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Abstract

To prevent catastrophic consequences of slope failure, it can be effective to have in advance a good understanding of the effect of 

both, internal and external triggering-factors on the slope stability. Herein we present an application of advanced Bayesian networks 

for solving geotechnical problems. A model of soil slopes is constructed to predict the probability of slope failure and analyze the 

influence of the induced-factors on the results. The paper explains the theoretical background of enhanced Bayesian networks, able 

to cope with continuous input parameters, and Credal networks, specially used for incomplete input information. Two geotechnical 

examples are implemented to demonstrate the feasibility and predictive effectiveness of advanced Bayesian networks. The ability of 

BNs to deal with the prediction of slope failure is discussed as well. The paper also evaluates the influence of several geotechnical 

parameters. Besides, it discusses how the different types of BNs contribute for assessing the stability of real slopes, and how new 

information could be introduced and updated in the analysis.
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1 Introduction
Slope failure is a potential catastrophic threat by leading 
to casualties and economic loss in many areas around the 
world. Therefore, the slope stability problem, as a classical 
research topic, has attracted much attention in geotechni-
cal engineering [1]. A slope failure event may be triggered 
by miscellaneous factors such as geotechnical factors, 
rainstorm, earthquakes, anthropogenic activity and so on. 
Water plays a significant role in the process, affecting the 
slope stability. Kristo et al. [2] demonstrated the increas-
ing rain intensity had a detrimental influence on the slope 
stability. Also, the level of water table has a negative cor-
relation with the factor of safety. Otherwise, soil proper-
ties and the presence or absence of vegetation can also 
potentially affect the slope stability [3, 4]. Furthermore, 
it is pivotal for decision-makers to achieve the informa-
tion which the key failure-inducing factors are more sensi-
tive to destabilizing the slope in order to avoid the highly  
economical and life loss. 

Due to the unavoidable uncertainties existing in vague 
environmental condition, varying soil properties as well 
as insufficient information affecting the slope failure, the 
probabilistic method plays an important role in the estima-
tion of the probability of failure for slopes [5, 6]. Traditional 
Limit equilibrium methods are normally used to analyze 
the stability of slopes, and the different shapes of poten-
tial failure surface are defined in advance to compute the 
factors of safety. Considering the most critical slip surface 
regarding the slope stability, the probability of failure for 
the slopes can be computed with this response surface.

The common approach is to model probabilistic slope 
stability as the system reliability problems. Various 
attempts have been applied in calculating the failure 
probability. For instance, slope stability problems asso-
ciated with Struc-tural Reliability Methods (SRMs) have 
been conducted by means of first-order reliability method 
(FORM) [7] and simulation approaches, such as Monte 
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Carlo Simulation [8], Importance Sampling [9] and Subset 
Simulation [10]. These studies demonstrated the feasibility 
of structural reliability analysis for computing the probabil-
ity of slope failure in geotechnical engineering. Artificial 
neural networks also have been adopted to predict the sta-
bility of slopes with geometric or geological data, influen-
tial factors [11, 12]. However, this approach is not good at 
quantifying the uncertainty and characterizing the impact 
of individual risk factors on the slope stability using  
information updating.

Bayesian Networks (BNs), as the causal probabilis-
tic models, have been developed and successfully applied 
to natural hazards, safety, and reliability engineering for 
over two decades since their first introduction by Pearl [13]. 
Compared to the aforementioned numerical tools, BNs carry 
advantages over other available methods to calculate the 
probability of slope failure and identify the important fac-
tors regarding a given structure. In particular, they show the 
following advantages:

•	 Simple graphical visualization. The failure of a slope  
can be affected by geo-environmental parameters,  
weather condition, natural hazards (e.g. earthquakes 
and storm) as well as human activities. BNs can not 
only integrate these elements into a rigorous frame-
work but provide a visual cause-effect relation 
among events in a graphical model. In particular, 
BNs help decision makers and even non-expert with-
out a strong background in geotechnical engineering 
to gain a good understanding of the failure mecha-
nisms. For a detailed overview on how to construct a 
graphical framework for risk assessment of rock-fall 
hazard with a BN model, see Straub [14].

•	  Uncertainty quantification. BNs are developed suc-
cessfully to capture the uncertainties affecting the 
problem and benefit from the capability of the forward 
and backward propagation of probabilities according 
to the axioms of Bayesian probability theory [15].

•	 Information update from new observation. Updating 
of the event probabilities in BNs can be efficiently 
performed in near-real-time by mean of Bayesian 
updating to respect the information carried by the 
new observation. Thanks to this, the BN model can 
provide the decision makers with up-to-date informa- 
tion on the slope failure mechanisms as soon as new 
evidence is presented. 

Traditional BNs (i.e., mainly discrete probability val-
ues and binary event are considered) have been already 
extensively employed to analyze slope stability [16–18]. 

Nevertheless, the slope stability problem is clearly influ- 
enced by both discrete events and continuous variables, 
thus it is impractical to obtain discrete probabilities of all 
the factors affecting a slope. Moreover, traditional BNs 
are precise probabilistic model, which fail to solve geo-
technical problems with scarce information. Based upon 
this context, an extended and robust model: the advanced 
BNs including enhanced Bayesian Networks (eBNs) and 
Credal Networks (CNs), is proposed to deal with the geo- 
technical problems. 

The main purpose of this work is to present how to esti-
mate the failure probabilities of slopes, obtaining real-
time results. Also, an attempted is made to capture the 
uncertainty by measuring the effect of variation of the 
induced-factors on the slope failure. Thus the paper is 
organized as follows: Section 2 introduces the methods of 
the advanced BNs, where a detailed review of eBNs and 
CNs is presented. Two examples are employed in Sections 
3 and 4 to evaluate the feasibility of models. We present 
how to build the failure analysis model for the slopes. We 
investigate two different failure types of slopes in a graph-
ical model and combine the BNs with neural networks. 
Besides, the structure of CN of a slope is also presented. 
The final part summarizes the relevant results.

2 Methodology
2.1 Bayesian Networks
BNs, also known as Bayesian belief networks or causal 
networks, originate from artificial intelligence and statis-
tics. They were developed as a powerful modeling tool for 
decision support and quantification of uncertainties, espe-
cially for low probability events. They have been applied 
to risk analysis in many studies since 2001 [19].

In a nutshell, a BN (see Fig. 1) is a directed acyclic 
graph, in which a set of variables are represented by nodes. 
The relation between each node is represented in terms of 
parent-child and linked by an arrow, denoting the condi-
tional dependencies between these variables. Conditional 
Probability Tables (CPTs) are attached to each node and 
consider all the possible states of a variable. Then, the 
probabilities of the nodes are determined by marginaliza-
tion calculation of the joint probability. The joint probabil-
ity is the function of all the random variables in BNs. For 
any BN, it can be given mathematically by a product of the 
CPTs entries,

P X X X P X pa Xi
i

n

i i1 2, ,.., |( ) = ( )( )∏ .	 (1)
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where Xi = {X1, …, Xn} denote the nodes of the BN, pa(Xi) 
are the set of parents of Xi , and P(Xi |pa(Xi)) represent the 
entries of the CPTs. The effective methods for general 
inference in BNs can be accessed in literature [20] and it 
is also applicable for probability updating. For instance, in 
the case where evidence is assigned to an observed node 
Xk = e, this information will propagate through the prior 
probabilities to the posterior probabilities as Eq. (2):

P X e
P X e
P e

P X pa X e
P X ei

i i

n
i i

X X i
i k

|
, | ,

,
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Note that the joint distribution P(Xi, e), obtained by 
using Eq. (1), associates with the evidence value e, and 
compute P(e) from P(Xi, e) by marginalizing out all the 
variables except the node Xk. If a node with no children has 
no associated evidence, it is called "barren node", meaning 
that the conditional probability is useless for the calcula-
tion of the marginal probabilities of non-barren nodes.

In general, as for the ability of belief propagation in 
the network, marginal posterior probabilities of the query 
nodes can be achieved through both top to bottom and 
inverse reasoning by means of the inference algorithms, 
including exact algorithms and approximate algorithms. In 
comparison to approximate algorithms, exact algorithms, 
which are suitable for computing discrete BNs, are guaran-
teed to gain correct answers and hence, it is a more robust 
computational method. In case of continuous variables in 
a BN, however, given the difficulty of defining the prior 
probability distributions as the discrete form, unavoidably 
impeding the application of BNs for practical purposes. 

BNs consisting of discrete and continuous variables are 
referred to as hybrid BNs. With consideration of exact algo-
rithms, there are three special approaches for extending 
discrete BNs to continuous BNs or hybrid BNs. The first 

Fig. 1 A simple graph of a general BN (T = True; F = False)

is to restrict continuous nodes to Gaussian random vari-
ables while allowing them to link only towards their non- 
discrete children. The second method is to define the con-
tinuous nodes as a mixture of truncated exponential dis-
tributions (MTEs), which is a generalization allowing to 
approximate any distribution function, but still requires 
further scrutiny [21]. The final methodology is eBNs, imple- 
mented by joining BNs with SRMs, and was success-
fully applied in risk and reliability analysis by Straub and 
Kiureghian [22]. An introduction to this method is given in 
detail in the following section. 

2.2 Enhanced Bayesian Networks
Enhanced BNs approach [23] is to combine structural reli-
ability methods with BNs, where continuous nodes can be 
involved in the BNs and removed with SRMs. With this 
model, exact inference algorithms can be conducted for a 
BN including both discrete and continuous nodes.

In a structural reliability problem, the outcome domain 
of an event, determined by a set of continuous random vari-
ables with known distributions, can be divided into fail-
ure and safe region by the relevant limit state functions. 
The failure probability of an event is the integral of the 
probability density function in the failure domain. In light 
of this, for an eBNs, the continuous nodes must have at 
least an offspring, which is a discrete node defined as a 
domain in the outcome space of these continuous nodes. 
That is, the continuous nodes should meet the requirement 
of well-established SRMs, and it is the key condition for 
using eBNs approach. Then, all the continuous nodes can 
be removed from eBNs according to node elimination algo-
rithm [23]. Thus hybrid BNs are reduced to discrete BNs. 

An example of computation of the total probability of 
an eBN and the process of node elimination is described 
by Eq. (3) to Eq. (5) for the simple case represented by 
Fig. 2. From Eq. (1), the joint probability of all the nodes 
for the eBN can be written as:

P X X X X

P X P X X X f X f X X

1 2 3 4

1 4 2 3 3 2 1

, , ,

| , | ,

( ) =

( ) ( ) ( ) ( )
	 (3)

in which P(X1) and P(X4|X2,X3) represent conditional 
probabilities of discrete nodes X1 and X4, while f(X3) and 
f(X2|X1) are the probability density functions of continuous 
nodes X2 and X3, respectively. The joint probability of the 
discrete nodes P(X1|X4) can be obtained by marginaliza-
tion calculation.
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Fig. 2 An example of reduction of an eBN into BN (circle represents 
continuous node and rectangle represents discrete node)

Fig. 3 An example of the discretization procedure

In the case that the domain of node X4 can be deter-
mined by the outcome space of its parent nodes, then 
P(X1, X4) can be written by:

P X X

P X f X f X X dX dX
X X X

1 4

1 3 2 1 2 3
4 2 3

,

| ,
( , )

( ) =

( ) ( ) ( )
Ω∫∫

	 (4)

where ΩX4 (X2, X3) represents variable X4 as a domain in 
the outcome space of variables X2 and X3. The form of 
Eq. (4) is in line with the definition of structural reliability 
problems, and hence can be estimated by means of SRMs. 

2.3 New observation on continuous nodes
As already stated, BNs show a powerful capability in 
updating probabilistic propagation through given obser-
vations. As previously discussed, the evidence is inserted 
to replace certain prior probability on observed nodes, 
and the probabilities of the other nodes are updated using 
exact algorithms in discrete BNs. Similarly, in eBNs, it is 
necessary to discretize continuous nodes with evidence at 
first, and then the corresponding discrete nodes are kept in 
place of the continuous nodes in the reduced BNs. 

A plethora of discretization methods for continuous 
nodes in the BNs has been investigated for many years 
[24–26]. Currently, there are no formalized approaches for 
the discretization of continuous random variables. Thus, 
for the problem studied in this paper, a credible discretiza-
tion approach for eBNs [23] is used.

The previously introduced example is now reintro-
duced to explain how to discretize continuous nodes in 
eBNs. As shown in Fig. 3, node X3 is substituted with two 
nodes, a discrete variable X3discrete and a continuous vari-
able X3continuous. 

X3discrete has  states that are defined by the outcome 
space of X3 with conditional cumulative distribution func-
tion FX3[x3], and the number of its states is identical to cor-
responding intervals of the divided domain of X3. Each 
sub-domain of X3 can be represent by [x3i, x̅3i], where x3i 
and x̅3i denote the lower and upper bounds of the interval, 
respectively. Then the probability mass function of X3discrete 
given the state i can be achieved as,

P X F x F xdiscrete
i

X i X i3 3 33 3
( ) = [ ]− [ ] .	 (5)

On the other hand, X3continuous, as the child of X3discrete, 
inherits all the descendants and outcome space of . The 
continuous variable X3continuous is eliminated from the 
model after it becomes a barren node by used of SRMs, 
and the discretized node X3discrete is retained to facilitate 
new observation updating the model. 

In the same way, for inserting the evidence on X3, 
the process of discretization is to split the domain of X3 
given the evidence into the sub-domains, each of which 
is obtained with a discrete probability value. In this study, 
the sub-domains on the observed continuous node are 
defined with the same length [23].

2.4 Credal networks
In the case imprecise probabilities are introduced to BNs, 
they are referred to as CNs since the node corresponding 
to an imprecise event is associated with a credal set instead 
of a CPT or a PDF. Credal sets are defined as closed con-
vex sets associated with a set of probability distribution 
functions, which are used to represent imprecise probabil-
ities in the graphical models. Fagiuoli and Zaffalon [27] 
used convex sets to compute posterior probabilities in a 
discrete BN with exact algorithms and first referred to this 
kind of model as CNs. A detailed introduction of CNs can 
be found in [28].

The inference for CNs is more complex than for BNs, 
still being in its infancy stage of development [29–31]. 
Thanks to the development of inference algorithms in 
CNs, some exact and approximate inference algorithms 
can be used for the reasoning of CNs although imprecise 
probabilities propagation in CNs is still under study. In this 
paper, the integration of CNs and SRMs [32] is adopted to 
analyze the stability of slopes.
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2.4.1 Inference computation in CNs
The same as the elimination procedure of eBNs, contin-
uous variables and interval variables in CNs also should 
be removed in the first step. As Fig. 4 shows, a simple CN 
consists of three types of nodes: discrete node X1, contin-
uous node X2 with a known distribution, and an imprecise 
node X3. The deterministic node X4 is dependent of all the 
other three nodes. 

Considering the simulation methods for the model 
elimination, direct Monte Carlo approach is a robust 
and feasible method to compute the probability of fail-
ure. It is a classical simulation tool suited for the reduc-
tion of eBNs. Nevertheless, it requires a very high num-
ber of samples in the case of small failure probabilities. 
This is especially the case in the analysis of slope fail-
ures, where failure probabilities are typically in the order 
of 10–4 or smaller. Therefore, advanced line sampling [33] 
is considered herein. It is a recently developed advanced 
Monte Carlo method, based on line sampling [34] and an 
adaptive algorithm to adapt the important direction to 
the shape of limitation state surface. Most importantly, it 
allows for sets of probability distributions to be included 
in the estimation of imprecise failure probabilities, which 
are bounded with upper and lower probabilities. Because 
of these advantages, advanced line sampling is adopted for 
node elimination.

Then, after removing the continuous and imprecise 
nodes, the network only contains two types of condi-
tional probability in discrete nodes: point probabilities 
and bounded probabilities. Afterwards, exact inference for 
BNs such as the variable elimination algorithm [15], can be 
applied here to estimate probability propagation in CNs.

Both of discrete nodes X1 and X4 are assumed as binary 
variables, and then the joint probability for identify-
ing upper and lower bounds of nodes in the CN can be 
expressed as,

P X X P X P X X1 4 1 4 1,( ) = ( ) ( )| ,	 (6)

in which X̅ 4 denotes the upper and lower bounds in node 
X4 with two states X41 and X42. Then, according to variable 
elimination, exact bounds of marginal probability with 
upper bound in the state X11 of node X1 can be obtained as, 

P x max P X P X X

max
P x P x x

exact
X

11 1 4 1

11 41 11

4

( ) = ( ) ( )







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∑ |

| )) + ( ) ( )
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


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


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|

| |
..

	 (7)

Fig. 4 An example of elimination procedure in a CN (Circle, rectangle, 
Ellipse denotes continuous, discrete and imprecise node, respectively)

The lower bound of the marginal probability can be 
obtained similarly with the minimum operator. Although 
traditional exact inference algorithms are efficient to com-
pute the exact bounds, the exact inference is highly inef-
ficient and leads to a combinatorial explosion in the case 
of complex networks, since it requires the evaluation of 
every possible bound combination for every node.

A novel algorithm has been introduced to avoid this com-
binatorial explosion encountered by exact inference [35].  
The outcome from this approach can get the inner bounds, 
which can be equal to the exact bounds if no nodes with 
probability interval are observed. For a query node, briefly, 
instead of computing the true bound identifying all of 
the combinations of the bounds in input, the key step is 
to compare the conditional probabilities of the query vari-
able given the related nodes in CNs. Therefore, it is obvious 
that the result by use of this kind of inner approximation is 
exact if there is no evidence involved in the bounded nodes.

It has been testified that this approach makes the com-
putation low-cost, and it is effective to obtain real-time 
results concerning the imprecise nodes in the model [35].

3 Illustrative example Example 1: Failure analysis of 
the soil slope with eBN
3.1 Problem description
Two models are studied herein. One model is constructed 
with an infinite slope, which has a soil layer 4 m thick at 
an inclination of 3H to 2V. Another model with the same 
slope angle including two materials: 4 m thickness of the 
soil layer and bedrock at the height of 10 m is studied. 
Furthermore, the types of slopes failure are considered by 
two methods of stability analysis (see Fig. 5). Specifically, 
the infinite slope has an assumed translational slip surface 
(Failure Model 2), is studied by considering the driving 
forces and resisting forces, comparing them and calculat-
ing the Factors of Safety. Meanwhile a slope without the 
assumed sliding surface (Failure model 1), is analyzed by 
finite element method (FEM). The detailed process is pre-
sented in the following section.
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Fig. 5 The hybrid BN model of an infinite slope

3.2 The structure of the network
In this section, different shapes of failure plane as well as 
two different analysis methods of slope stability are com-
bined with eBNs approach. Based on the cause-effect rela-
tion, a BN is built in Fig. 5. Two failure models are studied 
as the consequence events, and connected with the crucial 
factors affecting the slope failure.

The failure models represent different shapes of failure 
surface, maybe a circle or a non-circle, and most of time 
it cannot be achieved the failure mechanism of a slope in 
advance. So, FEM is used herein to analyze a slope with the 
uncertain slip surface, where the failure event is denoted 
by Failure Model 1 (FM1) in the network. Moreover, the 
uncertain soil parameters: cohesion, friction angle and the 
varying position of the groundwater table are considered 
as input for the response of the factors of safety, which is 
determined by the shear strength reduction (SSR) method 
in geotechnical software RS2v7.0 [36]. 

For Failure Model 2 (FM2), an infinite slope with a 
known slip surface is studied herein. Limited equilibrium 
technique is used to analyze the slope stability. Based 
on this, the cause-effect relationship is built in the BN, 
where nodes Cohesion and Friction Angle are the resist-
ing parameters preventing the occurrence of a failure. 
Meanwhile, the geometrical parameters of the slope are 
the slope inclination and slope’s height, being also two 
important factors for slope stability. The angle of a slope 
defines how much driving force is distributed in the par-
allel direction along the slope surface. Small angles mean 
small pulling force on the downslope movement while 
large angle provides the large pulling force. In this model, 
the total height and angle of the slope are constant, so they 
are not considered into this BN.

Furthermore, the nodes Unsaturated Unit Weight, Satu-
rated Unit Weight and Saturated Thickness are selected in 
the slope model according to effective stress principle [34], 
in which pore water pressure is defined by the unit weight 

of soil and the corresponding soil thickness. In such condi-
tions, it was also considered the influence of the water table 
in the slope stability. 

The position of the water table is an unfavorable variable 
defining the slope safety. The node Saturated Thickness 
can represent the depth of saturated soil, which is the level 
of the water table. This random variable is governed by the 
drainage condition. To be specific, the water table is away 
when drainage takes place. If not, the depth of saturated 
soil will assume random values ranging under the soil sur-
face. In general, the event of Drainage affects the node 
Saturated Thickness.

3.3 The quantification of a network
3.3.1 Limited equilibrium function
Factors of safety are frequently computed to identify 
whether a slope is safe, which can be obtained by the ratio 
of resisting and driving stresses along a potential slip sur-
face. This calculation, however, is not based on a unique 
equation, since there are a variety of methods [37, 38] that 
can be selected to obtain the factor of safety according to 
different conditions. These conditions also depend on the 
type of failure surface and its extension.

In the analysis of a given failure surface, as Fig. 6 shows, 
the equation for the factor of safety in terms of effective 
stress analysis is given by

FOS
c Z Z Z

Z Z
d d s s w s

d d s s

=
+ + −( )

+( )
γ γ γ β φ

γ γ β
*cos * tan

*sin
,	 (8)

here, the drained parameters of cohesion (c) and friction 
angle (ϕ) are parameters governing the soil strength. Zd and 
Zs are the thickness of unsaturated and saturated soil layer, 
respectively, and the sum of them is the total thickness of 
soil (Z). β is the slope inclination and γw is the unit weight 
of water, 9.81 kN/m3. For the layer above and below the 
water table, soil unit weight should be split into two parts: 

Fig. 6 The slope with translational slip
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dry unit soil weight (γd ) and saturated unit soil weight (γs ). 
This analysis has been completed using the equilibrium of 
an infinite [39]. Moreover, FOS ≤ 1 means the slope fails, 
whilst the FOS larger than 1 indicates the slope is safe.  
All the calculations are performed in effective stresses 
but, for the sake of simplicity, the effective parameters, 
cohesion and friction angle, are simply denominated as c 
and ϕ, as there is no risk to misunderstand effective and 
total strength resistances.

a) Linear regression plots

b) The performance plots
Fig. 7 Results of ANN: (a) linear regression (b) the performance

3.3.2 Finite element analysis
A set of response results is computed by FEM, where 
200 experiment data are selected based on full factorial 
design, wherein the number of levels for c, ϕ and Zs is 5, 
5, 8, respectively and the results of FOS are carried out by 
the experimental runs on c, ϕ and Zs. Then the response 
relationship is built via artificial neural networks (ANN) 
approach. Matlab R2018a 'nftool' is used to train and test 
the proposed model, where the ANN includes three layers: 
input (c, ϕ and Zs), hidden layer and output layer (FOS). In 
Fig. 7, the results from training, validation and test data 
(140, 30, 30 samples, respectively) all show the good lin-
ear relationship, and the mean squared error of them is 
at the level of around 10–3. Afterwards, this black-box of 
input-output can be saved as 'net' in the workspace, then 
put it to work in a BN model on new inputs, wherein the 
node is defined with this 'net'.

3.3.3 Evidence observation
The definitions of variables involved in the BN are shown 
in Table 1. A coefficient of 0.85 [40] is adopted to describe 
the correlation between γd and γs. 

The probabilities of two failure models are computed 
by the limit state function G(X),

G X FOS( ) = −1 ,	 (9)

in which the node is a discrete variable with two states: 
G(X) > 0, the node denotes the probability of a stable 
slope, otherwise, it is the failure probability of the slope.

According to Eq. (9), the probabilities of the slope state 
can be expressed as:

P SF
P G X
P G X
f

s
( ) = ( ) <

( ) ≥






,

,

0

0
,	 (10)

herein Pf denotes the failure probability of the slope while 
the safe probability is Ps.

Table 1 Input parameters of slopes

Parameters Variable type CPD*

c (kPa) Continuous logN(22, 10)

ϕ (°) Continuous N(35,3)

γd (kN/m3) Continuous N(17, 0.4)

γs (kN/m3) Continuous N(19, 0.5)

Zs (m) Continuous U(0, 4) or 0 

Drainage (D) Discrete [0.5, 0.5]

Slope Failure Discrete [Pf , Ps ]
* N, logN, and U represent normal, lognormal and uniform distribution 
with mean and standard deviation, respectively.
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To characterize the relationship between slope stability 
and its influence factors, one easy way is to check the sen-
sitivity of slope failure by inserting new evidence on the 
induced-factors in the BN, respectively. Then in this work, 
we initially make some observations on continuous nodes 
by giving specific distribution range of random variables. 
According to the expert knowledge, initially, the ranges 
of distribution of c, ϕ, Zs, γd and γs are defined with the 
closed interval: [0, 100], [25, 45], [0, 4], [16, 19], [18, 21], 
respectively. The further observation is made to identify 
the key factors by changing the range of distribution of 
each parameter, in which the interval of distribution is 
narrowed to about 50 % of the initial observed range.

3.4 Results from Example 1
The results of the two failure models are obtained simulta-
neously. In Table 2 (computational time is about 2.99 sec-
onds), the failure probabilities of the two Failure modes: 
FM1 and FM2 are similar, 7.77 % and 7.21 %, respectively. 
Given the condition of drainage, the occurrence of failure 
of the two slopes are close to 0 and 0.06 %, respectively, 
which are much lower than the state of no drainage, whose 
results are 8.01 % and 7.50 %. That means that if drain-
age takes place, it can stabilize the slope. Therefore, it can 
be reasonably achieved that drainage is decisive to the soil 
slope. In light of this, the decision maker knows the disas-
ter can be avoided if he spends money in draining the slope.

In geotechnical problems, it is common that the soil 
characterization is performed in different phases and, 
therefore, new observations can be obtained in an advanced 
step of the study. These new results (the elapsed CPU time 
is lower than 10 seconds) serve to identify the influence of 
soil parameters on the slope stability. The adoption of the 
discretized approach allows considering these new results 
as evidence, updating the probabilities in the model. From 
the results in Table 3, the failure probability of FM2 varies 
from 7.25 % to 7.38 %, which is very close to the original 
result. Similarly, FM1 also shows a slight variation around 
the initial result, but the new information indicates a neg-
ative tendency on slope stability. 

Such a small variation in the failure probability con-
tributes to the large range given by the first observation. 
Hence, the outcome will be much more distinct if the 
observed intervals are narrower, which could be a result 
of additional geotechnical tests. Through further obser-
vation in Table 4, showing more obvious the effect on 
the results, where P(FM1) is 7.79 %, 7.72 % and 0.35 %, 
respectively, with the corresponding limited ranges. 

Table 2 The effect of Drainage on slope safety

State p(FM) P(FM|D = false) P(FM|D = true)

FM1 7.77e-02 8. 01e-02 1.00e-08

FM2 7.21e-02 7.50e-02 6.00e-04

Table 3 BNs updated with evidence

Node c ϕ Zs γd γs

Evidence [0, 100] [25, 45] [0, 4] [16, 19] [18, 21]

p(FM1) 7.93e-02 7.81e-02 7.91e-02 - -

p(FM2) 7.37e-02 7.26e-02 7.28e-02 7.38e-02 7.25e-02

Table 4 BNs updated with further observation

Node c ϕ Zs γd γs

Evidence [25, 75] [30, 40] [1, 3] [17, 18] [19, 20]

p(FM1) 7.79e-02 7.72e-02 3.50e-03 - -

p(FM2) 1.00e-04 7.02e-02 9.37e-02 7.36e-02 7.23e-02

With the results of FM1, we can infer that Zs greatly affect 
the reduction of the slope failure, in comparison with c and 
ϕ having a smaller effect on the slope failure. Likewise, for 
FM2, the slope stability is mainly affected by the varying c 
and Zs comparing to ϕ, γd and γs. Generally, the uncertainty 
of Zs has more influence on FM1 while the variation of c 
and Zs are more sensitive for the slope stability with FM2.

In spite of the coarse results, the decision maker will 
immediately obtain real-time information about the possi-
bility of slope failure. This real-time information support 
can be useful for the requirement of real-time analysis of 
the risk of potential failure. 

4 Illustrative Example 2: Failure analysis of the soil 
slope with CNs
4.1 Problem description
Igneous rock like granite or gneiss is present in some 
regions, where the weathering of the rock produces so- 
called "residual soils". These materials are very common 
in mountainous countries as the case of Portugal, Spain, 
Brazil, China, Hong Kong, Singapore, and Africa.

An extensive geotechnical characterization of residual 
granite soils has been carried out in the northern part of 
Portugal [41–43]. The common strength parameters are 
found in the residual soil from Granite in the Porto region. 
The mean values for strength parameters of this type of 
soil from Porto, such as cohesion and friction angle, are 
represented by interval-valued quantities to cope with 
the lack of information, and are represented by means of 
p-boxes. Unsaturated and saturated unit soil weights are 
both defined based on expert knowledge. Additionally, for 
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Fig. 8 A residual soil slope

Table 5 Input parameters of the residual soil

Parameters Scenario 1
Scenario 2

Scenario 3*
Min. Max.

c logN(20, 4) 0 70
logN(μc,4), 
μc  [16, 22]

ϕ N(37, 1.85) 25 47
N(μ f ,1.85),

μ f  [36, 38.5]

γd N(18.5,0.5) 17 20 [17, 20]

γs N(20, 0.6) 18 22 [18, 22]

* μ indicates the mean of the distributions. The notes of Table 1 also 
apply here.

a typical design, a slope in residual soils is typically desig-
ned with a fixed inclination of 3H to 2V, and the total soil 
thickness of this slope is assumed as 4 m in this study.  
The failure surface is considered parallel to the surface of 
the slope, as shown in Fig. 8.

Three different situations of information available in c, 
ϕ, γd and γs, are studies herein (see Table 5). A BN of the 
slope is used here as a reference, and for the other two sce-
narios, interval analysis are adopted to cope with the lim-
ited information. If further information about the variables 
can be achieved, such as input distribution with a bound 
on its mean, then the parametric p-boxes is introduced in 
the imprecise nodes Cohesion and Friction Angle. Thus it 
is possible to observe the change of the results in compar-
ison with only interval nodes in the model.

4.2 The structure of the network
The CN based on the previous BN model is built to esti-
mate the probability of slope failure with limited informa-
tion subject to drainage influence.

Fig. 9 The CN model of an infinite slope

This model presents nine nodes, including discrete vari-
ables, continuous variables, interval variables and paramet-
ric p-boxes. These corresponding nodes are represented by 
rectangular, circle, ellipse and trapezoid, respectively (see 
Fig. (9)). If there is scarce information provided, for exam-
ple, the parameters c, ϕ, γd and γs change with geological/
geotechnical conditions. Then without any geotechnical 
test, it cannot be known in advance the exact properties of 
them. In this case, they are associated with imprecise infor-
mation. Such as Scenario 2, these imprecise nodes can be 
defined by interval-values from expert judgement. 

However, if further information is available, such as the 
distribution types of nodes Cohesion and Friction Angle 
are known and the distribution parameters are uncer-
tain, then the two soil parameters can be described by the  
parametric p-boxes. In this CN, the imprecise informa-
tion is presented by a combination of the nodes Vcohesion 
and Cohesion, Vfriction and Friction Angle. Comparing 
to the previous BN, the nodes Cohesion and Friction 
Angle in the CN model are substituted by the respective 
parametric p-boxes.

Slope Failure (SF) is the node of interest in the CN, 
whose failure state of the node can predict the occurrence 
of a shallow landslide. The probability of slope failure is 
inferred by marginal probability calculation in the reduced 
CN. Furthermore, an analysis can be conducted to demon-
strate the effect of the node Drainage on the slope stability.  
The analysis is conducted in the software OpenCossan 
[44–45]. The computation tool provides eBN methodology 
and the above-mentioned inference for CN. Traditional 
and advanced Monte Carlo methods also are included in 
this tool. For this model, adaptive line sampling [33] is 
used to estimate the lower and upper bounds of the failure 
probability. Additionally, the computation takes a few sec-
onds in the software.
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Table 6 Slope failure probability 

Different information Scenario 1 Scenario 2 Scenario 3

P(SF) 0.0274 [0, 1] [0, 0.0711]

Table 7 Failure probabilities with the state of Drainage

Different information Scenario 1 Scenario 2 Scenario 1

P(SF|D = True) 0 [0, 1] 0

P(SF|D = False) 0.0514 [0, 1] [0, 0.0153]

4.3 Results from Example 2
From the results (Table 6), it can be seen that an exact 
probability of slope failure can be obtained with the pre-
cise input for the conservative model. The 2.74 % fail-
ure probability indicates a reasonable degree of stability 
for this existing slope with precisely specific parameters. 
However, in the case of poor information, the input uncer-
tainty affects the precision of output so that the results are 
denoted with the probability bounds. When the input nodes 
Cohesion, Friction Angle, Unsaturated Unit Weight, and 
Saturated Unit Weight only can be defined as interval vari-
ables with the limited information, the probability bound 
of slope failure is between 0 and 1. The result is too wide 
to provide useful information regarding the slope stabil-
ity. In other words, each combination of the different val-
ues of the factors can produce any possibility of the slope 
states, failure or safe. Hence, the feasible way is reducing 
the uncertainty input to increase the precision of the out-
put, what can be done by producing additional geotechni-
cal information or by approaching the reliability problem 
with different methods. For example, a practical common 
geotechnical solution would result from performing addi-
tional boreholes in the slope and laboratory test what would 
allow to more precise geotechnical parameters.

Comparing to the first two input information, further 
observation is added to the probability boxes in the impre-
cise nodes Cohesion and Friction Angle. As it is shown in 
Table 6, the probability bound of failure slope became dra-
matically tighter after introducing P-boxes. The range of 
the failure result is from 0 to 7.11 %, and the upper bound 
of the failure slope reveals a steep decrease. Besides, the 
precise result with 2.74 % is included in this range. It illus-
trates the actual slope failure can be estimated with the 
consideration of the reasonable application of parametric 
p-boxes in the CN model.

In Table 7, the possibility of slope failure under drained 
conditions shows a greatly reduced tendency, and even the 
risk of failure can decrease to 0 in contrast to the state of no 
drainage. That is because if water is away, the percolation 

forces disappear and the resistant forces also increase, as 
a result of the increase in the normal force and, therefore, 
the friction component of the strength also increases. 

The result with the interval [0, 1] based on the very 
poor information cannot give further information for deci-
sion-makers, but the probability bound of Slope Failure 
with the evidence Drainage makes sense by ways of 
p-boxes. Specifically, if drainage is not implemented, the 
failure result of the residual soil slope with [0, 1.53 %] is 
much wider than the one with drainage.

5 Conclusions
This study presents applications of the advanced BNs 

methods to estimate the failure probabilities of the slope 
subjected to drainage state. To characterize the effect of 
the induced-factors on the slope failure, new observations 
are made in some continuous nodes to update the model. 
The proposed methods proved to be useful and with a 
reduced cost of computation providing real-time informa-
tion for the decision makers. Also, the model presents the 
capability of integrating different events.

Enhanced BNs and CNs are applied to rely on input 
information availability. Enhanced BNs consist of two 
types of nodes, continuous and discrete nodes, where an 
integration of BNs and structural reliability analysis is 
applied to make the inference in this precise model, while 
CNs, especially for the scenario that there is no enough 
abundant information to get the precise CPDs for each 
of nodes. Additionally, discrete variables, random vari-
ables, interval variables and p-boxes are presented in the 
model. The bounds of results provide a rough estimation 
of the slope failure. The permission of the application of 
p-boxes in the model contributes to the reduction of the 
uncertainty in output. Moreover, a discretization process 
is applied when new evidence enters the continuous nodes. 
These capabilities ensure the wide flexibility of the model 
in analyzing the slope failure.

The two examples demonstrate that the approach has 
interesting possibilities for analyzing the failure of slopes. 
The exact failure probabilities of soil slopes in the first 
example indicate a low failure, and according to the anal-
ysis of updating the information in the specific nodes, the 
conclusion can be made that the failure of the slope can 
be significantly reduced with drainage. Although inter-
val-value is a suitable way for representing the non-proba-
bilistic information, the interval results of the residual soil 
slope may fail to acquire the usable range of real value. In 
this case, p-boxes involved obviously narrow the bound of 
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failure probability. All in all, both of eBNs and CNs are 
effective and feasible means to make failure analysis of 
one or more slopes.
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