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Abstract

Contemporary structural design approaches necessitates ways to determine realistic behavior of structures. For this purpose, 

inelastic ultimate load analysis methods are used widely since strength and stability of whole structure can be represented. In 

this study, a numerical method is proposed for determining inelastic ultimate load capacity of steel frames considering lateral 

torsional buckling behavior under distributed loads. In the analyses, inelastic material behavior, second-order effects and residual 

stresses of the structural frame system and its members are taken into account. Additionally, lateral torsional buckling behavior 

is considered in the analysis using finite difference method and it is used for determining the structural load carrying capacity of 

steel frames. Consequently, the problem associated with flexural capacity decreases due to lateral torsional buckling is precisely 

considered in the load increment steps of inelastic ultimate load analysis. In order to validate the proposed method, numerical 

examples from the literature are calculated considering the proposed method, AISC 360-16 design specification equations and 

approaches from the literature. Results of the numerical examples show that lateral torsional buckling is a key issue in determining 

structural load carrying capacity. Thus, proposed analysis method is shown to be an efficient and consistent tool for inelastic 

ultimate load analysis.
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1 Introduction
Determining the realistic behavior of structures has gained 
importance from both structural safety and economic per-
spectives. Therefore, structural analysis methods based on 
determination of inelastic ultimate load capacities which 
have different limitations and features are generally used 
for these purposes [1] In inelastic ultimate load analysis of 
steel frames, strength and stability of the whole structure 
is represented in terms of applied loads and monitored dis-
placements. Additionally, considering structural stability 
problems in nonlinear analysis improves the capability of 
structural analysis model [2]. Especially, lateral torsional 
buckling (LTB) in slender steel structures is one of the 
most important stability problems and it affects struc-
tural behavior of steel structures substantially  [3]. Thus, 
many researchers examined LTB precisely for determin-
ing the structural stability considering several cases in 

recent years. In these studies; members with various end 
conditions [4] imperfections [5], and curved geometry [6] 
are discussed and influences on the member behavior are 
investigated. Also, numerical solution techniques such as 
energy methods [7], finite difference methods [8], finite-in-
tegral methods  [9] and finite elements methods  [10] are 
applied to evaluate LTB behavior on steel members. 
Besides, experimental studies [11] are performed to eval-
uate the accuracy of the numerical analysis methods and 
to evaluate LTB behavior for different materials and load 
conditions. However, most of these papers are focused on 
investigating LTB using one-member solutions and effects 
of LTB on the entire structural behavior are not focused in 
details. On the other hand, LTB effects in steel frames are 
generally neglected by assuming adequate lateral bracings 
in some studies [12] about inelastic ultimate load analysis.
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In this study, a numerical analysis method is proposed 
for considering degradation of the flexural strength and 
stiffness caused by the LTB of steel frames under uni-
formly distributed loads. Flexural capacity decreases due to 
LTB is precisely considered using finite difference method 
and it is reflected in the load increment steps of ultimate 
load analysis of steel frames. In structural analyses inelas-
tic material behavior, residual stresses, and second-order 
effects of the structural system and its component members 
are considered. Numerical examples from the literature are 
evaluated considering the proposed method, approaches 
from the literature and AISC 360-16  [13] design specifi-
cation equations for validating the outcomes. Numerical 
results show that LTB affects structural behavior signifi-
cantly and the proposed method is adequate to determine 
the structural behavior precisely. 

2 Inelastic ultimate load analysis
Inelastic behavior is generally considered using plastic 
hinges in which yielding is concentrated at a small zone 
modeled by flexible springs. In structural models, the 
spring stiffness is infinitely large when no yielding occurs 
and spring stiffness tends to zero when the plastic moment 
capacity is reached. Inelastic analysis provides the redis-
tribution of internal forces due to yielding of structural 
members and this process can be considered by an inclu-
sion of a flexible spring stiffness in the incremental equi-
librium equations. In order to perform inelastic analysis, 
some assumptions are made in this paper. These are sum-
marized as: the element is originally straight and prismatic, 
plane cross-sections remain plane after deformation, sec-
tions are doubly symmetric, yielding of the cross-section 
is governed by normal stress, the material model is elas-
tic-perfectly plastic and local buckling is ignored. On the 
other hand, effect of the axial force on the flexural stiff-
ness of a member and the influence of gravity loads on 
side-sway stiffness of the frame is considered with sec-
ond-order analysis. Second-order effects cause reductions 
in stiffness and affect the distribution of internal forces in 
the structural system and for this reason it is included in 
the analysis steps.

2.1 Second-order analysis
The equations of equilibrium need to be formulated on the 
geometry of the deformed structure when steel structural 
members are subjected to axial force. For this reason, stabil-
ity functions [14], geometric stiffness matrix methods [15] 
and moment amplification factors of B1 and B2 method [16] 

are generally used for second-order analysis. In this study, 
B1 and B2 method, which is described in AISC 360-16 [13], 
is used and it’s equations are given in Eqs. (1–2) 

M B M B Mr nt lt= +
1 2 ,	 (1)

P P B Pr nt lt= + 2 ,	 (2)

where Mlt is the first-order moment due to lateral defor-
mation of the structure, Mnt is first-order moment with 
the structure restrained against lateral deformation, Mr is 
required second-order flexural strength, Pr is required axial 
compressive strength, Plt is first-order axial force due to lat-
eral deformation of the structure, Pnt is first-order axial force 
with the structure restrained against lateral deformation.

2.2 Axial force and bending moment interaction 
equations
The relationship between axial force and bending moment 
is determined using bilinear interaction equations. In this 
study, Eq. (3) and Eq. (4) given in AISC 360-16 [13] are 
used to show the interaction between axial force and bend-
ing moment for steel members.

P P M M for P Py p y/ / . / .+ = ≥8 9 1 0 0 2 ,	 (3)

P P M M for P Py p y/ / . / .2 1 0 0 2+ = < ,	 (4)

where: P is axial force, M is the bending moment, Py is the 
squash load and Mp is the plastic moment capacity.

2.3 Residual stress
Gradual yielding effect due to residual stress along the 
length of members under axial loads between two plas-
tic hinges is considered by Column Research Council tan-
gent modulus concept. In this concept, elastic modulus E 
is reduced for accounting the reduction of the elastic por-
tion of the cross-section and this approach is also consid-
ered in many studies [17] and modern design codes [18] as 
given in Eqs. (5–6).

E E for P Pt y= ≤1 0 0 5. . ,	 (5)

E P
P
E P

P
for P Pt

y y
y= −









 >4 1 0 5. .	 (6)

3 Lateral Torsional Buckling behavior
LTB is one of the major stability problems for members 
under flexure and various studies  [19] show that it influ-
ences structural steel design directly. LTB is caused by 
additional deformation due to out-of-plane displacement 
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and rotation, as well as bending behavior of steel struc-
tural members in their plane. For LTB type of failure, the 
critical moment, which is a function of lateral and tor-
sional stiffness, under the applied load or moment should 
be reached. Critical moment is affected by the element 
lengths in which out-of-plane movements are not inhibited. 
Likewise, boundary conditions, load pattern and cross sec-
tions dimensions have influence on the critical moment. In 
Fig. 1, a fork supported doubly symmetric  I shaped steel 
beam is subjected to uniform moment Mo with respect to 
its major bending axis and differential equation for LTB is 
given with Eq. (7)v[7].

EC d
dz

GJ d
dz

M
EIw

y

4

4

2

2

0

2

0
∅ ∅ ∅
− − = ,	 (7)

where: E is the modulus of elasticity, Cw is the warping 
constant, G is the shear modulus, J is the torsional con-
stant, Iy is the moment of inertia with respect to the weak 
axis, and Æ is the twisting angle. 

Nominal flexural strength according to the limit state of 
elastic LTB for a uniform bending moment diagram along 
the unbraced length can be written as Eq.  (8)  [7]. In the 
derivation of Eq.  (8), lateral deflection and twisting are 
prevented at the both ends of the beam whereas beam ends 
are free to rotate laterally and free to wrap.

M
L
EI GJ E

L
I Cocr y y w= + 








π π 2

� .	 (8)

Since closed-form solutions cannot be derived for most 
of the structural cases of LTB, numerical methods are 
widely used in calculations [20]. Consequently, the results 
are generally presented in the form of charts, tables, and 
special-purpose approximate expressions  [22,  23]. For 
this reason, a numerical method based on finite difference 
approach is used in the study.

Fig. 1 Lateral torsional buckling of doubly symmetric I shaped member 
under uniform moment Mo 

Fig. 2 Example of grid points in finite difference approximation

3.1 Lateral torsional buckling analysis using finite 
difference approach
In order to calculate LTB, fourth order differential equa-
tion is solved using finite difference approach. In this study, 
first term of Taylor series of each derivative is used. In 
order to obtain numerical solution of Æ, member is divided 
into equally spaced grid points. At a point z = zi, the first 
to fourth derivatives of Æ(z) can be written as Eqs. (9–12).

∅ = −∅ +∅( )− +i i iz
' 1

2
1 1∆

,	 (9)

∅ ∅ ∅ ∅= − +( )− +i i i iz
'' 1

2
2 1 1∆

,	 (10)

∅ = −∅ + ∅ − ∅ +∅( )− − + +i i i i iz
''' 1

2
3 3

3 2 1 1 2∆
,	 (11)

∅ = ∅ − ∅ + ∅ − ∅ +∅( )− − + +i i i i i iz
'''' 1

4 6 4
4 2 1 1 2∆

.	 (12)

Finite difference representation at a grid point for fourth 
order differential equation contains five function values. 
Therefore, the use of Eqs. (9–12) at a beam end, which is 
shown as grid point O in Fig. 2, requires two extra func-
tion values, namely Æ–1 and Æ–2. Two equations at point O 
are required in order to represent boundary conditions at 
that point. If a member is divided into m segments, then 
the use of finite difference methods requires four addi-
tional function values. There are (m + 1) finite difference 
equations for (m  +  5) unknowns, so that four boundary 
conditions are needed. At each end, two boundary condi-
tions are required, one condition involves torsion, and the 
other one involves warping.

Finite difference representation of differential equation 
at any arbitrary point i. becomes as Eq. (14) if three con-
stants determined with Eq. (13) are used.

a EC
z

b GJ
z
c M

EI
w

y

= = − = −
∆ ∆4 2

0

2

,	 (13)

a

b c
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i i i i

∅ − ∅ + ∅ − ∅ +∅( )
+ ∅ − ∅ +∅( ) + ∅

− − + +

− + =

2 1 1 2

1 1 0

4 6 4

2 .

	 (14)

If one assumes the beam is divided into, for instance 
ten segments, Eq.  (14) is then evaluated at grid points 
i  =  0,  1,  2,  …,  10, so there are eleven equations. The 
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boundary conditions at the two ends are given with Eq. (15) 
and Eq. (16). Eleven finite difference representation at the 
grid points and two additional boundary conditions at each 
end make a linear simultaneous equation system of the size 
of fifteen. 

∅ = = =0
0z z L, ,	 (15)

d
dz z z L

2

2
0

0

∅
=

= =,
. 	 (16)

In the finite difference approach, Eq. (15) and Eq. (16) 
can be written in the form as in Eq. (17).

∅ =

∅ − ∅ +∅ =

= → =
= → =

− +
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at z i
z L i m

0

2 0

0 0

1 1

. 	 (17)

In this study, a member that is subjected to vertical 
uniformly distributed load and unequal end moments is 
focused as shown in Fig. 3 and finite difference approach 
is applied accordingly. 

Unequal end moment values are defined as β1qL2/12 
at one end and β2qL2/12 at the other end. The bending 
moment equation for this case is shown with Eq. (18).

M qz

qz qz qz L z qz
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2
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= −

+ + −( )  −

/

/ / / / / ,β β β
	 (18)

where z is measured from the beam end where the moment 
M acts. For finite difference approach, Eq.  (18) can be 
written as Eq. (19).

M q
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where z = I  · ∆z. By substituting moment M0 in Eq. (19) 
into Eq.  (7), the differential equation that is used in the 
finite difference approach for this load case becomes as 
Eq. (20).
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Fig. 3 Member subjected to uniformly distributed load and unequal end 
moments

Finite difference method is used for solving the differ-
ential equation in Eq.  (12) considering boundary condi-
tions using Matlab [23] in this study. 

3.2 Lateral torsional buckling calculation according to 
AISC 360-16
LTB analysis can be performed by many internationally 
accepted standards and codes and one of the popular and 
practical one is AISC 360-16  [13]. For doubly symmet-
ric I shape cross-section elements exposed to the bending 
moment on the strong axis, Mn can be calculated using 
Eqs. (21–23) 

M M F Zn p y x= = ,	 (21)

M C M M F S
L L

L L
Mn b p p y x

b p

r p
p= − −( ) −( )
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≤0 7. ,	 (22)

M C E
L r

Jc S h L
r

S Mn
b

b ts
x o

b

ts
x p=

( )
+ ( )







 ≤

π 2
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. ,	 (23)

where: Sx and Zx are the elastic section modulus and the 
plastic section modulus about the strong axis, Lb is the 
length of the unbraced segment of member, Lp and Lr are 
length limits defined in AISC 360-16 [13], Fy is the spec-
ified yield stress of the steel, ho is the distance between 
the flange centroids. Cb is the LTB modification factor for 
non-uniform moment diagrams and rts is determined in 
Eq. (24).

r I C Sts y w x
2 = / .	 (24)

The shapes of the bending moment diagrams for LTB 
are taken into account by multiplying by the moment mod-
ification factor Cb which is presented in Eq. (25). In cases 
where the moment diagrams can be expressed to specific 
geometric shapes, it is possible to calculate the moment 
modification factor in practice for determining the LTB 
behavior. Moreover, some design specifications [18] allow 
to account moment modification factor, Cb as 1 conserva-
tively without performing Eq. (25).

In order to improve the capability of representing LTB 
behavior precisely, some studies are performed about 
accuracy of moment modification factor. Serna et al. [21]
which is strongly dependent on both the bending moment 
distribution and restrictions at end supports. This paper 
focuses on the equivalent uniform moment factor (EUMF 
provide an equation for moment modification factor by 
using finite element techniques and it is given in Eq. (26). 
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Likewise, Wong  and  Driver  [22] proposed an equation 
using improved quarter-point formula for Cb factor and it 
is presented in Eq. (27). These approaches are significant 
contributions to the literature [20] and they are also used 
for comparison in the numerical analysis carried out as the 
part of this study. 

C M M M M Mb max max A B C= + + +( )12 5 2 5 3 4 3. / . ,	 (25)

C M M M M Mb max max A B C= + + +35 9 16 9
2 2 2 2 2
/ ( ,	 (26)

C M M M M Mb max max A B C= + + + ≤4 4 7 4 2 5
2 2 2 2

/ . ,	 (27)

where: Mmax is the maximum moment, and MA, MB and MC 
are the values for the moment at 0.25, 0.50 and 0.75 of the 
unbraced lengths of the member, respectively.

4 Implementation of Lateral Torsional Buckling behavior 
in Inelastic Ultimate Load Analysis of steel frame
The conventional inelastic ultimate load analyses, how-
ever, do not consider the degradation of the flexural 
strength and stiffness caused by the LTB, assuming the 
lateral torsional motion to be prevented by adequate lat-
eral bracings. The analysis should be improved to con-
sider LTB, since the real structures are not always pro-
vided with sufficient lateral supports. For this reason, a 
numerical method is proposed for determining inelastic 
ultimate load capacity of steel frames considering LTB 
behavior under uniformly distributed loads. In the analy-
ses, inelastic material behavior, second-order effects and 
residual stresses of the structural frame system and its 
members are accounted for the approach used in the study. 
The proposed method is given in details with a flow chart 
as shown in Fig. 4.

5 Numerical examples
Steel plane frame structures are selected from literature 
[16, 24, 25] in order to validate the proposed method and 
show the importance of LTB effect on the capacity and 
behavior of steel frames. Geometric properties, member 
sections and loads that act on the steel frames are given 
in the relevant figures. In all examples, laterally unbraced 
lengths are accounted as same as the beam lengths. In the 
inelastic ultimate load analysis of steel frames under dis-
tributed loads, second-order effects, plastic hinges and 
residual stress effects are considered according to the 
equations presented in AISC 360-16 [13]. 

In the inelastic ultimate load analysis steps, LTB is pre-
cisely considered with the proposed method and results 
are compared with solutions considering Serna et al. [21] 
Eq.  (26), Wong and Driver  [22] Eq.  (27) and AISC 360-
16 [13] design specification Eq. (25). In the numerical anal-
ysis using proposed method calculations steps provided by 
work flow chart given in Fig. 4 are followed, members are 
divided into 300 equal length elements considering the 
accuracy of the results. 

5.1 One-story and one-bay steel frame
One-story and one-bay steel frame is selected from the lit-
erature [16, 25] and it's geometric properties and loading 
are presented in Fig. 5. Horizontal displacement at the top 
of the steel frame is marked as Δ. 

Critical moment values for the beam member of the 
frame, considering LTB behavior for various end moments 
are calculated and results are shown in Fig. 6. 

Inelastic ultimate load analysis of one-story and one-
bay steel frame with uniformly distributed load applied 
is performed and load parameter and horizontal displace-
ment at the top of the steel frame are calculated with and 
without considering LTB effect. Analysis results are pre-
sented in Fig. 7, comparatively. 

Ultimate load capacity and horizontal displacement at the 
top of the steel frame under uniformly distributed load con-
sidering LTB is calculated with the proposed method and 
the other methods based on AISC 360-16 [13] and equations 
from the literature. Ultimate values for load carrying capac-
ity and lateral displacement of steel frame are presented 
in Table 1. LTB decreases the load carrying and displace-
ment capacity of the steel frame for all methods considered 
in the study. Moreover, assuming moment modification  
factor as Cb = 1 caused relatively conservative results.

Table 1 Ultimate load factor and displacement results for one-story and 
one-bay frame

Type of Analysis Ultimate load 
factor

Displacement 
(mm)

LTB neglected 1.356 112.7

LTB considering the Eq. (26) of 
Serna et al.  0.921 82.2

LTB considering proposed method 0.916 81.1

LTB considering the Eq. (27) of 
Wong and Driver 0.894 81.2

LTB considering AISC 360-16 0.755 54.7

LTB considering AISC 360-16 
with assuming Cb = 1 0.493 29.0
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Fig. 4 Flow chart for inelastic ultimate load analysis considering lateral torsional buckling
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Fig. 5 One-story and one-bay steel frame

Fig. 6 Critical moment values of W12 × 30 for β1 and β2 values 

Fig. 7 One-story and one-bay steel frame analysis results

Fig. 8 Two-story and two-bay steel frame

(a)

(b)
Fig. 9 Critical moment values of (a) W21 × 62 (b) W24 × 84 for β1 and 

β2 values 

5.2 Two-story and two-bay steel frame
A steel frame with two-story and two-bay is selected from 
the literature [24,  25] and it's geometric properties and 
loading are presented in Fig. 8. Horizontal displacement at 
the top of the steel frame is shown as Δ. 

Critical moment values for the beam members of the 
frame considering LTB behavior for various end moments 
are calculated and results are shown in Fig. 9. 

Inelastic ultimate load analysis of the steel frame is per-
formed and the relationship between the load parameter 
and horizontal displacement at the top of the steel frame 
is presented in Fig. 10 with and without considering LTB 
effect. At first, inelastic ultimate load analysis of steel 
frame results of this study and the reference study [24] is 
compared and 0.8 % difference is observed for ultimate 
load parameters in the case when LTB is neglected. 

Ultimate load carrying capacity and lateral displacement 
of steel frame decreased significantly, as LTB is encoun-
tered in the analysis as presented in Table 2. Since ulti-
mate load carrying capacity calculations are dependent on 
the moment modification factor equations, analysis results
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Table 2 Ultimate load factor and displacement results for two-story and 
two-bay frame

Type of Analysis Ultimate load 
factor

Displacement 
(mm)

Foley and Vinnakota [24] (LTB 
neglected)  1.911 104.6

LTB neglected 1.896 102.2

LTB considering the Eq. (26) of 
Serna et al. 1.722 70.6

LTB considering proposed method 1.717 71.1

LTB considering the Eq. (27) of 
Wong and Driver 1.687 66.1

LTB considering AISC 360-16 1.288 70.4

LTB considering AISC 360-16 with 
assuming Cb = 1 1.133 61.4

Fig. 10 Two-story and two-bay steel frame analysis results

using Serna et al.  [21] Eq.  (26), Wong and Driver  [22] 
Eq. (27) and the proposed method are different from the 
results of AISC 360-16 [13] design specification Eq. (25). 
This is due to a fact that, moment modification factor of 
AISC 360-16  [13] is aimed to be used for general load 
cases; its results are relatively conservative for steel frame 
subjected to uniformly distributed load.

5.3 Three-story and two-bay steel frame
A steel frame with three-story and two-bay is selected from 
the literature [24, 25] and it is shown in Fig. 11. Horizontal 
displacement at the top of the steel frame is marked as Δ.

Critical moment values for the beam members of the 
frame considering LTB behavior for various end moments 
are calculated and results are shown in Fig. 12. 

Inelastic ultimate load analysis of three-story and two-
bay steel frame is performed and load parameter and hori-
zontal displacement at the top of the steel frame are deter-
mined with and without considering LTB effect as shown 

in Fig. 13. Inelastic ultimate load analysis of steel frame 
results show that the difference in ultimate load carrying 
capacity of this study and the reference study [24] is 1.2 % 
considering the case when LTB is neglected. 

Ultimate load carrying capacity and lateral displace-
ments of steel frames decreased due to considering LTB 
behavior and analysis results are shown in Table 3. 

Fig. 11 Three-story and two-bay steel frame

Fig. 12 Critical moment values of W 18 × 40 for β1 and β2 values

Fig. 13 Three-story and two-bay steel frame analysis results
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Table 3 Ultimate load factor and displacement results for three-story 
and two-bay frame

Type of Analysis Ultimate 
load factor

Displacement 
(mm)

Foley and Vinnakato [24](LTB 
neglected) 1.632 140.2

LTB neglected 1.612 139.9

LTB considering the Eq. (26) of 
Serna et al. 1.478 115.3

LTB considering proposed method 1.473 112.0

LTB considering the Eq. (27) of 
Wong and Driver 1.467 111.5

LTB considering AISC 360-16 1.237 86.0

LTB considering AISC 360-16 with 
assuming Cb = 1 1.113 69.8

Analysis results using moment modification factor equa-
tions of Serna et al.  [21] Eq. (26), Wong and Driver [22] 
Eq.  (27) and the proposed method show relatively close 
results with each other.

6 Conclusions
In this study, a method that considers LTB in the load 
increment steps of the inelastic ultimate load analysis 
of steel frames under distributed loads is proposed and 
numerical examples from the literature are considered for 
comparison of analysis results. Outcomes of this study are 
summarized as follows.

•	 Numerical examples considered in the study show 
that LTB directly affects the steel frame behavior 
and load carrying capacity. Therefore, it is a crucial 
issue for steel structures and it has to be considered 
in analysis and design stages. 

•	 LTB analyses are generally focused by considering 
one-member solutions or only at a beam-member 
element level. This study shows the influence of LTB 
on the ultimate load capacity of steel frames and the 
whole structural behavior is presented numerically, 
using proposed and some recent approaches.

•	 Inelastic ultimate load analyses of steel frames under 
uniformly distributed loads considering LTB are per-
formed by using the proposed method, AISC 360-16 
design specification equations and approaches from 
the literature. Analysis results show that, the proposed 
method gives sufficient outcomes when it is compared 
with the moment modification factor approaches used 
from the literature and AISC 360-16 design specifi-
cation equations. Therefore, the proposed analysis 
method is shown to be an efficient and consistent tool.

•	 Most of the equations for LTB calculations consider 
moment modification factor using four points of the 
moment diagram. This ensures that the shape of the 
moment diagram is reflected in LTB calculations. 
Alternatively, this study uses only beam end moments 
and the distributed loading value of the members to 
calculate critical moment for LTB behavior. This 
advantage can be applied to steel frames subjected 
to uniformly distributed load, which is a widely used 
load case in structural engineering problems.

•	 Analysis results show that when moment modifi-
cation factor Cb is accounted as 1, analysis results 
become conservative if economical designs are tar-
geted. For this reason, moment modification fac-
tors should be precisely calculated in all steps of the 
numerical analysis.
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