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Abstract

To develop, plan, implement and operate the electric road mobility system, especially the charging infrastructure, the existing and 

potential demand must be revealed for several time horizons. Accordingly, the aim of the research was to elaborate a calculation 

method for electric vehicle charging demand and to determine the public charging infrastructure locating principles. The research 

questions	were:	how	many	and	what	kind	of	vehicles	will	be	used;	where,	when	and	how	long	they	will	be	charged;	what	aspects	

and	how	influence	the	charging	station	deployment.	The	number	of	charging	points	to	be	installed,	the	energy	demand	and	capacity	

management parameters can be also determined using the revealed correlations. The calculation method is adaptable to any 

territorial unit and any time horizon. It is the basis of charging station locating methods, which is demonstrated through two novel 

geoinformatics applications.
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1 Introduction
The transport sector has a significant impact on greenhouse 
gas (GHG) emission [1]. On the EU level, large efforts 
have been made to reduce the CO2 emission [2]. A road-
map for the transport sector to achieve a 60 % reduction in 
its GHG emission level (compared with those of 1990) by 
2050 has been outlined in the 2011 Transport White Paper 
[3]. Halving the use of conventionally fueled cars in urban 
transport by 2030 and phasing them out entirely in cities by 
2050 is proposed.

The spread of electric vehicles (EVs) was proposed as a 
promising solution to reduce the emission of transport [4]. 
As a result of developments in recent years, the technology 
of EVs has become market-ready; several battery electric, 
hybrid, plug-in hybrid and range-extended vehicle types 
(BEV, HEV, PHEV and REEV) are available for customers. 
This evolvement process complemented by automation gen-
erates new challenges for the researchers [5, 6, 7], because 
the entire road transportation alters, and technological 
development requires methodological advancement [8].

In this article, a novel calculation method of charging 
demand for locating and deployment of stations is pre-
sented. The method is to be applied in specifying the num-
ber and optimal allocation of charging network elements 
and calculating energy demand. In the next section, the lit-
erature review is provided. The review is compiled consid-
ering the factors influencing charging demand. In section 
3, these factors are summarized, and the most relevant find-
ings of my questionnaire survey are discussed. The survey 
has been carried out to assess the expectations of current 
and potential EV users. Next, the elaborated method is pre-
sented in section 4. The identified relevant ‘components’ 
of the charging demand can be calculated according to the 
modules. The applicability of the method has been demon-
strated in section 5. In section 6, the charging infrastructure 
locating principles are summarized. Then, novel geoinfor-
matics methods and applications based on the principles 
and the developed calculation method are presented in sec-
tion 7. Finally, the concluding remarks are provided.
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2 Literature review
The number of sold electric cars (including both BEVs and 
PHEVs) in one year increased by 70% between 2014 and 
2015 [9]. The wider spread is facilitated by governmental 
incentives and purchase subsidies in several countries [10].

The technological drawbacks (limited range, relatively 
long charging times), high purchase price (with long pay-
back time) and lack of system integration (limited public 
charging infrastructure, non-standardized charging meth-
ods) have been identified as main barriers for EVs [11, 12]. 
Large efforts are made to study new technologies [13, 14], 
such as high energy battery cells. For example, the ener-
gy-density of PHEV batteries has been improved by almost 
400% between 2008 and 2015 (from 60 Wh/L to 295 Wh/L) 
that enabled improved EV ranges.

Despite higher investment costs, EVs can pay off [15, 16, 

17] and the payback period became shorter because of better 
market conditions and subsidies [18]. By 2030, long range 
electric mobility becomes feasible for many BEV categories; 
while in 2050, the cost-optimal powertrain concept will be 
the full electric for all vehicle categories. These results indi-
cate that the financial drawbacks (high purchase price) of 
electromobility begin to decline, even though authors empha-
size the importance of financial incentives at the same time.

The transportation demand can be forecasted by well-
founded models; however, several improvements are still 
possible, and the models are to be customized according 
to the local specialties [19] and available data sources. In 
many cases, modular solutions are established and applied 
[20] as data reliability varies according to the sources.

The charging demand is highly correlated to transporta-
tion demand; it is calculated, in the most cases, in connec-
tion with the charging station deployment. Albeit, relatively 
few EVs have been sold in Europe so far, charging infra-
structure developments are accelerated in the last years. 
The first country which has completed the deployment of a 
nationwide electric car charging network was Estonia [21]. 
Nevertheless, only half of the drivers are satisfied with this 
charging network [22]. 

The optimal location, size and usage of charging net-
work in Firenze has been deduced from the local consumer 
demand [23]. The expected size of the electric vehicle-fleet 
has been forecasted based on current, conventional vehi-
cle usage patterns. Because of the need of domain-specific 
measurement data, implementation of this method is rather 
difficult. Similar approach has been applied in Beijing city 
[24, 25], where the locations for charging stations have 
been determined based on trajectory data of taxis.

The urban charging demand can be also deduced from 
several demographic and macroeconomic data (age, house-
hold income, residence type, commuting pattern, etc.), 
which characterize the potential vehicle buyers and influ-
ence the acceptance of EVs [26]. Xi et al. [27] introduced 
the term 'EV adoption probability' as a function of house-
hold demographic and macroeconomic variables. Charging 
demand, charger locations and expected charging capacity 
have been determined according to this probability.

Sathaye and Kelley [28] predicted the charging demand 
based on traffic and population characteristics as well 
as information about trip generation facilities. Charging 
demand of a geographical unit has been investigated 
based on the completed charging sessions in the research 
of Xydas et al. [29]. Their model was developed only to 
describe the current charging demand, and not to estimate 
future needs. 

It can be confirmed according to the literature review 
that a system-oriented model for estimating future 
charging demand has not been developed yet. Identifying 
this research niche, a comprehensive calculation method 
has been elaborated.

3 Factors influencing charging demand and user 
requirements
The following main factor groups (Fi) that influence 
charging demand are identified:

F1 technology and characteristics of vehicles;
F2 charging technology and infrastructure;
F3 governmental incentives (subsidies).

3.1 Factors
Improvements in vehicle and charging technology inter-
act. The factors in the groups have been identified and 
then the time horizon of their impacts is estimated. The 
revealed correspondences are summarized in Table 1. 

Governmental incentives affect the spread of electro-
mobility, especially in the short term. Therefore, they 
play a key role in the early phase. Determination of long- 
term impacts and trends are rather difficult as innovative 
technologies (inductive charging, increased capacity and 
energy efficiency, smart grid solutions etc.) being under 
development may significantly change the operational 
characteristics and opportunities in the future.

EVs have a shorter range compared to the conventional 
vehicles with internal combustion engine, which might 
be further limited by adverse weather conditions or using 
comfort equipment (e.g. air conditioning system) [30]. The 
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Table 1 Factors and time horizon of their impact

Fa
ct

or
s

Time horizon of 
impacts

0–5 
years

5–10 
years

10+ 
years

Ve
hi

cl
e 

te
ch

no
lo

gy
  

(F
1)

F11 Decrease of vehicle 
production cost • •

F12 Improvement of energy 
efficiency and utilization •

F13 Development of batteries • •

F14 Further development of 
technical parameters •

C
ha

rg
in

g 
te

ch
no

lo
gy

  
(F

2)

F21 Higher density of charging 
stations •

F22 Increase of charging capacity • •

F23 Innovative charging 
technologies •

F24 Spread of smart grid 
technology •

F25 Cleaner electricity 
production •

In
ce

nt
iv

es
  

(F
3)

F31 Purchase subsidies •

F32 Incentives to facilitate the use •

F33 Incentives to support 
installation of chargers •

F34 Incentives to facilitate 
operation of chargers • •

F35 Other, indirect incentives • •

Table 2 Estimated average range of BEVs in Hungary

Years 2020 2025 2030

BEV range [km] 200 300 405

average future range of EVs in Hungary has been esti-
mated in Table 2, considering the composition of the EV 
stock and the development trends. Around 2030, a steeper 
market surge of new models is expected.

Development of batteries requires higher charging 
capacity. 100–250 kW charging power will be applied at 
fast charging stations within a few years. These trends 
incite prescient development in the field of electricity net-
work. Innovative solutions (e.g. superfast chargers, induc-
tive chargers) may significantly change the operation.

Beyond technological development, governmental mea-
sures are also shaping user demand. Other, indirect incen-
tives like supporting of research and development or shap-
ing attitudes may have a positive effect on vehicle purchase 
and usage, as well as on installation and operation of 
charging stations. 

Table 3 Charging demand characteristics at different location types

Location type
Frequency of 

charging 
[session/day/vehicle]

Duration of 
a charging 

session[h:mm]

Home 0.72 5:58

Public places 
(close to residence) 0.27 1:50

Workplace 0.59 4:44

Parking lots of stores, 
markets 0.18 0:43

Parking lots near public 
offices (post office, bank) 0.09 0:21

P+R car parks 0.15 2:09

Parking lots at bus and train 
stations 0.08 1:21

Gas stations 0.25 0:21

Touristic, cultural and sport 
facilities 0.12 1:15

3.2 User requirements
The user requirements have been revealed by online sur-
vey. The following topics have been addressed:

• driving patterns;
• charging patterns as well as expectations related to 

the charging session and infrastructure.
The questionnaire has been responded by 478 current 

or potential e-vehicle users in Hungary. The most import-
ant findings of the survey were as follows:

Driving patterns:
• average daily mileage is 40.2 km;
• share of drivers who travel more than 100 km per 

day at least few times a year: 37 %.
The driving patterns clearly show that electromobility 

is a real alternative for a remarkable share of drivers. It is 
especially true, if they have opportunity to charge their 
vehicle at home (or close to home), or at their workplace.

Charging patterns as well as expectations related to the 
charging session and infrastructure are as follows:

• share of drivers who currently do not have any 
charging opportunities at home/at workplace/at public 
places close to their residence is rather high, 28.2 %;

• frequency and duration of charging sessions at dif-
ferent location types are presented in Table 3;

• acceptable charging time at public superfast char-
gers is ~15 mins;

• WIFI, lavatory, (fast) restaurants and shopping facil-
ities for daily needs are the most required services 
near the charging stations.
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My survey concluded in similar results as the Estonian 
example: drivers prefer charging at home and at work-
places. In the future, 'fueling' the car should be considered 
as a routine being integrated in the daily activity chain, 
rather than a separated process.

4 Calculation method and data
The calculation method has been established with a modu-
lar structure having 5 modules (Fig. 1). Most of the modules 
contain several calculation processes. The first number of 
a calculation process refers to the module. The parameters 
and their calculation method are summarized in Table 4. 
The last column shows the calculation process wherein the 
input parameters are used, or the calculated data are pro-
duced. A calculation process uses either ‘raw’ input data 
from databases or ‘calculated’ input data from other cal-
culation processes. The data flows are indicated by arrows.

In the fifth module, the calculated charging demand is 
to be assigned to the charging infrastructure to determine 
the capacity utilization.

Notations are as follows:
(t) notation of time dependency (referring to the time 

interval of the investigation);
i index of plug-in vehicle type: BEV, PHEV or REEV;
j index of transport type: regional (r) or long-distance 

(ld) transport;
k index of charger type: normal (n), fast ( f ) or super-

fast (sf ) charger.
The main advantages of the method are as follows:
• modular structure (the method produces useful par-

tial results);
• applicable for any type of e-vehicles or vehicle fleets;
• adaptable for any territorial unit (spatial flexibility);
• adaptable for any time horizon (temporal flexibility).
Determination of input parameters is often a complex, 

difficult task. The data related to vehicles and charging 
infrastructure can be available from different sources (e.g. 
manufacturers, map databases); however, the user-related 
attributes (covered distance, preferences, etc.) can be col-
lected through expensive measurements, surveys or esti-
mations. The required input data have been categorized 
and assigned to databases as follows:

α:  vehicle - data about size and composition of vehicle 
stock along with technical parameters;

β:  covered distance - data about the distance and share 
of mileage of plug-in EVs;

γ:  user preferences - data about the individual or col-
lective charging habits and expectations;

Fig. 1 Calculation method of EV charging demand

δ:  charging infrastructure - data about size and com-
position of charging network, technical parameters 
of chargers.

When determining the value of a parameter, adjust-
ment may be necessary to the implementation purpose 
(i.e. specialities of the area, time horizon, etc. are to be 
considered). For instance, different data are needed when 
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Table 4 Parameters and their calculation method

Notation Meaning of parameter Calculation method Unit Calculation process

H(t) stock of passenger cars [pcs] 11

p(t) share of plug-in EVs in total passenger car stock - 11

P(t) stock of plug-in EVs [pcs] 11

qi(t) ratio of i type vehicles in plug-in EVs - 12

Qi(t) stock of i type vehicles [pcs] 12

Gi(t) covered distance of i type vehicles [km] 21

gi,j share of covered distance of i type vehicles in j type transport - 21

si,j(t) share of electric drive of i type vehicles in j type transport - 21

M'i,j(t)
covered distance by electric power of an i type vehicle in j 

type transport [km] 21

Mi,j(t)
covered distance by electric power of stock of i type vehicles 

in j type transport [veh-km] 21

Mj(t)
covered distance by electric power of stock of plug-in EVs in 

j type transport [veh-km] 21

Ci,j(t)
average energy consumption of i type vehicles in j type 

transport [kWh/km] 31

E'i,j(t) energy demand of an i type vehicle in j type transport  [kWh] 31

Ei,j(t) energy demand of stock of i type vehicles in j type transport [kWh] 31

Ej(t) energy demand of stock of plug-in EVs in j type transport [kWh] 31

E(t) energy demand of stock of plug-in EVs [kWh] 32

Bi(t) average capacity of the battery of i type vehicles [kWh] 41, 53

ui average battery capacity utilization factor of i type vehicles - 41, 53

Ni'(t) number of charges of an i type vehicle - 41

Ni(t) number of charges of stock of i type vehicles - 41

N(t) number of charges of stock of plug-in EVs  - 41

zk(t) share of charges at k type chargers - 51

N'i,k(t) number of charges of an i type vehicle at k type chargers  51

Ni,k(t)
number of charges of stock of i type vehicles at k type 

chargers  51

Nk(t) number of charges of stock of plug-in EVs at k type chargers  - 51

Xk(t) number of k type chargers [pcs] 52

Nk' (t) average number of charges at a k type charger  - 52

Pk(t) average charging power of k type chargers at the time t [kW] 53

ηk(t) average efficiency of charging at k type chargers - 53

T'i,k(t) average charging time of an i type vehicle at k type chargers  [h] 53

Ti,k(t) charging time of stock of i type vehicles at k type chargers  [h] 53

Tk(t) charging time of stock of plug-in EVs at k type chargers  [h] 53

Vk(t) average availability time-base of k type chargers [h] 54

Wk(t) capacity utilization factor of k type chargers  - 54

Legend:
Italic letters: input parameters from databases
Normal letters: calculated data
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calculating the future energy demand and required num-
ber of chargers at national or regional level. Similarly, dif-
ferent technical parameters must be considered when cal-
culating the charging demand for the short term (1–2 years 
or less) or the long term (10–15 years).

The modules can be calibrated and validated separately. 
The reliability of complex estimation tasks is significantly 
improved if the parameters are estimated separately and 
then they are involved in the complex calculation. For 
instance, calculation of future number of BEVs in module 1 
is rather challenging, but the entire EV stock and the share 
of BEVs can be estimated separately with high reliability 
and then their multiplication provides the number of BEVs.

As the calculations can be performed even on a single 
vehicle, not only the technical parameters of different EV 
types (BEV/PHEV/REEV), but also parameters of a spe-
cific EV (e.g. Nissan Leaf) can be used as input data. 

The charging demand can be calculated at local, regional 
or national level and it can be assigned to the charger types. 

More detailed distribution of demand (e.g. in time) 
requires additional studies. For this purpose, data from 
empirical examinations can be also applied [31].

Most of the parameters are considered as time-depen-
dent ones. Thus, the method is applicable for any time 
interval, with arbitrary starting time, and therefore model-
ers can take the technological, economic and social effects 
(e.g. increasing capacity of batteries, changes in transport 
habits) into account.

Collection of reliable input data is often a complex, chal-
lenging task. It may have several reasons: e.g. manufactur-
ers do not provide data because of their business interests; 
accurate assessment of user preferences is expensive; or 
geospatial data are not available in the required structure. 
Another challenge is that there are no exact methodologies 

to determine the future technological trends; but, on the 
other hand, the calculation of demand requires the knowl-
edge or estimation of several future parameters. Besides, 
revealing the patterns and needs of current and potential 
EV users is also essential to plan well-grounded services 
adjusted to users’ demand.

5 Application of the calculation method
To demonstrate the applicability of the developed method, 
an example calculation is presented. Suppose a company, 
which plans to purchase an EV fleet containing 5 BEVs 
and 5 PHEVs. They are going to deploy and operate an 
own charging infrastructure for their EVs. Accordingly, 
they need to determine the charging demand of the vehicle 
fleet, considering the company’s operational conditions. 
The operational attributes are taken in a weekly time-
frame. They are looking for the answers to the following 
questions: 

1. How much energy is required for operating the differ-
ent types of EVs and the entire fleet on a weekly basis?

2. How many times should the different types of EVs 
be charged on a weekly basis?

3. What are the average charging times of the different 
types of EVs at the different charger types?

4. How long does it take to meet the weekly energy de- 
mand of the entire fleet at the different charger types?

The input parameters are summarized and presented 
according to the introduced databases in Table 5. Note that 
the company does not know the number of the chargers to 
be deployed in advance, as they are going to determine that 
by the calculation. Therefore, data about the user prefer-
ences related to the charging sessions (γ database, zk value), 
and the size of the charging infrastructure (Xk value) have 
not been considered in the example at this point.

Table 5 Input parameters of the example calculation

Data-base α (vehicle)

Data QBEV QPHEV CBEV,r CBEV,ld CPHEV,r CPHEV,ld BBEV BPHEV uBEV uPHEV

Value 5 5 17.2 19.1 23 24.9 30 8.8 0.8 1

Unit pcs pcs kWh/100km kWh/100km kWh/100km kWh/100km kWh kWh - -

Data-base β (covered distance)

Data GBEV GPHEV gBEV,r gBEV,ld gPHEV,r gPHEV,ld sBEV,r sBEV,ld sPHEV,r sPHEV,ld

Value 700 600 0.9 0.1 0.2 0.8 1 1 0.8 0.25

Unit km/week km/week - - - - - - - -

Data-base δ (charging infrastructure)

Data Pn Pf ηn ηf Vn Vf

Value 3.6 20 0.83 0.88 168 168

Unit kW kW - - h/week h/week



Csiszár
Period. Polytech. Civ. Eng., 63(1), pp. 255–265, 2019|261

The data applied in the example are real-life values. 
The average energy consumption of the vehicles (Ci,j) and 
capacity of the batteries (Bi) are to be defined according to 
the type of EVs to be purchased. In the example, the data of 
a 2015 model Nissan Leaf BEV with 30 kWh battery pack, 
and the data of Audi A3 e-tron PHEV are considered, using 
the experimental average fuel consumption data of EPA 
(United States Environmental Protection Agency - www.
epa.gov/fueleconomy) for a combined city/highway use. 

The average value of battery capacity utilization fac-
tor (ui) can be determined by the decision-maker based on 
the expected usage characteristics. In my example, value 
of 0.8 has been assumed for BEVs, while the value of 1 
has been assigned for PHEVs as these vehicles are able 
to operate also when their batteries are exhausted. Based 
on the data, the company plans to use the BEVs mainly in 
regional transport (gBEV,r - 90 %) travelling a weekly aver-
age 700 km per vehicle (GBEV).

PHEVs are planned to be used mainly in long-distance 
transport (gPHEV,ld - 80 %), travelling a weekly average 600 
km per vehicle (GPHEV). Besides, the company plans to 
reach a 25 % share of electric drive in long-distance trans-
port with their PHEVs (sPHEV,ld), and 80 % share of electric 
drive in case of regional travels (sPHEV,r).

For charging infrastructure, they can install normal 
and/or fast chargers, with 3.6 kW (Pn), or 20 kW (Pf) 
charging power that are available non-stop (Vk = 168 h/
week). The average efficiency of charging at the different 
charger types (ƞk) have been determined based on scien-
tific research [32], which has been supplemented by exper-
imental data of current EV users [33].

The calculations have been performed based on the 
input parameters.

Module 1: The investigated vehicle stock is given in 
the example.

Module 2: Based on the data of the vehicle and covered 
distance, transport demand [veh-km] (covered distance by 
electric power) are calculated related to vehicle types and 
transport types. 

Based on the specified input data, the following partial 
results have been obtained:

• MBEV,r = 3150 veh-km; MBEV,ld = 350 veh-km;  
MPHEV,r = 480 veh-km; MPHEV,ld = 600 veh-km;

• Mr = 3630 veh-km; Mld = 950 veh-km.
Module 3: The energy demand [kWh] is also to be cal-

culated related to vehicle types and transport types. Partial 
results related to the EV fleet, answering the first question 
of the company:

• EBEV,r = 541.8 kWh; EBEV,ld = 66.9 kWh; 
EPHEV,r = 110.4 kWh; EPHEV,ld = 149.4 kWh;

• Er = 652.2 kWh; Eld = 216.3 kWh;
• E = 868.5 kWh.
Module 4: The charging demand (number of necessary 

charging sessions) is to be determined related to vehicle 
types (for one-week period). The following partial results 
have been obtained related to each vehicle, and for the 
entire fleet, answering the second question of the company:

• N'BEV = 5.1; N'PHEV = 5.9;
• NBEV = 25.4; NPHEV = 29.5.
Module 5: The aim in this module is to assign the cal-

culated demand to the chargers. However, size and com-
position of the charging infrastructure are unknown in the 
presented example as the company would like to deter-
mine them based on the results of the calculation. For this 
purpose, the number of charging sessions solely does not 
provide enough input. Therefore, the average charging 
times regarding the vehicle types have been determined 
related to both charger types, based on the parameters of 
the considered chargers and vehicles. These values answer 
the third question of the company:

• T'BEV,n = 8 h; T'BEV,f = 1.4 h;
• T'PHEV,n = 2.9 h; T'PHEV,f = 0.5 h.
In order to support the decision-making related to the 

charging infrastructure, the total charging time required to 
meet the weekly energy demand of the entire fleet has also 
been provided according to the different charger types. 
These values answer the fourth question of the company:

• T'BEV,n = 203.7 h; T'BEV,f = 34.6 h;
• T'PHEV,n = 86.9 h; T'PHEV,f = 14.8 h.
The calculated charging demand is to be considered as 

basic data for the determination of the size and composition 
of the charging infrastructure to be deployed and operated.

The exact number and type of chargers can be deter-
mined with consideration to further user preferences and 
the possibilities from the electric grid side. These aspects 
are still not included in the method, but I am going to extend 
my research activity towards this direction. Namely, my 
research will focus on the charging management strategies. 
Among others, the following issues are to be addressed:

• time distribution and length of travels made by EVs;
• duration and time distribution of vehicle staying at 

the company premises;
• connect and disconnect frequency of vehicles at the 

chargers (e.g. whether a person is available to do this 
task when a charging session is completed, even at 
night, etc.).



262|Csiszár
Period. Polytech. Civ. Eng., 63(1), pp. 255–265, 2019

Knowing the size (Xk) and characteristics (Pk, ƞk, Vk,) 
of the charging infrastructure, the capacity utilization of 
chargers can also be calculated according to the last elab-
orated formula (Wk - calculation process 54).

The presented example proves the time flexibility of 
the method. Both the considered time interval and the 
time of examination are arbitrary. In my example, one-
week time interval and the current data have been used. 
Furthermore, it has also been proved that both the single 
vehicles (according to their type-specific data) and the 
vehicle fleets can be considered during the calculations.

Similarly, the elaborated calculation method is an effec-
tive support tool to solve various practical problems. For 
example, the energy and charging demand of a single EV 
can be calculated for a potential owner. In this way, the 
decision whether to buy an EV or not, and the operational 
planning (number and length of charging sessions, etc.) 
are supported.

At the same time, calculations for a fleet of vehicles, 
either on a regional or national level can be made, sup-
porting the decisions of both policy makers and energy 
providers. For existing, or planned charging networks, 
the calculation method ensures the charging infrastruc-
ture to be evaluated (e.g. capacity utilization) or (re-)
designed (e.g. number of charging sessions at different 
type of chargers based on the calculated energy demand 
and charging times).

6 Public charging station locating principles
The main application field of the presented method is to 
support the charging station deployment. The deployment 
is a complex task; it requires expertise from several fields: 
civil engineering, electrical and transportation engineer-
ing, economics, law, etc. The location of the charging sta-
tion should meet the following requirements: 

• location close to the charging demand derived from 
the travel behaviour and

• sufficient electric network capacity to serve the 
charging requirements, or the cost of capacity expan-
sion is not significant. 

Accordingly, electric network and transport network 
approaches can be distinguished. Without mass market 
adoption, the locations of the charging stations signifi-
cantly influence the utilization.

Charging demand types are to be distinguished accord-
ing to when and where the charging demand arises:

• Inter-city demand: during a long-distance journey.  
• Intra-city demand: at the end of a short-distance trip.

The main difference between them is the motivation. In 
the case of a long-distance journey, the driver must break 
the travel to charge the vehicle. Thus, the motivation of 
inter-city demand is solely the charging. In the case of a 
short-distance trip, the vehicle can be charged at the end 
of a trip. Thus, the charging event contributes to the use-
fulness of parking. Different charging station locating 
approaches should be applied to the different charging 
demands.

7 Geoinformatics applications for locating charging 
stations
Several methods and applications have been developed 
for locating charging stations along national roads and in 
urban areas according to the given objective function. I 
present novel solutions to demonstrate the application 
opportunities of the demand calculation method. In the 
presented applications, geoinformatics data assigned to a 
territory unit, a section or a point are used with different 
aggregation levels at the same time. 

7.1 Locating superfast charging stations along national 
roads
A point-oriented locating method using geoinformatics 
simulation and greedy algorithm can be applied for this 
purpose. An ‘oil stain’ deployment strategy is to be used 
to achieve even coverage with the minimum number of 
charging stations along the roads.

Several demographics, neighbourhood, and transpor-
tation-related attributes, as well as the available services 
that influence the charging station use can be identified 
and their effects can be revealed in a systematic approach. 
All the available datasets are georeferenced, therefore can 
be processed by geographic information systems (GIS).

The multi-criteria decision-making method is to be 
applied to evaluate the rest areas along national roads and 
propose deployment locations for charging stations. This 
approach is especially beneficial if the origin-destination 
flows are unknown. The even distribution of the stations 
contributes to the high utilization of the charging stations.

The existing rest areas that have different available ser-
vices (e.g. restroom, restaurant, etc.) along national roads 
can be investigated, because the available services signifi-
cantly influence the attractiveness of a charging station as 
they raise the utility of time spent during charging. 

The installation potential for candidate sites can be cal-
culated as a space-varying aggregated evaluation number. 
For this purpose, the stock of BEV vehicles (QBEV) from 
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module 1 and the covered distance by electric power in 
long-distance transport (Mld) from module 2 can be con-
sidered on nearby roads or in the affected territorial units. 
The effect of the nearest fast charging station is also sig-
nificant, because it decreases the installation potential.

It can be assumed that the inter-city traffic is concen-
trated on the main national roads. Hence, the road catego-
ries are prioritized, and the selection of installation sites 
can be performed on two different layers. On the first 
layer the candidate sites along highways are considered, 
on the second layer along other national roads. A candi-
date site that is along several types of roads is considered 
on all layers. The installation requirements may differ for 
the two layers. According to this approach, the drivers are 
encouraged to use the high capacity roads for a long-dis-
tance journey.

A greedy algorithm considering the installation poten-
tial can be used to select the suitable candidate sites. 

The following installation requirements can be intro- 
duced:

• number of charging stations to be deployed,
• length of covered roads,
• coverage efficiency of deployment when adding a 

new point.

7.2 Locating urban public fast charging stations
Recently, the land-use based applications gain ground in 
this field, as the drivers do not stop for charging in urban 
areas; the charging is a supplementary activity during 
parking. Accordingly, the parking habits and motivations 
can be considered through land use aspects. On the other 
hand, land-use data and geoinformatics data are more 
likely available than origin-destination data in small areas.

A charging station locating method can be applied for 
this purpose, where weighted sum values are introduced 
to evaluate territory segments and to allocate charging sta-
tions within a segment using a hexagon-based approach 
and greedy algorithm. In this way, adjusting the pref-
erences to the decision makers’ needs is also possible. 
Furthermore, large amount of data can be considered and 
the effects of hardly or non-quantifiable factors also can 
be incorporated. This method assesses the potential of EV 
use on macro-level and the possible locations of charging 
stations on micro-level.

The locations can be determined in two steps:
1. Distribution of charging stations among territory 

segments in the investigated territory considering 
the potential of EV use (macro evaluation).

2. Locating the charging stations for each territory seg-
ment on the base of parking behaviour according to 
land-use aspects (micro evaluation).

Different aims can be defined, and heterogeneous data 
types can be used on these levels. The evaluations can be 
performed separately, too.

On macro level, the following main parameters can be 
considered to calculate the installation potential of a ter-
ritory segment: the stock of plug-in EVs (P) and stock of 
BEV and PHEV vehicles (QBEV, QPHEV) from module 1 and 
the covered distance by electric power in regional trans-
port (Mr) from module 2. The potential of EV use may 
depend also on the average income per person and the rel-
evancy of tourism. 

On micro level, each territory segment can be divided 
into hexagons because they cover the segment without over-
lap and its shape is close to a circle. The distance between 
the parallel sides of a hexagon is recommended to be 250 
meters because it is a widely accepted walking distance 
between the parking place and the destination. The charging 
stations are to be assigned to the most attractive hexagons. 
A hexagon is attractive if the number of charges at fast 
chargers (Nf) from module 4 is high. Beyond the transport 
demand, several other aspects may influence the location 
of a charging station, such as the ownership of the spot 
and available capacity of the electric network. The energy 
demand (E) can be calculated according to module 3.

The public charging demand of a hexagon can also be 
calculated as the weighted sum of the daytime and night-
time charging demand. The daytime charging demand is 
to be derived from the destination types available in the 
hexagon (points of interest, services). The night-time 
charging demand is to be derived from the population and 
the residential area type of a hexagon. The willingness to 
walk should be also considered, which is the maximum 
distance that an EV user would walk between a charging 
station and her/his destination.

8 Conclusions
To support the wider spread of electromobility, the new 
challenges related to the operation must be tackled prop-
erly. Both the existing and the potential charging demand 
have to be determined to find the most appropriate loca-
tions for public charging stations.

The main contribution of the paper is the systematic 
overview of the parameters with their correlations and 
the comprehensive calculation method of EV charging 
demand. Accordingly, the method has a modular structure. 
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All the relevant input data, the ‘components’ of the charging 
demand and aspects of charging station deployment have 
been identified and considered. Public charging station 
locating principles and novel geoinformatics application 
opportunities with unique approaches and models based on 
the method have been presented. The novelty of the method 
lies in its complexity and multi-purpose usability. It is appli-
cable for any type of e-vehicles or vehicle fleets, adapt-
able for any territorial unit and flexible in time (according 
to the time-relevant data). Determination of the number of 
charging sessions, charging time and capacity utilization of 
chargers is also supported. Since all the source and derived 
data are georeferenced, the results can be visualized and 
presented in multiple geoinformation systems.

The most relevant application fields of the calculation 
method are:

• decision-making on different levels (national govern-
ment, municipality, etc.),

• urban planning (considering parking and charging 
habits),

• development and operation of electromobility-related 
services (e.g. smart grid service, charging assistance),

• development of electricity network and supply.
Accordingly, my future research focuses on:
• expectations toward the charging infrastructure; 

especially the new charging technologies;
• construction and installation requirements of 

charging facilities;
• regulation framework of charging facilities.
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