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Abstract

Detecting of joint sets (clusters) is one of the most important processes in determining properties of fractures. Joints clustering and 

consequently, determination of the mean value representing each cluster is applicable to most rock mass studies. It is clear that the 

accuracy of the clustering process plays a key role in analyzing stability of infrastructures such as dams and tunnels and so on. Hence, 

in this paper, by reviewing several methods proposed for clustering fractures and considering their advantages and disadvantages, a 

three-stage hybrid method is developed which contains Fuzzy c-means, Fuzzy covariance and Fuzzy maximum likelihood estimation 

that by utilizing the modified orientation matrix had been optimized. This method is optimized by the Differential Evolutionary 

algorithm using a new and strong cost function which is defined as the computation core. In addition, using three clustering quality 

comparing criteria, the new developed method of differential evolutionary optimized of fuzzy cmeans - fuzzy covariance - fuzzy 

maximum likelihood estimation clustering method (DEF3) is compared with other base and common methods using field data. After 

doing the calculations, the developed method by giving the best values for all the criteria provided the best results and good stability 

in meeting different criteria. The DEF3 method was validated using actual field data which mapped in Rudbar Lorestan dam site. The 

results revealed that DEF3 acquired the best rank among the other method by getting the value of 0.5721 of Davis-Bouldin criterion, 

1403.1 of Calinski-Harabasz criterion, and 0.83482 of Silihotte as comparing criteria of clustering methods.
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1 Introduction
The existence of fractures in rock masses has made rock 
mechanics a unique science. Fractures are the main deter-
minants of rock mass behavior. Mechanical and hydraulic 
behavior of rock mass is mainly controlled by fractures. 
Therefore, the stability of structures involved in or on rock 
mass such as rock slopes, tunnels and caverns are directly 
related to fractures states. Hence, the recognition and study 
of fractures is critical in rock mechanics. 

Due to the statistical nature of the fractures, they are 
studied and analyzed through field surveying of their prop-
erties using standard mapping techniques. Orientation is 
among the most important properties of fractures, which is 

presented in terms of dip and dip direction. The importance 
of dips and dip directions of fractures arises from the key 
role which they play in fractures clustering. Identification 
of fractures clusters and access to mean dip and dip direc-
tion of clusters is considered as the most important step in 
statistical analysis of field data. Grouping surveyed data of 
joints is key part of identification of preferred plane direc-
tion which is used in statically and dynamically analysis 
and hydraulic behavior and other engineering character-
izations of rock mass. Hence cluster analyses in order to 
identification of joint sets is the main part of statistical 
analysis of field data [1–6]. 
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Due to the importance of the subject, many efforts have  
been made to achieve the best clustering method and con-
sequently present the most accurate representative dip and 
dip direction of the joint sets. Generally, fracture cluster-
ing methods are divided into two groups. The first cate-
gory consists of manual or counting techniques by which, 
dependent on the fracture poles location on the lower 
hemisphere equal area, the clustering takes place based on 
the proximity of poles and personal recognition. Manually 
fracture clustering is completely rest on experience and 
personal accuracy and It is not also free from human 
errors since it is based on the user's preference and diag-
nosis. In addition, in the case of more scattered data, the 
level of human error in detecting the boundaries of clus-
ters is not likely negligible [7].

The limitations of manual recognition of joint sets and 
the importance of accurate clustering, have led researchers 
to focus their studies on non-manual and automatic diag-
nostic techniques, which in fact develops the second cat-
egory of fracture clustering methods [8]. Automatic tech-
niques are classified in two categories: the methods that 
assume the statistical structure of fractures orientation 
data [5, 9, 10], and the methods that classify them without 
regard to the default statistical model of data [11–15].

The methods of first category attempt to detect joint 
sets by using automatic technique based on orientational 
properties of joints was made by Shanely and Mahtab [5].  
The basis of this method is to select the appropriate radius 
of the small search circle to find the high density that 
will be used later in the process to calculate the core of 
the joint set. The efficiency of this automatic method is 
highly dependent on the search circle radius chosen by the 
user, which shows the high effect of individual judgment  
in this method [5].

Mahtab and Yegulalp introduced a new algorithm in 
1982 to cluster joints considering the rejection criterion 
in the definition of fracture clusters based on random test 
steps, using the Poisson distribution function, detection 
of high-density clusters, and the estimation of the clus-
ters statistical structure by Bingham distribution. Clearly, 
it seems that imposing Bingham's distribution on the sta-
tistical structure of the clusters is not always a logical 
assumption and is not necessarily always true [9].

Dershowitz et al. proposed an iterative-based process 
for joint clustering by assumptions about the fractures sta-
tistical structures so that they had a direct effect on the 
performance of the method [16]. However, access to the 
actual statistical model of the fractures is very difficult in 

some cases. The above methods, operating based on com-
pression density of poles, by counting the number of poles 
placed within a reference circle. The main problem of 
these methods, however, was that the clustering result was 
strongly dependent on the size of the reference circle and 
the user's preference [11, 12, 17, 18].

In brief, disadvantages of methods based on count-
ing poles have led to the development of alternate meth-
ods for automatic detection of joint sets. Marcotte and 
Henry assuming that the orientation of each joint sets can 
be modeled using a truncated integrated bivariate normal 
distribution function, proposed an algorithm for identify-
ing joint sets. However, it is difficult and sometimes false 
to consider a definitive default in relation to the statistical 
structure of the fractures [10].

Given the above deficiency, the researchers' attempted 
to introduce the clustering methods without requiring 
the statistical structure of fracture data. In the process 
of identifying joint sets, the spatial distance of fractures 
orientation vectors is the most distinctive parameter [11]. 
Harrison used a fuzzy logic to analyze the orientational 
data of fractures. Based on fuzzy theory, Harrison pre-
sented a three-stage technique for clustering fractures 
using the methods proposed by Bezdek [19], Gustafson 
and Kessel [20], Gath and Geva [21]; which is called FCM, 
F-Co, and FMLE methods, respectively [13]. Harrison's 
three-step algorithm, despite its capabilities, has two major 
flaws: first the lack of good compatibility with the vectoral 
nature of fractures statistical data and poor performance 
in handling data with a spherical cluster structure [22]. 
To fix mismatch of FCM method with directional data 
of fractures orientation, Hammah and Curran suggested 
a modified orientation matrix that improved the auto-
matic detection of fractures by FCM. However, in his later 
work, he discussed issues related to the operation of dif-
ferent distance-meters and validation indicators of fuzzy  
clustering methods [11, 12, 17, 18].

Sirat and Talbot proposed a new technique for clustering 
fracture data by using the neural network method. They 
applied the capability of neural networks self-organizing 
maps for clustering real data [23]. Meanwhile, a group of 
researchers, in addition to orientational data of joints in the 
clustering process, introduced other properties of fractures. 

Zhou and Maerz [15] and Tokhmechi et al. [24, 25], 
using other properties of fractures, along with dip and 
dip direction, and based on the K-means method pre-
sented other algorithms for fracture clustering. Zhou and 
Maerz developed a computer program to detect and cluster 
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fractures by several multivariate clustering algorithms. It 
should be noted that FCM and K-means were dynamic 
clustering algorithms that required the initial proposal of 
number and center of clusters to start the search process, 
though both methods are not guaranteed to reach the global 
optimum points and likely they would get stuck at the opti-
mal local points. The results of the clustering process also 
depend on the number of clusters and cluster nuclei loca-
tion. Without a clear boundary between clusters, choosing 
the appropriate cluster center is difficult and the results 
are untrustworthy [13]. In order to avoid problems due to 
the false selection of cluster nuclei, Jimenez-Rodriguez 
and Sitar [1], proposed a spectral clustering method for 
identification of fracture clusters using a proximity matrix 
to determine the similarity between two fractures. In 
this method, by transferring data to the secondary space 
using the values and the proximity matrix, the boundary 
between fracture clusters changes to a clear mode from a 
non-transparent space. Xu et al., employed the chaos the-
ory optimization method to cluster fractures [26].

Klose et al. developed a fracture clustering technique 
based on quantization of vector and minimization of cost 
function, which was defined by the acute angle between 
fractures poles and the mean of poles. Their technique 
operated by the arc length between the poles of fractures on 
single unit spheres [14]. Based on fuzzy theory, Hammah 
and Curran provided fuzzy K-means method. Due to the 
improved distance meters and the new fuzzy clustering 
evaluator, their method classified fractures [11, 12, 17, 18].  
Based on the genetic optimization algorithm, Cai et al. 
presented algorithm to obtain cluster nuclei and assess 
clustering efficiency [27]. Ma et al. proposed a reinforced 
K-Means clustering technique by which the clusters' cores 
were determined more precisely based on the meliorated 
initial centers and hierarchical clustering method [28].

In this paper, considering the strengths and deficiencies 
of the previous methods, a new method is developed based 
on the Harrison's three-step technique, optimized by dif-
ferential evolutionary algorithm [13]. It has a good speed 
of convergence and global extremum point search, along 
with simplicity and compatibility with the spatial and 
spherical nature of rock engineering data. The developed 
method utilizes strengths of the Harrison method, which in 
fact includes advantages of the Bezdek's FCM [19, 29, 30],  
Gustafson-Kessel' FCo [20, 31–33] and Gath-Geva's FMLE 
[21] methods, and integrates the concept of orientation 
matrix proposed by Hammah and Curran in the cluster-
ing process to further adapt the method to the nature of 

the orientation data. Accordingly, new proposed technique 
performs more accurate than the methods developed by 
Shanely and Mahtab, Yanan Li et al, Jimenez and Sitar, and 
Xu et al., which were selected because of their high effi-
ciency [1, 5, 22, 26]. In the following, the steps of the pro-
posed new method of differential evolutionary optimized 
fuzzy cmeans- fuzzy covariance- fuzzy maximum likeli-
hood estimation (DEF3) is presented and then, using the 
mapped actual data and comparing criteria, its efficiency 
is examined versus common clustering methods.

2 Materials and methods
2.1 Assessing clusterability of the data
Relating to the data clustering process, ignoring quality 
and quantity of process, first step includes study of data 
clusterability which evaluates whether data possesses 
such structure, is an integral part of cluster analysis. 
However, methods for evaluating clusterability vary rad-
ically, making it challenging to select a suitable measure. 
In this method, we use a most common statistics parame-
ter which called Hopkins statistic. The Hopkins statistic is 
a way of measuring the cluster tendency of a data set [34]. 
It belongs to the family of sparse sampling tests. It acts as a 
statistical hypothesis test where the null hypothesis is that 
the data is generated by a Poisson point process and are 
thus uniformly randomly distributed. A value close to 1 
tends to indicate the data is highly clustered, random data 
will tend to result in values around 0.5, and uniformly dis-
tributed data will tend to result in values close to 0. A typ-
ical formulation of the Hopkins statistic follows: Let X be 
the set of n data points. Consider a random sample (with-
out replacement) of m << n data points with members xi. 
Generate a set Y of m uniformly randomly distributed data 
points. Define two distance measures: ui the distance of  
yi  Y from its nearest neighbour in X, wi and the distance 
of xi  Y from its nearest neighbour in X. With the above 
notation, if the data is dimensional, then the Hopkins sta-
tistic is defined as [35]:

H
u

u w
i

m
i
d

i

m
i
d

i

m
i
d

=
+
=

= =

∑
∑ ∑

1

1 1

. (1)

2.2 Determination of optimum clusters number
After ensure data clusterability, one of the most important 
steps in data clustering process is determination of proper 
cluster number which is as clustering process input. In this 
paper for achieving proper cluster number, we apply one of 
the most useful technique which is called Elbow method.
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The Elbow method is a method of interpretation and 
validation of consistency within cluster analysis designed 
to help finding the appropriate number of clusters in a 
dataset. This method looks at the percentage of vari-
ance explained as a function of the number of clusters. 
One should choose a number of clusters so that adding 
another cluster doesn't give much better modeling of the 
data. More precisely, if one plots the percentage of vari-
ance explained by the clusters against the number of clus-
ters, the first clusters will add much information (explain a 
lot of variance), but at some point, the marginal gain will 
drop, giving an angle in the graph. The number of clusters 
is chosen at this point, hence the “elbow criterion”. This 
“elbow criterion” cannot always be unambiguously iden-
tified [36]. Percentage of variance explained is the ratio 
of the between-group variance to the total variance, also 
known as an F-test. A slight variation of this method plots 
the curvature of the within group variance [37–39] (Eq. 2):

F = explained variance
unexplained variance
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Where Ȳi denotes the sample mean in the i-th group, ni 

is the number of observations in the i-th group, Ȳ denotes 
the overall mean of the data, and K denotes the number of 
groups, Ȳij is the j-th observation in the i-th out of K groups 
and N is the overall sample size. The statistic will be large 
if the between-group variability is large relative to the 
within-group variability, which is unlikely to happen if the 
population means of the groups all have the same value.

2.3 Differential Evolutionary algorithm
DE is Stochastic, population-based optimization algo-
rithm [40]. DE is comparatively a recent addition to class 
of population-based search heuristics. Nevertheless, it has 
emerged as one of the techniques most favored by engi-
neers for solving continuous optimization problems. DE 
has several attractive features. Besides being an excep-
tionally simple evolutionary strategy, it is significantly 
faster and robust for solving numerical optimization prob-
lems and is more likely to find the function's true global 
optimum. Also, it is worth mentioning that DE has a com-
pact structure with a small computer code and has fewer 
control parameters in comparison to other evolutionary 
algorithms. Originally Price and Storn proposed a single 
strategy for DE, which they later extended to ten different 
strategies [40, 41]. DE has been successfully applied to a 
wide range of engineering problems [42].

A basic variant of the DE algorithm works by having 
a population of candidate solutions (called agents). These 
agents are moved around in the search-space by using 
simple mathematical formulae to combine the positions of 
existing agents from the population. If the new position 
of an agent is an improvement it is accepted and forms 
part of the population, otherwise the new position is sim-
ply discarded. The process is repeated and by doing so it is 
hoped, but not guaranteed, that a satisfactory solution will 
eventually be discovered. Formally, let f : Rn → R be the 
cost function which must be minimized or fitness function 
which must be maximized. The function takes a candidate 
solution as argument in the form of a vector of real num-
bers and produces a real number as output which indicates 
the fitness of the given candidate solution. The gradient of 
f is not known. The goal is to find a solution m for which 
f(m) ≤ f(p) for all p in the search-space, which would mean 
m is the global minimum. Maximization can be performed 
by considering the function h f:= −  instead. Let x  Rn 
designate a candidate solution (agent) in the population. 
CR  [0.1] which is called the crossover probability. Let  
F  [0.2] be called the differential weight. Both these 
parameters are chosen by the practitioner along with the 
population size NP ≥ 4 (see below). The basic DE algo-
rithm can then be described as follows:

1. Initialize all agents x with random positions in the 
search-space.

2. Until a termination criterion is met (e.g. number of 
iterations performed, or adequate fitness reached), 
repeat the following:
2.1 For each agent x in the population do:

2.1.1 Pick three agents a, b and c from the popu-
lation at random, they must be distinct from 
each other as well as from agent x.

2.1.2 Pick a random index R  {1, …, n} (n being the 
dimensionality of the problem to be optimized).

2.1.3 Compute the agent's potentially new position 
y = [y1, …, yn] as follows:

2.1.3.1 For each i = [1, …, n], pick a uniformly 
distributed number ri ≡ U(0.1)

2.1.3.2 If ri < CR or i = R then set yi = ai + F × (bi 
– ci) otherwise set yi = xi.

2.1.3.3 (In essence, the new position is the outcome 
of the binary crossover of agent x with the 
intermediate agent z = a + F × (b – c).

2.1.4 If f(y) < f(x) then replace the agent in the pop-
ulation with the improved candidate solution, 
that is, replace x with y in the population.
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2.2 Pick the agent from the population that has the 
highest fitness or lowest cost and return it as the 
best-found candidate solution [43].

2.4 New developed method (DEF3 method)
A rock discontinuity is often assumed to have a planar 
structure and its spatial orientation is expressed in terms of 
dip direction α(0 ≤ α ≤ 360°) and dip angle β(0 ≤ β ≤ 90°). 
The orientation of a discontinuity can also be represented 
by a unit normal vector ei (Fig. 1), which is often described 
by its direction cosines ei = (xi yi zi ) in a Cartesian coordi-
nate system [44, 45]:
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It is in fact a mixture of the triple method introduced 
by Harrison [13] and Hammah and Curren [11], optimized 
by differential evolutionary method. Harrison's three-
step method combines the fuzzy clustering method, fuzzy 
clustering by fuzzy covariance matrix of membership 

function, and fuzzy clustering based on the fuzzy max-
imum likelihood method by applying the methods sug-
gested by Bezdek, Gustafson and Kessel, Gath and Geva. 
Using the capabilities of the above methods, it has gained 
a special ability in data clustering. It is also uniquely and 
clearly capable to identify clusters of different shapes like 
spherical and non-spherical, and to detect cluster bound-
aries. The only weakness of Harrison's method is the lack 
of good match to and intrinsic design for orientation data 
structure. Harrison's method is presented in Table 1.

Fig. 1 directional data representation in spherical space

Table 1 The FCM, FCV and FMLE fuzzy clustering algorithms [12]
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Where in Table 1, N denotes all data Number, C, Cluster 
number, uij degree of membership of j-th data in the i-th 
cluster, Vi, Center of i-th cluster, d2(Xj,Vi), Cosine distance of 
j-th from i-th cluster center, T, transpose matrix, q, fuzziness 
of resulting partitions, SFi, the fuzzy sums of squares and 
products(SSP) matrix of i-th cluster, Ai the norm-inducing 
matrix of i-th cluster, ρi, hyper volume of i-th cluster, Pi, the 
a priori probability of selecting the i-th cluster, Fi, the fuzzy 
covariance matrix of the i-th cluster. Hammah and Curran 
[11] in order to achieving best compatibility between vec-
toral feature of fracture orientation data and fuzzy cluster-
ing methods, proposed modified orientation matrix for i-th 
cluster, Si

*, which is computed using formula (Eq. 4):
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It was proven and demonstrated in Hammah and 
Curran that this approach for computing prototypes cor-
rectly deals with clusters that contain antipodal vectors 
(sets which wrap between upper and lower hemispheres), 
because it always determines cluster centroids to lie within 
the acute angles between vectors. In both of these meth-
ods, with the definition of cost functions, it is attempted 
to reach the optimal value through steps; this function is 
given in relations [11, 12]:

J U V u d X V K Nm i i
j

N

i

K

ij

m

j i. . ;( ) = ( ) ( ) ≤
= =
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1 1

2 . (5)

The results of the studies show that, while having high 
strengths in calculation, the two methods needs for a more 
powerful and effective tool to achieve optimal clustering 
due to the inefficiency of the optimizer section, which oper-
ates by maximization of the membership function difference 
in successive stages (Eq. 5). Therefore, in order to solve the 
problem, the current paper uses differential evolutionary 
optimization algorithm, based on the special capabilities of 
this algorithm in searching for functions global extremum 
points. The proposed method, unlike the Harrison method, 
instead of random generation of membership function val-
ues for any data in each cluster which produce a significant 
number of clusters and thus increased volume of compu-
tation, reduces the volume of computing and increases its 
speed through a new and effective initiation and attempts 
to generate random cluster centers and thus calculates the 
value of the membership function. In order to further adapt 
the new method to the vector space of the data, the orien-
tation matrix proposed by Hammah and Curran is used to 
obtain cluster centers during the calculation steps.

It is need to be mentioned that because of more compat-
ibility of cosine distance measure with spherical data, in 
new proposed method Euclidian distance measure replaced 
by cosine distance measure which used to measure dis-
tance between a pattern vector and the prototype or cen-
troid. According to the above-mentioned reasons, proposed 
new method because of incorporating aforementioned 
strong clustering methods abilities, is able to yield reliable 
and acceptable results in clustering directional data such as 
dip and dip direction data of fractures. Fig. 2 depicted flow-
chart of various steps of new proposed method.

Fig. 2 flowchart of DEF3 Method



680|Esmaeilzadeh and Shahriar
Period. Polytech. Civ. Eng., 63(2), pp. 674–686, 2019

After proposing any new method, it is needed to eval-
uate performance of the method. The evaluation process 
requires the using of criterions which could be introduced 
effectiveness and accuracy and precision of new proposed 
method. As first time in this paper, performance of pro-
posed new method is evaluated by applying three key cri-
terions which is called Silihotte [46], Davis-Boulden [47] 
and Calinski-Harabasz [48]. In following section these 
three criterions will be presented. The Calinski-Harabasz 
criterion is sometimes called the variance ratio criterion 
(VRC). The Calinski-Harabasz index is defined as:

VRC = SS
SS

×
N k
k 1k

B

W

−
−

( )
( )

. (6)

Where SSB is the overall between-cluster variance, SSW 
is the overall within-cluster variance, k is the number of 
clusters, and N is the number of observations. The overall 
between-cluster variance SSB is defined as:

SS = n m mB i i −
=
∑ 2

i

k

1

. (7)

Where k is the number of clusters, mi is the centroid 
of cluster i, m is the overall mean of the sample data, and 
||mi – m|| is the L2 norm (Euclidean distance) between the 
two vectors. The overall within-cluster variance SSW is 
defined as:

SS = x mW i−
∈=
∑∑ 2

x ci

k

i1

. (8)

Where k is the number of clusters, x is a data point, ci 
is the ith cluster, mi is the centroid of cluster i, and ||x– mi|| 
is the L2 norm (Euclidean distance) between the two vec-
tors. Well-defined clusters have a large between-cluster 
variance (SSB) and a small within-cluster variance (SSW). 
The larger the VRCK ratio, the better the data partition. To 
determine the optimal number of clusters, maximize VRCK 
with respect to k. The optimal number of clusters is the 
solution with the highest Calinski-Harabasz index value. 
The Calinski-Harabasz criterion is best suited for k-means 
clustering solutions with squared Euclidean distances [48].

The Davies-Bouldin criterion is based on a ratio of 
within-cluster and between cluster distances. The Davies-
Bouldin index is defined as:

DB =
k

max D
i=

k

j i i.j
1

1
  ≠ { } . (9)

Where Dij is the within-to-between cluster distance ratio 
for the ith and j-th clusters. In mathematical terms:

D
d d

di j
i j

i j
.

.

=
+( )

. (10)

Where d̅ i is the average distance between each point 
in the i-th cluster and the centroid of the i-th cluster and 
d̅ i is the average distance between each point in the j-th 
cluster and the centroid of the j-th cluster and dij is the 
Euclidean distance between the centroids of the ith and jth 
cluster. The maximum value of dij represents the worst-
case within-to-between cluster ratio for cluster i. The opti-
mal clustering solution has the smallest Davies-Bouldin 
index value [47].

The silhouette value for each point is a measure of how 
similar that point is to points in its own cluster, when com-
pared to points in other clusters. The silhouette value for 
the i-th point, Si , is defined as:

Si = (bi – ai)/max(ai · bi ). (11)

Where ai is the average distance from the ith point to the 
other points in the same cluster as i, and bi is the minimum 
average distance from the i-th point to points in a differ-
ent cluster, minimized over clusters. The silhouette value 
ranges from –1 to +1. A high silhouette value indicates that 
i is well-matched to its own cluster, and poorly-matched to 
neighboring clusters. If most points have a high silhouette 
value, then the clustering solution is appropriate. If many 
points have a low or negative silhouette value, then the 
clustering solution may have either too many or too few 
clusters. The silhouette clustering evaluation criterion can 
be used with any distance metric [46].

The cost function for the differential evolutionary opti-
mization algorithm is the sum of the variation percentage 
of the three above parameters multiplied by the total per-
centage of positive variations (Eq.12).

CQI = (∆CB % + ∆DB % + ∆Sili %) * SOPI . (12)

Where CQI represents the clustering quality index; 
ΔCB % refers to Calinski-Harabasz's standard percentage 
change, considering the sign; ΔDB % is Davies-Bouldin 
standard percentage change, considering the sign; ΔSili % 
is Silhouette standard percentage change, considering 
the sign; and SOPI represents the total percentages of 
improved criteria.

3 Case study
The data obtained from the cavern of pumped-storage 
power plant project of Rudbar, Lorestan dam and was used 
in validating DEF3 method (Fig. 3). 
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Fig. 3 Mapping of fractures using scanline method in Rudbar Lorestan 
dam site cavern

Fig. 4 Location of case study

Rudbar, Lorestan pumped- storage plan located in 
Zagros high zone has very complicated tectonic conditions 
and numerous over thrust faults have formed high areas. 
The active faults of Saravan Baznavid and Chaleh Hatam 
are the most important faults in the site range. The carven 
of the power plant is located almost in the center of the 
anticline. This project is under construction at the Rudbar, 

Table 2 Hopkins index value of pumped-storage power plant project of 
Rudbar, Lorestan dam data

Data Number Samples Number Hopkins index

627 63 0.81

Lorestan Dam upstream, located 150 km west of Isfahan 
and 100 km south of Aligudarz city. The area of the proj-
ect is located under the high sedimentary-structural zone 
(internal Zagros) (Fig. 4). 

The cavern has a length of 130 meters, a width of 26 
meters and a height of 50 meters, located in the Dalan 
Formation (end of the first geology period), with calcareous 
rock masses and dolomitic limestone of average thickness. 

The data is obtained from the cavern by scanline and 
scan window surveying method, and its number reaches 
627 fractures. In the first step, the data is corrected rela-
tive to the direction of the survey line before the cluster-
ing process begins. Then, clustering capability of the data 
is evaluated using the Hopkins index. Table 2 shows the 
Hopkins index calculated for the data.

As the Hopkins statistics is 0.81, it is clear that the data 
obtained from the cavern site of the power plant has a high 
potential for clustering. It should be noted that the number 
of samples taken from the data to calculate the Hopkins 
statistics, as explained in the previous section, is equal to 
10 % of the total number of data (63 samples). After ensur-
ing the clustering capability of data, the number of opti-
mal clusters should be determined to start the clustering. 
This is done using the elbow index (Fig. 5). 

For data extracted from the cavern of Rudbar power 
plant, according to the Fig. 6 and the description given in 
the previous section, the best number of adaptable clusters 
is achieved to be 3. After assuring the data clustering capa-
bility and determining the number of optimal clusters, the 
data, as in the first phase of validation, are clustered based 

Fig. 5 Illustration of the percentage of data variance(explained) is plotted in terms of the clusters number
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Fig. 6 Scatter diagram of sample (equal area upper hemispherical 
projection) of Rudbar, Lorestan dam cavern

(a)

(b)

(c)

(d)
Fig. 7 Comparison of the clustering results of the New proposed 

method and those of the new method. A. Shanely-Mahtab method. B. 
Spectral method C. Chaotic Method. D. KPSO. E. DEF3

on five k-means methods: the method based on the particle 
swarm algorithm [22], the fuzzy method by chaos-based 
optimization algorithm [26], the spectral fuzzy method 
[7], the method proposed by Shanely and Mahtab [5], the 
new method proposed in this paper based on differential 
evolutionary algorithm. Additionally, Calinski-Harabasz, 
Davies-Bouldin and Silhouette criteria are calculated for 
every value. Fig. 7 shows stereographic plot of the cluster-
ing result of all methods.

Examining the quality of the clustering process is pos-
sible in a variety of ways due to the specific nature of this 
process. Under certain conditions, using the geometric 
structure and location of the data, it is possible to find the 
clustering quality and the correctness level of allocating 
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Table 3 values of Calinski-Harabasz, Davies-Bouldin and Silhouette 
criteria of data

Method Silihotte Calins-Harabaz Davis-Bouldin

Shanely-Mahtab 0.68094 1211.7 1.0032

Spectral 0.70078 1407.6 0.6943

Chaotic 0.76876 1101.3 0.6414

KPSO 0.73792 1281.8 0.5701

DEF3 0.83482 1403.1 0.5721

the data to the clusters by observing the spatial layout of 
the data. But in most cases, due to the multiplicity of data 
and their complex spatial distribution, visual quality mea-
surement methods are not sufficient. Under these condi-
tions, indicators and criteria are presented for studying the 
quality of clustering.  In this paper, the values of the above 
three criteria were calculated for the data in order to evalu-
ate the quality and the accuracy of each method, as shown 
in Table 3 and Fig. 8.

Fig. 8 Illustration of values of A. Calinski-Harabasz, B. Davies-Bouldin C. Silhouette criteria

(a)

(b)

(c)
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4 Discussion
As in the first part of this section, according to the table 3 
and the Fig. 8, it is clear that DEF3 performs better in data 
clustering than other methods. Davies-Bouldin criterion is 
the first for assessing quality of clustering processes. As 
explained, this criterion gives lower values for good qual-
ity clustering. In other words, the value of this criterion will 
be higher for low quality clustering processes. Referring to 
Table 3 and Fig. 8, we can see that DEF3 and KPSO method, 
with values of 0.5721 and 0.5701, perform better than other 
methods. However, the approach based on KPSO method 
has improved slightly compared to DEF3. In this criterion, 
the chaotic theory-based method with a value of 0.6414 has 
the third good performance. The Calinski-Harabasz criterion 
is considered as the second evaluator of the clustering perfor-
mance. This criterion has a computational structure so that as 
clustering quality increases, it provides larger values. Given 
this description and according to Table 3 and Fig. 8, it is 
clear that for this criterion, DEF3 method and Jimenez spec-
tral method with the values of 1403.1 and 1407.6, respec-
tively, provides the highest values and thus the best perfor-
mance. However, Jimenez spectral method slightly perform 
better than DEF3. In this criterion, after the above-men-
tioned methods, the KPSO method has the best performance 
with the value of 1281.8. Silhouette criterion is the third 
criterion used to evaluate the various clustering methods of 
data extracted from the power plant cavern. Considering the 
nature of the Silhouette criterion and referring to Table 3 and 
Fig. 8, it is clear that DEF3 with the value of 0.83482 for sil-
houette criterion has the best performance compared to other 
methods, while in the two previous criteria, the new devel-
oped method with a negligible difference showed the sec-
ond-best performance. Chaotic theory-based method, with 
the value of 0.76876 for silhouette index, has the second-best 
performance after the DEF3 method. In clustering these data, 
stability of performance quality in the face of a variety of 
criteria for assessing clustering quality is another important 
point related to the new method. As shown by Table 3 and 
Fig. 8, in all three criteria, the new proposed method, has a 
stable performance in addition to the best performance. In 
other words, other methods perform differently and unstably  
in the face of different criteria.

5 Conclusions
Due to the importance of fractures in rock mass behavior 
which usually be observed as the main materials in cre-
ation of infrastructure projects, such as dams, tunnels, cav-
erns and rock slopes, in this paper study of one of the most 

important aspect of fractures properties which is called joint 
sets identification, was carried out in a detailed way. Since 
fractures in most cases could be clustered based on their 
orientation property, hence they were classified considering 
their dip and dip direction. By inspecting various methods 
for fracture clustering proposed by different researchers, 
using the strengths of these methods and redefining the frac-
tures clustering process in the form of an optimization prob-
lem, as well as providing a new and efficient cost function 
and its integration with the strong optimization technique of 
differential evolutionary algorithm a new method was pro-
posed based on modified three-step fuzzy clustering meth-
ods. A series of field data were used to evaluate and validate 
the proposed new method. Four methods proposed by other 
researchers were selected and their performance was com-
pared with the new method under the same conditions. The 
results obtained from the comparison, by considering the 
three criteria to evaluate clustering processes, indicate an 
acceptable and better performance of the method proposed 
in this paper. Moreover, it has a good stability in compari-
son with other methods. In this paper, the data was first cor-
rected relative to the orientation of the scanline survey and 
then subjected to the clustering process. It should also be 
mentioned that before data clustering process begins, clus-
tering capability was evaluated using the Hopkins index, 
and then the data entered the clustering phase. In order to 
overcome the problem of selecting the number of optimum 
clusters by using the elbow technique, the number of opti-
mum clusters was determined and given as input into the 
clustering processes. Due to the capabilities of the new pro-
posed method, it can be used to classify fractures with high 
confidence and the results obtained can be utilized in ana-
lyzing the behavior of structures and rock masses.
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