MPa√m) 0.95 Micro crack length (ηm) 2s0 = 50

μ 0.2 φ 50.7 ̊

4 Numerical simulation results
The main aim of the developed micromechanical model is 
to reproduce and predict of brittle rock behaviour under 
dynamic uniaxial compressive loading. The plasticity, 
damage evolution and the sensitivity of the compressive 
strength to the applied strain rate are some key features 
of rock brittle behaviour that are of great interest under 
dynamic uniaxial compressive loading.

Therefore series of numerical simulations are per-
formed to show the predictive capability of the developed 
micro-mechanical model. The geometry and boundary 
condition of the numerical model is shown schematically 
in Fig. 12. The specified velocity field v(t) is enforced at 
the upper boundary while a roller boundary condition is 
placed at the bottom boundary. 

The developed micro-mechanical model regarding 
coupled frictional sliding and damage evolution was pro-
grammed into the commercial finite difference environ-
ment and implemented in the numerical simulation model 
by using iterative step by step solution in time scale. 
Although, the flaws interaction is not considered by direct 
coalescence of micro-cracks in the numerical simulation, 
the self-consistent homogenization scheme is used for 
investigation of damage effect on stress-strain relation. 
The input flaws characteristic parameters and mechanical 
properties for a typical rock material used in the numerical 
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simulation are listed in table 1. It’s noteworthy that the fit-
ting parameters (α, γ) are selected as one which are adapted 
from Paliwal and Ramesh (2008).

The developed micromechanical model regarding cou-
pled frictional sliding along micro-cracks faces and damage 
evolution was implemented in the numerical simulation to 
show its advantages in respect to the original micromechan-
ical damage model of Paliwal and Ramesh (2008).

4.1 Imposed strain rate dependency of strength
The numerical simulation is performed by the coupled 
frictional sliding-micromechanical damage model pro-
posed in this paper to investigate the effects of applied 
strain rate on peak strength and rock behaviour.

The stress–strain curves are simulated over a range of the 
imposed strain rates from e  = 2 × 104 to e  = 12 × 104 1/s to 
investigate the variation of the compressive peak strength by 
the imposed strain rates. The simulated stress-strain curves 
under various applied strain rates are shown in Fig. 13.

Although Fig. 13 at low strain values shows elastic 
behaviour with a linear stress–strain relationship, at higher 
strains the flaws begin to activate by stable crack growth 
which leads to increase in damage of material. This phe-
nomenon results in stiffness degradation that decreases 
the slope of the stress–strain curve. When the stress state 
reaches the peak strength, the slope of the stress–strain 
curve becomes negative in post-peak region. This post-
peak behaviour is most readily related to unstable crack 
growth and ultimately material macroscopic failure. For 
the applied strain rates and a given flaws density, the 
results in Fig. 13 show that the model is capable of predict-
ing damage induced by wing-cracks and plasticity caused 
by frictional sliding along micro-cracks. Furthermore, an 
increase in imposed strain rate with the same input flaws 
parameters leads to increase in the simulated peak strength. 

Fig. 13 The stress-strain curves simulated with the developed 
micromechanical damage model under various applied strain rates

The developed micromechanical model can adequately 
reproduce many features of the rock behaviour such as the 
linear elastic, hardening prior to the peak strength and even-
tually softening at post-peak region. The simulated compres-
sive strength is dramatically sensitive to the imposed strain 
rate especially in dynamic strain rate ranges. Furthermore, 
the softening behaviour of material in post-peak region is 
affected and the material undergoes higher values of strains 
and damage up to the residual strength (failure). 

The fact that flaws have not enough time to grow and 
propagate under applied high strain rates explains why the 
peak strength of material increases under dynamic load-
ing by increment of the imposed strain rate. 

4.2 Scaling law
Rinehart (1965) found that the dynamic strength of rock 
exceeded its static strength. His finding has been proved 
by later experimental observation [37]. This is consistent 
with the experimentally observed strain rate sensitivity of 
the compressive strength of various ceramics, e.g. [39] and 
brittle rocks, e.g. [25]. A scaling relationship is developed 
by Kimberley et al. (2013) based on the micromechanics 
of the growth of micro-cracks from populations of pre-ex-
isting flaws. The suggested model describes the dynamic 
compressive strength of brittle materials and captured 
transitional strain rates in terms of material and micro-
structural properties [38]. 

The simulated compressive peak strengths are plotted 
against the prescribed strain rates in logarithmic scale to 
investigate the strain rate-sensitivity of the compressive 
peak strength predicted based on the coupled frictional 
sliding-micromechanical damage model proposed in this 
paper as shown in Fig. 14.

According to Fig. 14, variation of the applied strain 
rate significantly affects the mechanical response of brit-
tle materials. The simulated compressive peak strengths 
remain nearly constant for the imposed strain rates lower 
than the transitional strain rate representing the boundary 
between quasi-static and dynamic loading condition. While 
the imposed strain rate exceeds the transitional strain rate, 
the compressive peak strength increases significantly.

In summary, the compressive peak strength slightly 
increases with increment of the imposed strain rates under 
quasi-static loading condition, but it considerably rises with 
increase in the applied strain rate under dynamic loading con-
dition. The aforementioned results indicate that much higher 
stress is needed under dynamic loading condition to make 
rock fracture in comparison with static loading condition. 
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Fig. 14 Variation of the simulated compressive strength with applied 
strain rate

Fig. 15 The comparison of the stress-strain curves simulated by the 
coupled frictional sliding-damage model and Paliwal and Ramesh 

(2008) damage model

4.3 Comparison of the developed model and the Paliwal 
and Ramesh (2008) model
As mentioned before, in the developed micromechanical 
model the plastic strain caused by frictional sliding along 
micro-crack surfaces and damage evolution due to wing-
crack nucleation are considered simultaneously. 

In order to study the effects of plasticity due to frictional 
sliding along micro-crack faces on rock behaviour, the 
rock sample was numerically simulated based on the two 
different constitutive models including the coupled fric-
tional sliding-micromechanical damage model proposed 
in this paper and the original damage model of Paliwal and 
Ramesh (2008) under the same imposed strain rate. Fig. 
15 shows the two different stress-strain curves simulated 
by the developed frictional sliding-damage model and the 
original damage model proposed by Paliwal and Ramesh 
(2008) under the same imposed strain rate of e = 12 × 104 1/s. 

According to Fig. 15, the simulated stress-strain curves 
based on the two different constitutive models are approx-
imately similar in pre-peak region, but they are different 

in post-peak region. In post-peak region the stress-strain 
curve simulated by the micromechanical damage model of 
Paliwal and Ramesh (2008) decreases more instantly with-
out considerable increase in strain, indicating more brittle 
rock behaviour.

On the other hand, the stress-strain curve simulated 
with the coupled frictional sliding-micromechanical dam-
age model undergoes larger displacements in post-peak 
region. The area below the post-peak part of the stress-
strain diagram represents the energy dissipated by the 
rock specimen.

As shown in Fig. 15, the energy dissipation by the rock 
specimen simulated by the micromechanical coupled fric-
tional sliding and damage model is greater than that which 
is dissipated by the rock specimen simulated with the 
micromechanical damage model proposed originally by 
Paliwal and Ramesh (2008).

Therefore, the rock sample simulation with the coupled 
frictional sliding-micromechanical damage model could 
increase plasticity and ductility of the rock in post-peak 
region because of regarding plastic strains caused by the 
frictional sliding along micro-cracks.

a)

b)
Fig. 16 The simulated stress-strain curves with (a) The plastic strain 

increment and, (b) Damage evolution
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Fig. 16 shows axial plastic strain increment and damage 
evolution in rock specimen simulated by the coupled frictional 
sliding-micromechanical damage model proposed in this 
paper under dynamic uniaxial compressive loading condition.

According to Fig. 16 in the first phase OA, the material 
behaviour  remains linear elastic, the stress and strain are 
linearly related to each other and no plastic strain and dam-
age occur before the activation of sliding along the pre-ex-
isting flaws. At this stage, the damage occurrence in mate-
rial is purely from the pre-existing internal flaws and has 
very small value. Neither sliding along micro-cracks faces 
nor damage induced by wing-cracks occur in this phase. 
The slope of the simulated axial stress-strain curve is the 
same as the Young’s modulus. The phase AB corresponds 
to plastic strain increments as a result of frictional sliding 
along micro-cracks. In this phase, the progressive accumu-
lation of the frictional sliding leads to the stress concen-
tration at pre-existing flaws tips and increase in the stress 
intensity factor at this flaws. Once the dynamic stress inten-
sity factor reaches the fracture toughness of the material, in 
the third phase BC the pre-existing micro-cracks will nucle-
ate and develop into wing-cracks and the damage evolu-
tion law is activated. The softening behaviour after peak 
strength because of simultaneous micro-cracks sliding and 
damage evolution can be seen in Fig. 16(b).

5 Conclusions
In this work, a micromechanical model was developed to 
take into account the coupling between frictional sliding 
and damage process under dynamic compressive loading 
condition. A major feature of the developed model is that 
the plastic strain caused by frictional sliding along micro-
crack surfaces and damage evolution due to wing-crack 
nucleation are considered simultaneously in a microme-
chanical model. Micro-crack interactions are considered 
by means of a self-consistent homogenization scheme in 
which each micro-crack in ellipsoidal inclusion experiences 
a local stress field different from the remote stress field act-
ing on isolated micro-cracks. In this paper, the sliding cri-
terion based on the physical facts at the micromechanical 
scale is proposed in the classic plasticity theory framework 
associated with the micro-mechanics damage model to sim-
ulate the inelastic behaviour of rocks. The developed fric-
tional sliding-damage model algorithm was programmed 
in the commercial finite difference software environment 
for numerical simulation of rock material to investigate the 
relationship between the mechanical behaviour and micro-
structure of brittle materials and their rate-dependent peak 

strength under dynamic compressive loading. Variation of 
the applied strain rate significantly affects the mechanical 
response of brittle materials. The simulated compressive 
peak strengths remain nearly constant and insensitive to 
strain rate for the imposed strain rates below the transitional 
strain rate representing the boundary between quasi-static 
and dynamic loading condition. While the imposed strain 
rate exceeds the transitional strain rate, the compressive 
peak strength increases dramatically. On the other hand, 
the rock sample simulation with the coupled frictional slid-
ing-damage model could increase plasticity and ductility of 
the rock in post-peak region because of regarding plastic 
strains caused by the frictional sliding along micro-cracks. 
Furthermore, the axial plastic strain increment and damage 
evolution in rock specimen were recorded during numerical 
simulation by the proposed coupled frictional sliding-mi-
cromechanical damage model under dynamic uniaxial com-
pressive loading condition. The progressive accumulation 
of the frictional sliding leads to the stress concentration 
at the pre-existing flaws tips. This phenomenon leads to 
increase in the stress intensity factor at the flaws tips. 
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Appendix A. 
Calculation of local stress field at elliptical inclusion 
boundary 

Consider a slit-like flaw is assumed in elliptical inclusion 
of an undamaged, pristine isotropic material surrounded by 
micro-cracked matrix under uniaxial compressive loading. 
The regions around the elliptical inclusion are damaged 
and homogenized by the self-consistent homogenization 
scheme. The resulting mismatch of effective elastic proper-
ties of the micro-cracked media and the pristine material at 
the elliptical inclusion boundary leads to the local stresses 
filed (Pe) applied to the elliptical inclusion that differ from 
the remote compressive loading (P). According to Fig. 2, 
the effective homogenized module Ē can be obtained based 
on the self-consistent homogenization scheme by the fol-
lowing equation:
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The local stresses filed (Pe) and the remote compressive 
loading (P) are related to each other by:
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where [] is the 3 × 3 identity tensor, and [I] is undamaged 
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[M] is the constitutive tensor for the damaged matrix 
material:
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and [*] is defined as:

[*] = [M][]–1([] – []) (A 5)

where [] is the Eshelby tensor for an ellipsoidal inclusion 
in a matrix, defined as follows:
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in which the 1-direction is in the direction of the uniaxial com-
pressive loading as well as the major axis of the ellipsoidal 
inclusion, and the 2- and 3- directions are perpendicular to the 
1-direction and each other. The nine components of [] are:

S S v
v
a
b

I I

v
v
a
b

12 13

2

2 3

1 2

4 1

2 1

= =
−
−( )





 −( )

+
−( )







44

1 2 3

31 21 3

2

2 3

22

2

4 1

1

4

I I I

S S v
v
I a

b
I I

S

− +( )

= =
−( )

+





 −( )

,

,

== =
−
−( )

+
−
−( )





 −( )

= =

S v
v
I v

v
a
b

I I

S S

33 3

2

2 3

23 32

5 4

16 1

2

4 1
,

44 1

16 1 4 1
3

2

2 3

v
v
I v

v
a
b

I I−
−( )

+
−( )





 −( ).

        (A 7)

https://doi.org/10.1016/S0148-9062(97)00303-3
https://doi.org/10.1016/j.actamat.2013.02.045
https://doi.org/10.1007/BF00274593
https://doi.org/10.1115/1.3173647
https://doi.org/10.1016/j.ijsolstr.2016.08.012
https://doi.org/10.3311/PPci.7507
https://doi.org/10.3311/PPci.9979
https://doi.org/10.3311/PPci.10095

	1 Introduction
	2 Description of theoretical framework
	2.1 Self-consistent homogenization scheme (SCS)
	2.2 Damage parameter
	2.3 Review of the self-consistent based micromechanical damage model
	2.4 Frictional sliding criterion and flow rule
	2.5 Damage criterion and damage evolution rule
	2.6 Coupling between frictional sliding and damage evolution 

	3 Integrated algorithm and computational procedure
	4 Numerical simulation results 
	4.1 Imposed strain rate dependency of strength 
	4.2 Scaling law 
	4.3 Comparison of the developed model and the Paliwal and Ramesh (2008) model 

	5 Conclusions

