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Abstract

Subject of the study is a Timoshenko beam with transverse-variable Young’s modulus. Problem of vibrations of the beam resting on an 

inertial Vlasov foundation and subjected to a moving force is solved analytically. The Timoshenko beam’s eigenproblem is discussed 

and the physical sense of the additional band of natural vibrations and the corresponding critical frequency is analytically explained. 

The impact of the foundation and its parameters on the Timoshenko beam’s vibrations forced by moving force is investigated. 

Dynamic factors relating to beam deflections are analyzed. Two vibration cases are discussed: forced vibrations (when a moving 

force is applied to the beam) and free vibrations (after the moving force has been left the beam). The damping effect on vibration 

is taken into account in the problem solution. The results indicate that appropriate selection of the foundation’s parameters allows 

for the beam deflection’s significant reduction, while the impact of the shear coefficient in the foundation on the reduction is more 

pronounced than the impact of other factors.
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1 Introduction
In 1921–1922, basing on Rayleigh's assumptions, 
Timoshenko published two papers [1, 2], on the influ-
ence of a beam section shear and rotary inertia effect on 
its transverse vibrations. These studies had been known 
much earlier in Russia, published in 1914–1916, and after 
Timoshenko's death republished by Grigoljuk in the 1970s 
in book series.

Timoshenko's publications played a very important role 
in the development of dynamics of structures in the twen-
tieth century [3]. In the early 1950s, three decades after 
the publication of Timoshenko papers, Mindlin published 
several important studies devoted to the Timoshenko 
model's application to the dynamics of thick plates. All 
these publications have been summarized in Mindlin's 
monograph [4].

To date, several thousand studies have been published 
directly or indirectly concerning beams and thick plates 
using the Timoshenko model's idea. Many authors have 
addressed the problem of the Timoshenko beam natural 
vibration's second and third bands, e.g. [3, 5–8]. Also, 

moving loads on the Timoshenko beam were analyzed 
in numerous papers, including [9–16]. Some of the rele-
vant literature refers to the Timoshenko beam resting on 
various types of deformable foundation, e.g. [11, 13–16]. 
However, in most studies available in the literature, the 
foundation inertia is neglected.

This paper discusses the Timoshenko beam's eigenprob-
lem and the analytically explained physical sense of the 
additional band of natural vibrations and the corresponding 
so-called critical frequency ωcr . The effect of the adopted 
deformable foundation model and its characteristics (elas-
ticity, shear, inertia) on the Timoshenko beam's deflections 
under a moving load is investigated. Subject of the study is 
a beam with transverse-variable Young's modulus.

2 Governing equations
The Timoshenko beam motion equation can be derived 
in many ways. Locally, by the kinetostatic method, with 
attached forces and moments of inertia, using the virtual 
work principle, from the Lagrange equations of the second 
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kind or using the Hamilton principle. The motion equations 
can also be derived by imposing some kinematic hypo- 
theses on displacements, as, for example, in a study [5],  
and other studies.

The constraints equation and relations between inter-
nal forces and displacements in the Timoshenko beam are 
given by the Eqs. (1–3):

∂ ( )
∂

= ( ) + ( )w x t
x

x t x t
,

, , ,ψ β  (1)

M x t E J
x t
xx ,

,
,( ) = − ∂ ( )

∂
ψ  (2)

T x t G A x tx , , ,( ) = ( )κ β  (3)

where ψ and β are the angles of the beam cross-section 
rotation due to pure bending and shearing, respectively. 
Whereas w is the deflection of a beam with Young's mod-
ulus equal to E, cross-sectional area A and moment of 
inertia J, G is the Kirchhoff modulus, and κ is the shear 
coefficient.

Listing and comparison of correction coefficients κ in 
the Timoshenko beam, used by various authors, are pre-
sented by Bystrzycki in [17]. Some authors, following 
Mindlin [4] and Mindlin and Deresiewicz [18], instead of 
the shear factor, have introduced the effective shear mod-
ulus to the Timoshenko beam equations.

Two Timoshenko beam motion equations, without 
damping, under load p = p(x, t) can be formulated as:
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The equations of motion Eqs. (4) and (5) can be trans-
formed to reduce them to a single double-wave equation 
describing either the beam's total deflection :
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or its cross-section rotation angle ψ:
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In this study, Eq. (6) with an unknown deflection w is 
analyzed.

Eqs. (6) and (7) can be rewritten by entering two wave 
velocities c1

2 = E/p and c2
2 = κG/p, as well as inertia radius 

r J A2 = , as in [5].
Four boundary conditions and four initial conditions 

must be attached to the motion equations so that the prin-
ciple of beam motion specificity is retained.

3 Eigenproblem of Timoshenko beam
To solve the Timoshenko beam eigenproblem, spatial and 
temporal variables are separated in homogeneous Eqs. (4) 
and (5): w(x, t) = W(x)T(t), ψ(x, t) = Ψ(x)T(t), which pro-
duces system of equations:

EJ T GA W T J T′′ + ′ −( ) − =Ψ Ψ Ψκ ρ  0,  (8)

κ ρGA W T AW T′′ − ′( ) − =Ψ  0.  (9)

Assuming harmonic motion of natural vibrations, after 
substitution of T̈  = –ω2T into Eqs. (8) and (9), the follow-
ing equations are obtained [7, 8]:

EJ GA W J′′ + ′ −( ) + =Ψ Ψ Ψκ ω ρ2 0,  (10)

κ ρ ωGA W A W′′ − ′( ) + =Ψ 2
0.  (11)

Equations (10) and (11) can be transformed and reduced 
to two fourth order equations with function W or Ψ:
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It is easy to see that Eqs. (12) and (13) are identical. Also,  
identical must be their characteristic equations defining 
wave numbers of m–1 dimension and natural circular frequ- 
encies.

By solving characteristic equation of Eq. (12) or (13), 
four roots are determined:
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Two of them s1 and s2 will always be imaginary and the 
other two s3 and s4 may be real, imaginary or equal to zero, 
depending on the beam's material constants and geometric 
characteristics.
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The boundary between the real and imaginary roots is 
the last component in Eq. (14). Assuming that in a specific 
case the expression in brackets can be equal to zero, the 
Timoshenko beam's so-called critical natural frequency 
ωcr can be determined, s3,4 = 0 hence:
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If ω κ ρ< G A J , i.e. ω < ωcr , the characteristic equa-
tion roots s3 and s4 will be real. If, in turn, ω κ ρ> G A J , 
i.e. ω > ωcr , then roots  and  will be imaginary. The case 
of ω = ωcr refers to the third band of Timoshenko beam's 
natural vibration. In these three cases, the natural vibra-
tion will, of course, assume different modes. Timoshenko 
beam's natural vibrations with first and second frequency 
are discussed in detail in [7].

In the case of the third band of Timoshenko beam's nat-
ural vibration ω ω= =cr c r2  , Eqs. (12) and (13) are:
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The characteristic equations of Eqs. (16) and (17) are 
the same, and their solutions have the form
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The solution of Eq. (16) is the following function
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sin cos ,θ θ  (20)

where θ κ= +( )A E G E J  is a wave number.
The solution of Eq. (17) it is identical, except for 

constants.

4 Vibrations of Timoshenko beam on Vlasov 
foundation due to moving load
Two basic approaches to solving the problem of  
Timoshenko beam's free and forced vibration are reported 
in the literature. The first way, applied by Mindlin and his 
School, is to analyze the system of two differential motion 
equations (Eqs. (4) and (5)), in which time derivatives are 
of the second order, along with four initial conditions for 
the looked-for functions and their derivatives, according 
to the motion specificity principle. Whereas in Russian 
studies the equations system (Eqs. (4) and (5)) is trans-
formed into one Eq. (6), Eq. (7) or into an equation in the 
wave form. These are equations with elevated fourth order 
of the time derivative.

4.1 Equation of motion of non-uniform beam
In this paper, the Eq. (6) of Timoshenko beam on a deform-

able foundation is analyzed and solved. Layer of an iner-
tial foundation with thickness H is described by factors 
ks, Gs and ms. Factor ks describes the foundation's elastic 
settlement, factor Gs determines the effect of shear in the 
foundation and is therefore a measure of the load's transfer 
to the foundation in the vicinity of its application, and ms 

represents the foundation's inertia. A foundation so char-
acterized can be described by Vlasov's inertial model [19]. 
Foundation's dynamic reaction to beam r(x, t) and load  
q(x, t) are formulated as:
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For a beam with Young's modulus variable after func-
tion E(z) or stepwise, in the equations describing its vibra-
tion, EJ should be replaced with equivalent stiffness
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Vertical displacements w then refer to the beam's neu-
tral axis, which is set off by e relative to the uniform 
beam's neutral axis [20].

Upon consideration in Eq. (6) of the foundation's 
response and the beam's load in the form of a force mov-
ing at a constant velocity Eqs. (21)–(24), the equation of 
the non-uniform Timoshenko beam's vibration assumes 
the form of
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The motion equation, given by Eq. (29), is a partial dif-
ferential equation of the fourth order with regard to its spa-
tial and temporal co-ordinates.

4.2 Solution of beam's forced vibration problem
In the case of boundary conditions of simple support of a 
beam with length l and assuming that the beam vibrations 
are harmonic, the analytic solution of Eq. (29) can be for-
mulated as
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In a specific case of Eqs. (31) and (32), with A1
2
n = 4A2n, 

there is ω ω ω
1 2 1

2n n l nA= = = . The natural vibration 
mode corresponding to this frequency is called the third, 
additional band of Timoshenko beam vibrations [6, 7].

Constants C1n, C2n, C3n, and C4n in Eq. (30) should 
be determined from the initial conditions of the prob-
lem, which after load decomposition Pδ(x – vt) into sine  
Fourier series can be formulated as
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Consideration of Eqs. (42)–(45) gives the solution of 
Eq. (29).
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where K1n is given by Eq. (33).
With the assumption that all four initial conditions equal 

to zero, the beam deflection expression slightly differs.  
This has been assumed, inter alia, by Mackertich [12].  
The initial conditions for Timoshenko beam and their 
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impact on the forced vibration solution are discussed by 
Szcześniak [21], who has proven that both approaches lead 
practically to the same results. 

Solution given by Eq. (46) is valid if a force moving at a 
velocity lower than the critical one is applied to the beam. 
After the load descending from the beam its free vibra-
tions can be described as
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Integration constants C1̃n – C4̃n are determined from 
the deflection continuity conditions and its three subse-
quent derivatives at time t = l/v, i.e. when the moving force 
leaves the beam. To determine the beam midpoint's deflec-
tion (x = l/2), the following conditions must be met:
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Solving the system of four Eqs. (48)–(51) produces the 
sought coefficients C1̃n – C4̃n.

As seen from solution Eq. (46), the beam deflection 
consists of free vibration with circular frequencies ω1n 
and ω2n, and purely forced vibrations with circular fre-
quency αnv. Components containing frequency ω2n are of 
relatively small values compared to other components, 
and in practical applications are sometimes neglected [1]. 
Graphical comparison of deflections resulting from beam 
vibrations with frequencies ω1n, ω2n and αnv is presented 
in Fig. 1. The geometric and material data were adopted 
as in [12]. Moving force velocity equals v = 50 m/s.

The charts in Fig. 1 clearly show that the deflections 
from the vibration at circular frequency ω2n are small  
compared to the forced vibration as well as the associa- 
ted free vibration at frequency ω1n. The maximum ampli-
tude of vibrations at frequency ω2n amounts to 10–6 of the  
forced vibration amplitude, and the amplitude of free 

Fig. 1 Timoshenko beam midpoint deflection. Vibration decomposition 
into purely forced vibration at a circular frequency αnv and associated 

free vibrations at circular frequencies ω1n and ω2n

vibrations at frequency ω1n is five orders smaller. Thus, 
neglecting components containing ω2n in practical appli-
cations it is justified.

4.3 Damped vibrations
The above analysis concerns Timoshenko beam's undamped 
vibrations. Free vibration equations for a Timoshenko beam 
made of Voigt or Maxwell visco-elastic material, or the 
material described by the three-parameter standard model 
were given and analyzed, inter alia, by Szcześniak [5] under 
simplifying assumptions τ = η/E = ηT/G. The equation for a 
beam made of Voigt material resting on Vlasov foundation 
and subjected to a moving force can, on the basis of [5], 
formulated as
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The motion equation of Eq. (52) is complex and, if only 
the external motion resistances depending on damping 
coefficient c[Ns/m2] are considered and retardation time τ 
is neglected, assumes the form
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Damping coefficient c can be treated as a substitute damp-
ing characteristic that represents the internal damping in 
the beam and the external damping in the foundation alike.

5 Numerical examples
Based on the equations presented in previous sections and 
their solutions, the beam vibrations caused by passing a 
force moving at a constant velocity have been analyzed. 
Impact has been examined of the foundation properties 
(elastic settlement, shear, and inertia factors), as well as of 
inhomogeneity (transversal variability of Young's modu-
lus), on the beam deflection. Critical velocities have been 
determined and dynamic coefficients relating to beam 
deflections analyzed. Two vibrations cases were consid-
ered: when a moving force is applied to the beam (forced 
vibration), and after the moving force has been left the 
beam (free vibration). The graphs are shown in dimension-
less coordinates. The beam's vertical displacement has been 
related to the static deflection of the center of Timoshenko 
beam span ws

T
t , whereas the moving force position has been 

related to the beam length l. For the results' analysis and 
graphic rendering Mathematica was used.

5.1 Beam deflection analysis
Timoshenko beam resting on inertial Vlasov foundation, 
which can be used to model a road pavement fragment, is 
analyzed. Therefore, we will consider a structure of cement 
concrete on a lean concrete foundation. Let's assume that 

there is no slip between the beam layers. The following 
beam material data have been assumed for the calculation: 
the upper concrete layer's elastic modulus E1 = 36.0 · 109 Pa, 
foundation's elastic modulus E2 = 20.8 · 109 Pa, Poisson's 
ratio of both concrete layers v = 0.16, beam material den-
sity ρ = 2400 kg/m3. Beam span l = 3.6 m, rectangular 
cross-section's shape factor κ = 5/6. The beam layers' thick-
nesses are assumed equal to h1 = 0.27 m and h2 = 0.18 m, 
and their width to b = 0.30 m. Since the structure consists  
of two layers with different elastic moduli, an equivalent  
Young's modulus (equivalent beam stiffness E̅J̅ ) is 
adopted for the calculation. It is also assumed that the 
H = 1.50 m thick soil layer under the foundation is charac- 
terized by Poisson's ratio vs = 0.30 and Young's modulus 
Es = 30 · 106 Pa, Es = 50 · 106 Pa or Es = 100 · 106 Pa, which 
in the first case, for example, corresponds to the ground 
parameters in Vlasov model ks = 8.08 MPa, Gs = 0.86 MN 
and ms = 397.55 kg/m.

The foundation's impact on the beam midpoint vibra-
tion is shown in the charts in Fig. 2. Charts of the tracking 
deflection under a moving force, i.e. at x = vt, in case of 
v = 60 m/s, are shown in Fig. 3. Whereas the beam mid-
point vibrations depending on the moving load velocity is 
shown in Fig. 4. The beam deflections in Figs. 2–4 refer to 
the static deflection of the midpoint of a beam loaded in its 
span center, without the foundation's consideration.

5.2 Damping effect
The external damping effect on vibration of Timoshenko 
beam resting on Vlasov layer and subjected to a moving 
force will be analyzed by solving the beam motion equa-
tion Eq. (53), assuming the simple support conditions. The 
solutions for vibrations forced by a force movement and 
free vibrations have been obtained using Mathematica. 

Fig. 2 Foundation parameters' impact on beam midpoint deflection 
v = 60 m/s: 1 – beam on Vlasov foundation with Es = 100 · 106 Pa; 

2 – Es = 50 · 106 Pa; 3 – Es = 30 · 106 Pa; 4 – with foundation impact 
neglected
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Fig. 3 Deflection w(x = vt, t) under concentrated force; 1 – beam on 
Vlasov foundation with Es = 30 · 106 Pa; 2 – with foundation impact 

neglected, moving force velocity in both cases v = 60 m/s

Fig. 4 Dynamic deflection of the midpoint of Timoshenko beam on 
Vlasov foundation with Es = 100 · 106 Pa; 1 – static influence line;  

2 – moving force velocity v = 30 m/s; 3 – v = 50 m/s; 4 – v = 100 m/s

The calculations were made using the same numerical data 
of a beam on a foundation as in the previous calculation 
examples in this section. In addition, damping number 
ζ = (c/2m̅ω1) · 100 % was introduced into the calculation. 
The results are illustrated in Fig. 5 and Fig. 6 by the beam 
midpoint's damped vibration charts. Quantity ws

T
t here is 

the static deflection of the midpoint of a simply supported 
beam resting on a foundation, and loaded in the middle of 
the span with a force.

5.3 Effect of moving force velocity
In the relevant literature, there are several dynamic factor 
definitions, e.g. in [22]. As shown in these studies, dynamic 
factors differ in the cases of dynamic beam deflections, 
dynamic bending moments, and in the case of dynamic 
shear forces.

In this study the effect of the moving force's velocity on 
the dynamic deflections of simply supported Timoshenko 
beam resting on Vlasov layer is examined. The dynamic 
factors are defined by formulas

Fig. 5 Velocity influence on damped vibration (ζ = 5 %) of the midpoint 
of Timoshenko beam resting on Vlasov layer (Es = 30 · 106 Pa);  

1 – moving force velocity v = 30 m/s; 2 – v = 50 m/s; 3 – v = 100 m/s

Fig. 6 Velocity influence on damped vibration (ζ = 10 %) of the midpoint 
of Timoshenko beam resting on Vlasov layer, Es = 100 · 106 Pa;  

1 – moving force velocity v = 0.25 vcr; 2 – v = 0.50 vcr; 3 – v = 0.90 vcr

n
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t l
v

∈





0, .  (56)

Where ws
*
t(l / 2) means the static deflection of the mid-

point of a simply supported beam, without consideration 
of the foundation, whereas wst(l / 2) is the static deflection 
of the midpoint of a beam on a foundation.

The relationship between moving force velocity v 
and foundation elastic modulus Es, and dynamic factor 
nd

* is presented in the three-dimensional space in Fig. 7. 
The charts with coordinates Es, nd

*, in three cases: static 
(v = 0 m/s) and in two dynamic cases (v = 50 m/s and 
v = 100 m/s), are shown in Fig. 8. Similar charts, but with 
Vlasov layer considered in the beam's static deflection 
determination, are shown in Fig. 9. and Fig. 10.
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In addition, Fig. 11 shows a chart of dynamic factor nd 
when changing the moving force velocity from zero to 
0.5 vcr = 214.5 m/s (soil foundation with elastic modulus 
Es = 30 MPa).

The resulting solutions' convergence is confirmed, inter 
alia, by phase portraits in coordinates w, ẇ. One of these 
charts is shown in Fig. 12.

Fig. 7 Effect of moving force velocity and foundation Young's modulus 
on deflection of the midpoint of simply supported beam, dynamic factor 

nd
* depending on static beam deflection with foundation influence 

neglected

Fig. 8 Effect of moving force velocity and foundation Young's modulus on 
deflection of the midpoint of simply supported beam, dynamic factor nd

* 
depending on static beam deflection with foundation influence neglected

Fig. 9 Effect of moving force velocity and foundation Young's modulus 
on deflection of the midpoint of simply supported beam, dynamic factor 

nd
 depending on the static deflection of beam on Vlasov foundation

Fig. 10 Effect of moving force velocity and foundation elastic modulus 
on deflection of the midpoint of simply supported beam, dynamic factor 

nd depending on the static deflection of beam on Vlasov foundation

Fig. 11 Variation of dynamic factor nd when changing moving 
force velocity from zero to 0.5 vcr, soil foundation's elastic modulus 

Es = 30 MPa

Fig. 12 Phase portrait in coordinates w and ẇ in case of beam on 
Vlasov foundation with parameters k = 8.08 MPa, Gs = 0.86 MN, 

ms = 397.55 kg/m (Es = 30 MPa)

6 Conclusions
Based on this analysis it can be concluded that the deflec-
tions from the vibration at circular frequency ω2n are small 
compared to the purely forced vibration at frequency αnv, 
as well as the associated free vibration at frequency ω1n. 
Thus, ignoring components containing ω2n in practical 
applications it is justified.
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The results indicate that appropriate selection of the 
foundation's parameters allows for the beam deflection's 
significant reduction, while the impact of the shear coef-
ficient in the foundation on the reduction is more pro-
nounced than the impact of other factors.

Both the moving force velocity and the foundation also 
influence the dynamic factors, which are different in the 
cases of dynamic beam deflections, dynamic bending 
moments, and dynamic transverse forces. The dynamic 
factors strongly depend on the moving force velocity and 
are variable, increasing and decreasing alternately as the 
velocity's function.
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