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Abstract

The weight and shape of the gable and multi-span frames (mono and two-span pitched roof) with tapered members, as a familiar 

group of the pitched roof frames, are highly dependent on the properties of the member cross-section. In this work a quantum inspired 

evolutionary algorithms, so-called Quantum evolutionary algorithm (QEA) [1], are utilized for optimal design of one gable frame and 

a multi-span frame in five alternatives with tapered members. In order to optimize the frames, the design is performed using the 

AISC specifications for stress, displacement and stability constraints. The design constraints and weight of the gable and multi-span 

frames are computed from the cross-section of members. These optimum weights are obtained using aforementioned optimization 

algorithm considering the cross-section of members and design constraints as optimization variables and constraints, respectively. A 

comparative study of the QEA and some recently developed methods from literature is also performed to illustrate the performance 

of the utilized optimization algorithm and its featuring. Furthermore, optimal design of a multi-span frame is compared with the 

solution of other methods including the same conditions and constraints. This study indicates the power of QEA in exploring and 

exploitation due the search space with using Q-gate and binary code for individual representation and updating. Binary code helps the 

QEA to find optimal solution even with minimum number of Q-bit individuals. High speed of this method is because of such a feature.
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1 Introduction
Achievement to the least cost and eventually winning the 
bidding process of a project is pursued as an important 
goal in a rigorous competition between constructing com-
panies. In this regard, the use of Meta-heuristics optimi-
zation algorithms can be a convenient method to achieve 
this goal. During the price estimation of a project, the 
weight of structure is very important item because it con-
stitutes 30 % and 40 % of the total cost of the project. 
In decision-making problem, access to the solution of a 
certain problem in the least logical possible time is one 
of the remarkable applications of the metaheuristics opti-
mization algorithms. The slopped roof frames which are 
widely used in construction of the industrial buildings, 
gyms, schools and colleges, fire stations, storages, hangars 
and many other usages are our case study in this paper.

Low rise buildings are including those structures 
which have mean height less than 18 m [2]. Sloped roof 
rigid frames are the most common for low-rise buildings, 
can be categorized based on their shapes, for instance, 
mono-slope, multi-span, lean to and tee frames and so on. 
The gable rigid frames are the most used category of this 
group. Multi-span frames are the second most favorite 
of this category. These frames may have symmetrical or 
unsymmetrical geometry.

As it is shown in Figs. 1 and 2, the great number of 
typical rigid frames in consecutive bays in this kind of 
buildings enforces the designers to concentrate on mini-
mum weight of frames to achieve the least finishing cost 
of project. The members of these frames are categorized 
as prismatic or non-prismatic sections. In non-prismatic 
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Fig. 1 Perspective layout of a 3D gable frame structure  
in consecutive bays

Fig. 2 Perspective layout of a 3D two-span frame structure  
in consecutive bays

type, the cross-section is continuously varying from start 
to end of linear elements, and in prismatic type, the member 
has the same geometrical characteristics along the linear  
element [3, 4].

In the field of structural optimization, there are many 
research areas and many methods to optimize the cost per 
weight of structures, such as gradient-based and stochastic 
optimizers for different structures that are complex [5–7]. 
Since the 1960s a vast amount of research has been in the 
area of structural optimization, the majority of which deal 
with minimizing the weight of the structure. Non-linear 
mathematical programming is necessary for solving the 
optimization problems. The main featuring of these meth-
ods is robustness that leads to applying them to all types of 
optimization problems. Several calculations of the objec-
tive and constraints function and their derivatives are usu-
ally needed when these methods are applied to optimiza-
tion problems [8]. The last two decades were highlighted 
by the development and improvement of the metaheuristic 
methods. Most of them deal with optimal design of two 
or three dimensional structures such as trusses, frames, 
dams, etc. [9–13]. A small fraction of the papers published 
are on real gable frame and saw-tooth structures with 
tapered members. Therefore, optimal design of the gable 
rigid frame and saw-tooth with web-tapered members in 
the low-rise buildings can be an interesting and challeng-
ing issue in structural engineering research [14–16].

The main objective of this paper is to find the optimum 
member sections of a symmetric gable frames and a saw-
tooth frame for assessment of QEA. The members of these 

frames are also considered as the web-tapered I-section 
members. The design method used in this study is con-
sistent with ASCE/SEI 7-10 [2] and AISC-LRFD 360-05 
Specifications [17].

QEA, quantum evolutionary algorithm, is utilized for 
finding the optimum weight of frames. QEA belongs to a 
family of meta-heuristic algorithms which was recently 
developed by the Han and Kim in 2002 And was inspired 
quantum mechanics principles in probability states and 
probability distribution function. In the 1st case study, the 
obtained results of this new meta-heuristics algorithm have 
been compared with two recently developed metaheuris-
tic algorithms, namely the Colliding Bodies Optimization 
(CBO) and Enhanced Colliding Bodies Optimization 
(ECBO) algorithms [18, 19] and 2nd one indicates the per-
formance of QEA rather than HS (Harmony Search) [20], 
CBO, ECBO, VPS (Vibrating Particle System) [21] and 
TLBO (Teaching-Learning Based Optimization) [22]. 
The ECBO was introduced by Kaveh and Ilchi Ghazaan 
[19] and it uses memory to save some historically best 
solution to improve the performance of the CBO. 

It should be noted that, since the plan rectilinear shape 
of gable frame is depended on the dimensions of sections, 
this work can be considered as the shape optimization of 
gable frames. In such a gable frame design problem, select-
ing an appropriate cross-sectional of member is important 
because it influences the structural analysis and weight 
of the frames. Therefore, it is often required to find the 
best set of cross-sections for reducing the weight of gable 
frames and achieving an optimal and economical design. 

The remainder of this paper is organized as follows:
• Explanation of the Quantum evolutionary algorithm 

is presented in Section 2.
• In Section 3, the mathematical formulations of the 

structural optimization of the gable rigid frame 
problems are presented and a brief explanation of the 
ASCE/SEI 7-10 and AISC-LRFD 360-05 specifica-
tions is provided.

• In Section 4 the design examples and the discussions 
on the results are presented. 

2 Quantum evolutionary algorithm
Quantum-inspired evolutionary algorithm (QEA) is 
recently proposed which can explore the search space with 
a smaller number of individuals and exploit the search 
space for a global solution within a short span of time. QEA 
is based on the concept and principles of quantum comput-
ing, such as the quantum hit and the superposition of states. 
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Fig. 3 Quantum-inspired evolutionary algorithm [23]

However, QEA is not a quantum algorithm, but a novel evo-
lutionary algorithm as shown in Fig. 3. Like any other evo-
lutionary algorithms (EAs), QEA is characterized by the 
representation of the individuals, the evaluation function, 
and the population dynamics.

QEA was proposed by Han and Kim [1], which was 
inspired by the concept of quantum computing. In QEA, 
the smallest unit of information is called a Q-bit, which is 
defined as α

β







 , where α and β are complex numbers that 

specify the probability amplitudes of the corresponding 
states. The moduli α2 and β2 are the probabilities that the 
Q-bit exists in state "0" and state "1", respectively, which 
satisfy α2 + β2 = 1. An m-Q-bits is defined as α
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of Q-bits.

The procedure of QEA is described as follows:
Procedure of QEA
Begin
Initialize Q(0) at t = 0
Make P(0) by observing the state of Q(0)
Repair P(0)
Evaluate f(Xi

0)
Store the best solutions among P(0) into B0 and f(B0)
While (not termination condition) do

Begin
t = t + 1
Make P(t) by observing the state of Q(t)
Repair P(t)

Evaluate f(Xi
t)

Update Q(t) using Q-gate U(t)
Store the best solutions among P(t) into Bt and f(Bt)

End
End
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i = 1, 2, 3…, n , j = 1, 2, 3…, m, n being the size of the popu- 
lation. 

In the step of "Initialize Q(0) at t = 0", α
β
ij
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 of all qi

0 in  
Q(0) are initialized with 1/√2. It means that in each m-Q-
bits, qi

0 represents the linear superposition of all possible 
states with the same probability.

To obtain the binary string, the step of "Make P(t) by 
observing the state of Q(t)" can be implemented for each 
Q-bit individual as follows. When observing the state of, 
Q(t) the value xij

t = 0 or 1 of P(t) is determined by the prob-
ability |αij|

2 or |βij|
2.

Procedure make P(t)
Begin

i = 0
While (i < n) do

 i = i + 1
 j = 0
While (j < n) do

 j = j + 1
If random [0, 1] > |αij|

2

Then xij
t = 1

Else xij
t = 0

End
End

End
The steps of "Repair P(t)" and "Evaluate f(Xi

t)" are 
according to the problems, where f(X) is the fitness function. 
The update procedure of Q-bits is introduced as follows:

Procedure update Q(t)
Begin

i = 0
While (i < n) do

 i = i + 1
 j = 0
While (j < n) do

 j = j + 1
Determine Δθij with the lookup table

Obtain 
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End
Quantum gate (Q-gate) U(t) is a variable operator of the 

QEA. It can be chosen according to the problem. A modi-
fied rotation gate used in QEA is as follows:
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where ξ(Δθj ) = s(αj , βj ) × Δθj and Δθj represent the rotation 
direction and angle, respectively. The lookup table is pre-
sented in Table 1. Where delta is the step size and should 
be designed in compliance with the application problem. 
However, it has not had the theoretical basis till now, even 
though it usually is set as small value. In the comparison 
experiments, we set:

To prevent the premature convergence of Q-bit,  gate is 
defined as a Q-gate extended from the rotation gate:
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where 0 < ε  1, U(Δθi ) is the rotation gate and Δθi , i = 1, 
2,…, m , is the rotation angle of each Q-bit toward either 
0 or 1 state depending on its sign. Fig. 4 shows the Hε gate 
and the constraints of where limε→0Hε(0) is the same as the 
rotation gate. It should be noted that if ε is too big, the con-
vergence tendency of a-bit individual may disappear [23].

3 The rigid frame optimization problems
Many indexes affect the construction cost of the project, 
the cost of the frames in the gable and multi-span frames 
design such as wall posts, foundation, purlins, girts, etc. 
However, the main cost belongs to the structural frames. 
This cost in turn includes different items such as the frame 
steel price, and the cutting, fabrication, installation, con-
nections, etc. of the frame. Among all the aforementioned

(a) Hε gate 

(b) ε constraints.
Fig. 4 Hε gate based on the rotation gate

Table 1 A modified rotation gate lookup table

xj bj f(X) > f(B) Δθj s(αj , βj)

αj , βj > 0 αj , βj < 0 αj = 0 βj = 0

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False Delta +1 -1 0 ±1

0 1 True Delta -1 +1 ±1 0

1 0 False Delta -1 +1 ±1 0

1 0 True Delta +1 -1 0 ±1

1 1 False 0 0 0 0 0

1 1 True 0 0 0 0 0
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items, the most effective parameter is the steel cost that is 
due to the repetition of a steel frame in consecutive bays. 
Moreover, the design of foundation and the seismic behav-
ior of structure are significantly dependent upon the weight 
of the gable frames [24].

The total weight of a steel structure in estimation of its 
expense has direct interference. This weight includes steel 
plates, bolts and screws, hot and cold rolled members, steel 
deck, the weight of the material flowing from the cutting 
operations to make parts of the steel plate and the weight 
of the welding material. Fig. 5 shows a sample of cost sum-
mary per preliminary estimation for a certain project [25].

The final weight of delivered steel members is greater 
than the estimated weight when the structure has been 
designed due to welding material. Regardless of how much 
the weight of a steel skeleton is at the design stage, cut-
ting methods of steel plates can be effective in increasing 
or decreasing the finishing weight of consumable materi-
als. The unusable part of steel plates can be decreased by 
relying on technical drafts obtained from shop drawings 
and good sort of details on technical drawings for CNC 
or another cutting methods. Of course the proper manage-
ment and operator's skill in setting the steel plates pieces 
on cutting sheet can be efficient on controlling of steel plate 
wastes. However, difference between weights obtained 
from shop drawing soft wares such as Tekla structures, 
MBS (Metal Building Software) and produced members 

is not avoidable. In this regard, expert designer uses 3 to 5  
percent over-weight for steel built-up members. In the 
case of hot and cold rolled section elements, the weights 
of members are used for estimating. In any case, the final 
cost of the steel structures includes the following: 

1. The cost of primary materials includes steel sheets, 
bolts, hot and cold rolled profiles, panels and decks, 
fasteners, screws and etc.

2. The cost of cutting, punching and drilling, assem-
bling and welding of parts.

3. The cost of sandblasting and painting the steel mem-
bers for coating.

4. Shipping cost of made parts to the job site.
5. Installation and crane costs at the site.
In all of these cases, the project costs are based on the 

obtained weight from the weighbridge. On the other hand, 
as mentioned above, net weight is determined in the same 
initial estimate with considering 3–5 percent over-weight 
for built-up members with good approximation. Therefore, 
it is possible to carefully optimize the cost of the construc-
tion and implementation of steel skeins directly related to 
design weight. This is why this process is mainly focused 
on optimizing the weight of the steel skeleton.

Therefore, the weight of rigid frame structures is con-
sidered as the objective function in order to reduce the 
construction cost of the pitched roof frames. The weight 
of a gable frame structure can be expressed as:

Fig. 5 Cost summary sample for a project
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where ρ is weight per volume of steel, Vi and li are the vol-
ume and length of the ith segment of the rigid frame struc-
ture, respectively, A̅ i is the average of starting and ending 
cross section areas of the ith segment, n is the total number 
of segments in a gable frame. The exterior penalty function 
method is employed to transform the constrained optimi-
zation problem into an unconstrained one as follows:
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k
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where K is the number of constraints and final objective 
function will form as below:

fobjective = fpenalty × W(X) . (3)

Now the optimization problem can formally be stated 
as follows:

Find: X = {x1, x2,…, xm}.

To minimize: fobjective = fpenalty × W(X).

Subject to: gk(X) ≤ 0, k = 1, 2,…, K.

And xjmin ≤ xj ≤ xjmax, j = 1, 2,…, m,

where X is the vector of design variables with m unknowns. 
Also, ximin and ximax are the lower and upper bounds of the 
design variables vector, respectively. 

4 Design constraints
Design constraints are divided into some groups includ-
ing the deflection, strength and stability constraints. The 
strength and displacement constraints for steel frames are 
imposed according to the provisions of LRFD-AISC spec-
ification [17]. These constraints are briefly explained in 
the following:

• Maximum vertical displacement of the pitched roof
∆V

VL
R− ≤ 0 , (4)

where ∆V is the maximum vertical displacement of roof;  
L is the length of span in the gable frame structure; and RV is 
the allowable vertical displacement index which is equal to 
1/360 and 1/240 under live and total loading, respectively.

• Maximum horizental displacement

∆H
HH
R− ≤ 0  (5)

where ∆H is the maximum horizental displacement of 
eaves in the gable frame; H is the eaves height; RH rep-
resents the allowable horizental displacement index which 
considered as H/200 under the all loadings.

• Strength constraints
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where Pu is the required strength (tension or compression); 
Pn is the nominal axial strength (tension or compression);  
ϕc is the resistance factor (ϕc = 0.9 for tension, ϕc = 0.85 for 
compression); Mu is the required flexural strength; Mn is 
the nominal flexural strength; and ϕb denotes the flexural 
resistance reduction factor (ϕb = 0.90). 

• The buckling constraints
According to the ANSI/AISC 360-05 manual for design 
of slender compression elements, the reasonable and prac-
tical width-to-thickness ratios of 

b
t
f

f

£18  and ht
E
fw y

£ £
0 4

260
.  

are considered as the constraints for this study. Here, 
the material characteristics are considered as: E = 2.1e6 
kg/cm2; Fy = 2520 kg/cm2 (36 ksi); ρ =7850 kg/m3; and 
Poisson's ratio = 0.3.

Fig. 6 Definition of considered variables for a pitched gable frame optimization
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Fig. 7 The frame geometrical layout

• The stability constraint
The stability constraints are considered in accordance 
with the ANSI/ AISC 360-05 manual. In designing the 
gable frames with web-tapered, achieving the second-or-
der analysis is one of the most significant aspects due 
to the offset of the cross-section central axis from the 
chord. This includes the matrix formulations based on the 
deformed geometry and the P-delta analysis procedures 
[26]. The P-delta effects cause the resulting additional 
force or moment in the members. In this study, the deflec-
tion amplification factor, Cd is considered as 4 due to the 
frame system. Also, the P-delta effect is considered on the 
seismic load combinations. 

5 Design Examples
5.1 Pitched Gable Frame (Population number = 30, 
Max iteration = 100)
In this case, one pitched frame is considered for optimiza-
tion by QEA, CBO and ECBO algorithms. As appointed in 
Fig. 6, eleven variables are considered for this case study. 

The columns and rafters are web-tapered I-section that may 
have different inside and outside flange thickness with the 
same flange width. All geometrical data are shown in Table 2  
and the frame geometrical layout is presented in Fig. 7.

The site location had county clay from Kansas in United 
States of America. As mentioned before, 11 design variables 
are considered for this case study. In this alternative, the 
number of Q-bit individuals or agents for these examples is 
considered 30. The maximum number of iterations is 100. 
For the sake of simplicity, the penalty approach is used for 
constraint handling. The optimization algorithms and the 
analysis and design of structures are coded in Matlab and 
SAP2000 soft wares, respectively. In the analysis process, 
a pin-based structural frame is constructed, and the nodal 
geometry of the members are given based on the neutral 
axis of the members. An idealized model of a gable frame 
based on the neutral axis of members is shown in Fig. 8.

Table 2 The geometrical information of the building shape

Geometric parameter value

Eave height 7.0 m

Slope 27.5 %

Width 16.0 m

Length 18.0 m

Bay spanning 3@6.0 m

Load width of the main frame 6.0 m

Ridge offset 8.0 m

Ridge height 9.2 m

Mean roof height 8.1 m

α = Wall offset in surface 1 0.2 m

β = Roof offset in surfaces 2 and 3 0.18 m

γ = Wall offset in surface 4 0.2 m

Roof slope angle at surface 2 15.37 degree

Roof slope angle at surface 3 15.37 degree

Fig. 8 An idealized model of a gable frame based on the neutral axis of members
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For designing the gable frame, two major classes of 
design variables must be dealt with. The first class is geo-
metric layout variables such as the length of spans or the 
slope of rafters, the second class is cross section design 
variables such as dimensions of the starting and ending 
sections of a segment. In the sizing optimization litera-
ture, design variables can be either continuous or discrete. 
Limitations in the production of various thicknesses of 
steel sheets give us a limited set of choices. In real appli-
cations, the designer is restricted to select the design vari-
ables (cross section sizes), from a pre-assigned list of avail-
able values [27].

In this example, only the second class of design variables 
is considered as discrete sizing optimization. These design 
variables are the dimensions, i.e. the thickness and width of 
web and flange of cross sections at the intersections of seg-
ments of gable frame. In order to make the optimal gable 
frame model practical, the thickness of webs and flanges 
should be selected from the discrete set T = {0.5, 0.6, 0.8, 1, 
1.2, 1.5, 2, 2.5, 3} (cm), the height of webs should be selected 
from the discrete set WH = {15, 20, 25, …, 115, 120} (cm), 
and the width of flanges should be selected from the discrete 
set FW = {15, 20, 25, …, 40, 45} (cm). The web thicknesses 
should be selected equal or less than the flange thicknesses 
in all member sections for practical application. 

Structural Loading
In this study, ASCE/SEI 7-10 (2010) manual is used for 

considering the dead, live, snow, wind and seismic loads 
and their influence on the gable frame. The applied loads on 
the gable rigid frame in low rise buildings generally consist 
of the vertical and horizontal loads, which are described in 
the follow subsections.

• The vertical loads
In accordance with the ASCE/SEI 7-10 (2010), the most 

effective vertical loads, which should be considered in the 
analysis process consist of:

The dead and collateral loads (D)
For considering the dead loads, it is assumed that the 

type of cladding is a metal sandwich panel with a mass 
of 14.65 kg/m2. This load includes the purlins on the roof 
and there is no false ceiling. The dead load information is 
shown in Table 3.

The live loads (L)
According to the ASCE/SEI 7-10 (2010) manual, the live 

load of a pitched roof is 97.648 kg/m2 (20psf ), and there is 
no concentrated load to check the rigid frames with it. It 
is also assumed that the live load is not reducible. The live 
load information is shown in Table 4. 

Table 3 Summary of the dead loading

Description (unit) value

Dead load (kg/m2) 14.64

Load width (m) 6

Uniform dead load (kg/m) 87.84

Table 4 Summary of the live loading

Description (unit) value

Live load (kg/m2) 97.648

Load width (m) 6

Uniform live load (kg/m) 585.89

The snow load (SL)
The snow loads consist of the balanced and unbalanced 

snow loads. 
The balanced snow load
The flat roof snow load is evaluated by using the follow-

ing equation:

Pf = 0.7CeCt Is Pg , (7)

where the exposure factor, Ce, thermal factor, Ct, and impor-
tance factor, Is, are taken as 1.0 based on sections 7.3.1 
through 7.3.3 of ASCE/SEI 7-10 manual. The ground snow 
load, Pg determined per site-specific analysis is equal to 
97.65kg/m2 (20.0 psf ); thus: Pf = 14psf. The snow load act-
ing on a sloping surface are assumed to act on the horizontal 
projection of that surface. The sloped roof (balanced) snow 
load, ps is calculated by multiplying the flat roof snow load, 
Pf by the roof slope factor, Cs as:

Ps = CsPf . (8)

The roof slope factor, Cs, is taken as 1.0 based on sec-
tions 7.4 of ASCE/SEI7-10; thus ps =14.0 psf (68.353 kg/m2).

The unbalanced snow loads 
According to the ASCE/SEI7-10, for hip and gable roofs 

with a slope exceeding 7 on 12 (30.2°) or with a slope 
less than 0.5 on 12 (2.38°) unbalanced snow loads are not 
required to be applied. Roofs with an eave to ridge distance, 
W, of less than 6.1 m (20ft) and having simply supported 
prismatic members, the spanning from ridge to eave should 
be designed to resist an unbalanced uniform snow load on the 
leeward side equal to Pg × I. For these roofs the windward 
side should be unloaded. For all other gable roofs, the unbal-
anced load should consist of 0.3ps on the windward side, and  
on the leeward side plus a rectangular surcharge with magni-
tude h

S
dg  and horizontal extent from the ridge 8

3
h Sd , where 

hd is the drift height (Eq. (13)) which lu is equal to the eave 
to ridge distance for the windward portion of the roof, W.
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h l Pd u g= +( )−0 43 10 1 53 4. . . (9)

Thus: ps = 68.353 kg/m2, lu =8 m, Pg =97.65 kg/m2, S = 3.63, 
hd = 0.45 m.

• The lateral loads
In accordance with ASCE/SEI 7-10, the most effective 

lateral loads, which should be considered in the analysis 
process, consist of: 

The seismic load (E)
The seismic base shear, V, in a given direction is deter-

mined according to the following equation:

V = CsW , (10)

where Cs and W are the seismic response coefficient and the 
effective seismic weight, respectively. The seismic response 
coefficient, Cs, is calculated as:

C S
RIS
DS

e

=  (11)

where SDS is the design spectral response acceleration 
parameter in the short period range, R is the response mod-
ification factor and Ie is the importance factor. Because 
of the location of this case study that is assumed to be at 
Clay county in Kansas in USA, the mapped Risk-Targeted 
Maximum Considered Earthquake (MCER) spectral 
response acceleration parameter for short periods (SS ) and 
the mapped MCER spectral response acceleration param-
eter at a period of 1s (S1 ) are as 17 % and 5%, respec-
tively. Then, the SDS values are evaluated as 0.2768 and 
the summarized calculation of the CS parameter is shown  
in Table 5.

The wind loads (W)
For evaluating the wind load for a low rise building, the 

wind pressure is calculated with the following equation:

q K K K V N
m V in m sZ Z Zt d= ( )0 613 2
2. ; / , (12)

where Kd is the wind directionality factor, KZ is the velocity 
pressure exposure coefficient, KZt is the topographic factor, 
and V is the basic wind speed. The parameters values used in 
this study are Kd = 0.85, KZ = 0.93, KZt = 1.0 and V = 90 mph. 
In this case study qZ = 16.365 psf. The velocity pressure at 
height h = 26.57 ft, qh is also taken as 16.876 psf. 

The design wind pressures for the frame system of an 
enclosed and partially enclosed rigid buildings at all heights 
is determined by the following equation: 

p = qGCp – qi(GCpi) , (13)

where: 
q = qZ for the windward walls evaluated at height z above 

the ground (q = 79.90 kg/m2). 
q = qh for the leeward walls, side walls, and roofs, eval-

uated at height h (q = 82.398 kg/m2).
qi = qh for the windward walls, side walls, leeward walls, 

and roofs of enclosed buildings and for negative inter-
nal pressure evaluation in partially enclosed buildings  
(qi = 82.398 kg/m2).

qi = qZ for the positive internal pressure evaluation in par-
tially enclosed buildings where height z is defined as 
the level of the highest opening in the building that 
could affect the positive internal pressure. For pos-
itive internal pressure evaluation, qi may conserva-
tively be evaluated at height h (qi = qh = 82.398 kg/
m2).

G = gust-effect factor (= 0.85).
p = external pressure coefficient.
(GCpi) = internal pressure coefficient ± = 0.18.
Pressure is applied simultaneously on the windward 

and leeward walls and on the roof surfaces. The coeffi-
cient of CP is defined at two orthogonal directions of wind 
as shown in Table 6 based on the ASCE 7-10 specification. 
The values of wind loading on the gable frame are shown 
in Table 7.

Table 5 The summarized calculation of Cs

Geometric parameter value

SDS 0.2768

R 4.5

Ie 1

Maximum Cs 0.041

Minimum Cs 0.01

SDS /RIe 0.079

Then Cs = 0.041

Table 6 The coefficient of Cp in two orthogonal directions of wind

The directions of wind Cp

Transvers wind direction (Case 1)

Windward wall 0.8

Windward roof –0.7

Leeward roof –0.5

Leeward wall –0. 5

Transvers wind direction (Case 2)

Windward wall 0.8

Windward roof –0.18

Leeward roof –0.5

Leeward wall –0. 5
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Table 7 The wind load (kg/m) on the gable frame of this study

Surface 
No.

GCpi = +0.18 GCpi = –0.18

IPP*- Case 1 IPP*- Case 2 IPP*- Case 1 IPP*- Case 2

1 237.02 237.02 415.00 415.00

2 –383.15 –164.63 –205.17 13.35

3 –299.11 –299.11 –121.13 –121.13

4 –288.60 –288.60 –110.62 –110.62

* IPP = Internal positive pressure, INP = Internal negative pressure.

Fig. 9 The convergence history of the best solution with CBO and 
ECBO 

Fig. 10 The convergence history of optimal weight in different 
iterations of the best solution with QEA (pop. size = 30)

• Loading combinations
In this study, basic combinations for strength design are 

considered based on the ASCE 7-10 manual. The term of 
0.2 SDSD in combinations 5 and 7 is added because of the 
consideration of vertical seismic load. 

1. 1.4 D
2. 1.2 D + 1.6 L + 0.5(S or R) 
3. 1.2 D + 1.6(S or R) + (L or 0.8 W)
4. 1.2 D + 1.0 W + L + 0.5(S or R)
5. (1.2 + 0.2 SDS)D + E + L + 0.2 S
6. 0.9 D + 1.0 W
7. (0.9 – 0.2 SDS)D + E
Figs. 9, 10 show the convergence history of the best 

solutions in different iterations with CBO [16] and QEA. 
The convergence diagram of the ECBO method is also 
presented in Fig. 9 [15]. Agent vector and optimal weight 
of each method have been reported in Table 8. 

Discussion and conclusions
Table 8 compares the obtained results from CBO, 

ECBO and QEA algorithms for this example. As antici-
pated, the results obtained from QEA are competitive to 
ECBO and CBO. The weight in QEA method is less than 
CBO and approximately near to ECBO. In QEA method, 
achieving to the better solution is possible by increasing 
the maximum iteration of algorithm up to certain value. 
One of best characteristic of QEA is related to high pace of 
algorithm execution. Figs. 9 and 10 show the convergence 
histories of the best penalized weights obtained using all 
mentioned algorithms in the optimization process. It can 
be seen that the optimum weight of the QEA is plunged 
abruptly in the preliminary iterations and in the remaining 
of them it is descended tidily. It can be seen from these fig-
ures that though the QEA algorithm is considerably faster 
in the early optimization iterations, the ECBO algorithm 
converged to a significantly better design in the later opti-
mization iterations 

5.2 Two-span frame (Population number = 5, 
Max iteration = 100)
In the second case study, the frame has two spans, and 
the number of independent non-prismatic member is five. 
Fig. 11 shows layout of geometrical information for a two-
span frame. These sort of frames are popular in industrial 

Table 8 Optimal design of three different algorithms

Algorithm Surface 
No.

Element 
Type

Element 
No.

Start web 
height (m)

Flange 
width (m)

Inside flange 
thickness (m)

Web 
thickness (m)

Outside flange 
thickness (m)

End web 
height (m)

Weight 
(kg)

CBO [15]
1 Column 1 0.15 0.2 0.015 0.008 0.01 0.9 1967.3

2 Beam 2 0.9 0.25 0.01 0.006 0.01 0.35

ECBO [15]
1 Column 1 0.65 0.2 0.008 0.005 0.008 0.95 1578.4

2 Beam 2 0.95 0.25 0.008 0.005 0.008 0.3

QEA
(n = 30)

1 Column 1 0.3 0.15 0.015 0.006 0.008 0.9 1694..67

2 Beam 2 0.9 0.25 0.008 0.006 0.01 0.45
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Fig. 11 Geometric parameters of half span in both frames

usages. In this case, the modulus of elasticity of steel and 
its yield stress is 2.1e6 kg/cm2 and 2520 kg/cm2, respec-
tively. This example focuses on influences of ridge height 
and slope on weight of two-span frames and the frames 
with different ridge height and the same length of span 
are optimized by using QEA method. Results obtained 
by QEA method are compared with some well-known 
method such as HS (Harmony Search), TLBO (Teaching-
Learning Based Optimization), VPS (Vibrating Particles 
System), CBO (Colliding Body Optimization) and ECBO 
(Enhanced Colliding Body Optimization) methods [28]. 
The effects of frame's ridge height are evaluated on the 
optimum weight. Minimum and maximum ridge heights 
are considered as 6.5 m and 8.5 m resulting in 3.58° and 
17.35° for the minimum and maximum roof angle, respec-
tively. Frame dimensions and problem variables are shown 
in Figs. 11 and 12, respectively. The Upper and lower bond 
for variables is shown in Table 9. Roof gravity distributed 
loads, including dead, live and snow loads are 480, 576 
and 900 kg/cm2 respectively. Seismic load is considered 

as 150 and 100 kg/m uniformly distributed load on the X 
direction in the rafter and column, respectively. Wind load 
is considered in accordance with Fig. 13. The optimum 
weights of the frames with different roof angles are given 
in Tables 10 and 11. The optimal values for variables for 
each roof angle are provided in Table 12. The convergence 
history of optimal weight in different iterations is pro-
vided in Figs. 14 to 19. The population size and the number 
of iterations for all benchmark algorithms are 16 and 60, 
respectively and for case of this paper are 5 and 102. 

Discussion and conclusions
The results of Tables 11 and 12 indicate that the optimized 
weight of the quantum evolution algorithm is quite compet-
itive with other methods. In some cases, even with a small 
number of agent population, better weights than those 
mentioned in the text of this example are obtained, which 
confirms the power and quality of the quantum evolution 
algorithm. Apart from the low dependence on the number 
of agent population, what distinguishes this method from 
other optimization methods is Heisenberg's uncertainty 
property, which is an inseparable feature of this algorithm. 
Figs. 14 to 19 indicate the process of accessing the opti-
mal answer can be continued even after the completion of 
the maximum number of repetitions, which is an obvious 
characteristic of evolutionary methods. These methods do 
not guarantee the absolute optimality of the answers. In 
fact, according to Heisenberg's principle, at each step of 
the repetition, we cannot absolutely speak of the accuracy 
of the optimality of the answers, because in the random 
and binary generation of solutions, while exploring the 
entire search space in an appropriate manner and escaping 
from the local optimal we must expect a solution that is 
better than what we got before. 

Table 9 Feasible range of discrete variables

Variable (unit) Number of variables in agent vector Feasible value

Tapered length ratio (%) X1,x2(TLR1, TLR2) 0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45

Web height (m) X3,X4,X5,X6,X7,X8,x9 0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2

Web thickness (m) X10 0.008,0.01,0.012

Flange width( m) - 0.2

Flange thickness (m) - 0.01

Table 10 Optimum weight of different algorithms for ridge height = 8.1 m

Methods HS [28] VPS [28] CBO [28] ECBO [28] TLBO [28] QEA

Number of population 16 16 16 16 16 5

Maximum Iteration 60 60 60 60 60 102

Optimum weight 3323.48 3324.77 3444.92 3335.2 3305.93 3343.506
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Fig. 12 (a) Element groups of the 2 spans frame. (b) Variables of the 2-span frame

(a)

(b)

Fig. 13 Wind load on the two-span frame

Table 11 Comparison of obtained optimum weights for different ridge heights and QEA methods

Ridge Ht. Optimum weight(kg) [28] QEA (kg)

Ridge Ht. = 6.5 3090.57 2961.079

Ridge Ht. = 6.9 3145.25 3158.558

Ridge Ht. = 7.3 3168.83 3242.604

Ridge Ht. = 7.7 3262.92 3265.919

Ridge Ht. = 8.1 3305.93 3343.506

Ridge Ht. = 8.5 3408.66 3318.529
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Fig. 14 The convergence history of optimal weight in different 
iterations with QEA method (pop. size = 5, Ridge Ht. = 6.5 m)

Fig. 15 The convergence history of optimal weight in different 
iterations with QEA method (pop. size = 5, Ridge Ht. = 6.9 m)

Fig. 16 The convergence history of optimal weight in different 
iterations with QEA method (pop. size = 5, Ridge Ht. = 7.3 m)

Fig. 17 The convergence history of optimal weight in different 
iterations with QEA method (pop. size = 5, Ridge Ht. = 7.7 m)

Fig. 18 The convergence history of optimal weight in different 
iterations with QEA method (pop. size = 5, Ridge Ht. = 8.1 m)

Fig. 19 The convergence history of optimal weight in different 
iterations with QEA method (pop. size = 5, Ridge Ht. = 8.5 m)

Table 12 Optimum value of the variables by QEA methods and same work in literature

Methods Ridge height X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Minimum values from HS, 
TLBO, CBO, ECBO, VPS [28]

6.5 15 40 0.4 0.6 0.4 1 0.4 0.4 0.4 0.008

6.9 25 30 0.4 0.8 0.4 0.9 0.4 0.4 0.4 0.008

7.3 20 35 0.4 0.7 0.4 0.9 0.4 0.6 0.4 0.008

7.7 25 35 0.5 0.8 0.4 1 0.4 0.4 0.4 0.008

8.1 25 35 0.5 0.8 0.4 1 0.4 0.5 0.4 0.008

8.5 20 35 0.5 0.8 0.4 0.9 0.4 0.9 0.4 0.008

Minimum values from QEA

6.5 45 25 0.4 1.2 0.4 0.8 0.4 0.4 0.4 0.008

6.9 35 20 0.4 1.2 1.2 0.7 0.4 0.4 0.6 0.008

7.3 40 30 0.4 1.1 0.9 0.9 0.4 0.4 0.5 0.008

7.7 25 35 0.6 1.2 0.6 1 0.4 0.4 0.4 0.008

8.1 30 25 0.4 1.1 0.4 1.2 0.4 0.4 0.4 0.008

8.5 30 20 0.4 1.2 0.4 1 0.5 0.4 0.5 0.008
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