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Abstract

Based on the association of finite elements homogenization method and a rigorous homogenization scheme accounting for crack 

interactions, this paper provides rigorous predictions for the local and effective properties of microcracked viscoelastic masonry 

with or without creep of bricks. For the sake of simplicity, viscoelastic brick and mortar are assumed to follow the Generalized 

Maxwell rheological model and to be respectively safe and microcracked. In the mortar, the distribution of microcracks orientations 

is assumed to be random. Two steps are followed. The first one is based on the identification at the short and long terms of an 

approximate analytical creep function for the mortar. This step relies on the coupling between the Griffith’s brittle fracture theory 

and a rigorous homogenization scheme - the Ponte Castañeda & Willis model - accounting for crack interaction instead of the 

dilute scheme adopted previously in Rekik et al. Two cases are considered: open and closed cracks. The first step allows to avoid  

recourse to 'heavy' numerical inversion of the Laplace-Carson transform. The second one provides overall creep coefficients of 

masonry by means of periodic homogenization carried out by finite elements method. For open cracks state, time-dependent 

crack density is investigated. The proposed model is validated by comparison with an analytical one available for a compressed 

masonry wall with "standard" viscoelastic mortar joints. Effect induced by microcracks is also highlighted by comparison with 

uncracked masonry. At last, results provided by the proposed model can be considered to be rigorous solution improving on dilute 

estimates for the creep behavior of microcracked mortar and demonstrating the interest to not neglect both cracks interactions 

and creep of bricks units.
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1 Introduction
The rich heritage of historic masonry buildings in differ-
ent parts in the world bears the idea that masonry is one 
of the oldest building materials used by man. Moreover, 
now days, it is still the most widely used building mate-
rial. Several models have been developed and presented 
in the literature for studying and predicting the behavior 
of masonry structures. Depending on the level of accuracy 
and simplicity required, either macro- (classical no-ten-
sion models [1–8] or micro-modeling [9–13] strategies can 
be used for this purpose. On the other hand, some authors 
have combined homogenization techniques with a contin-
uum damage mechanics approach [14–16]. Other authors 
[17, 18], have defined suitably macroscopic yield failure 
surfaces. Macro-approaches obviously require a prelim-
inary mechanical characterization of the model, based on 

experimental laboratory or in situ tests [19, 20]. In studies 
based on micro-analysis, two main approaches have been 
used: the simplified approach, which is the more refined, 
and the detailed micro-modeling approach. Simplified 
methods consist in modeling the bricks, mortar and interface 
separately by adopting suitable constitutive laws for each 
component. This approach gives highly accurate results, 
especially at local level. Several authors [21–26] have 
established that the interface elements reflect the main inter-
actions occurring between bricks and mortar. A simplified 
micro-model is an intermediate approach, where the prop-
erties of the mortar and the interface are lumped into a com-
mon element, while expanded elements are used to model 
the brick units. However, this model reduces the computa-
tional cost of the analysis, some accuracy is obviously lost.
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Although creep effects in masonry are far from being 
negligible, in the literature, little attention [27–29] is 
devoted to the prediction of the macroscopic creep behavior 
of masonry under sustained loads. In this context, [30–33]  
proposed models to predict creep coefficients according to 
the properties of each masonry constituent. These models 
are based on analytical or numerical homogenization using 
finite elements method (FEM) in order to deduce the mac-
roscopic creep of undamaged (without cracks) masonry. 
Moreover, most of these studies, except some works such 
as Cecchi and Taliercio's paper [31], neglects the brick-
work creep which can be argued by the fact that most of 
the creep effects take place in the bed joints, which are 
responsible for 60 to 80 % of masonry creep even if their 
volume fraction represent only 20 % of the brickwork [34]. 
Nevertheless, the creep deformation of the brick layers 
may be far from being negligible.

One of the objects of this work is to account for creep 
of each masonry constituents (brick units and mortar 
joints). Concerning the creep behavior of traditional mor-
tar, various rheological models namely the USBR, Feng, 
Ross, typical and modified versions of the Burgers and 
Modified-Maxwell models may be investigated [35, 36]. 
Besides, it is well known that cracking is frequently con-
centrated in mortar joints in case of historical masonry 
and, in particular, in case of in-plane shear actions with 
low compression levels. This work takes into account pres-
ence of microcracks in the viscoelastic mortar joints. It is 
interesting to note that in the literature, there exist several 
approaches accounting for damage in viscoelastic materi-
als [36, 37] based for example on a coupling between con-
tinuum damage mechanics and viscoelasticity through the 
generalized Kelvin Voigt model [37] in order to describe 
the long-term creep of gypsum rock. The main disadvan-
tage of this model is that it requires experimental investi-
gation [36] or computational efforts to resolve nonlinear 
equation [37] function of internal damage variables. In the 
works of Nguyen, Dormieux et al. [38, 39], the effective 
behavior of microcracked linear viscoelastic concrete was 
derived from a combination of the Griffith's theory [40] 
and the Eshelby-based homogenization scheme [41]. The 
undamaged concrete was assumed to obey to the typical 
Burgers model. In Choi et al. [35], an experimental study 
was carried in order to investigate the creep of masonry. 
A number of rheological models (USBR, Feng, Ross, typ-
ical Burgers, Modified Maxwell) are examined to assess 
their ability to predict the creep of masonry. It was proved 
that the Modified Maxwell model is the most accurate. 

According to this result [35], only the Modified Maxwell 
model (a parallel combination of the Maxwell model and a 
spring) is adopted in this paper to describe the creep of the 
mortar joints. Similarly to the mortar and for the sake of 
simplicity, bricks are assumed to follow the Generalized 
Maxwell (GM) model. Now, for microcracked mortar, by 
contrary to recent works Rekik et al. [42–44] and Nguyen 
et al. [38, 45] adopting respectively the dilute and dilute/
Mori-Tanaka schemes in order to estimate the effective 
creep function of the mortar, it is proposed in this paper 
to adopt a rigorous homogenization model - the Ponte-
Castañeda & Willis scheme [46] - accounting for cracks 
interactions. Indeed, it is worth noting that even the dilute 
scheme is useful for dilute concentrations of cracks, it has 
been demonstrated in Dormieux and Kondo [47, 48] that 
its estimates coincide with those derived from the Mori-
Tanaka (MT) scheme [41]. Moreover, they are close to the 
Ponte-CastaedaWillis (PCW) estimates for crack density 
parameter dc ≤ 0.15 [49]. However the MT predictions vio-
late rigorous bounds of the Hashin-Shtrikmann (HS) [41] 
type for composites with isotropic distributions of ran-
domly oriented cracks [46]. It is worth noting that the 
adopted parameter dc allows the measurement of the effect 
of cracks on the bulk and shear moduli of the considered 
microcraked material. According to [48], dc is the relevant 
parameter with regard to the elastic energy as the internal 
variable governing the effect of damage evolution instead 
of the crack surface or its length.

In a second step, it is necessary to determine the 
global behavior of the masonry with viscoelastic bricks 
and microcracked viscoelastic mortar. This step relies on 
homogenization technique based on the assumption that a 
statistically homogeneous medium represented by a 'rep-
resentative volume element' RVE, or a material with peri-
odic structure represented by a 'repeated unit cell' RUC, 
can be defined. The RVE, firstly used by Hill [50], corre-
sponds to a microstructural subregion which is represen-
tative of the entire sub scale. Generally, the choice or the 
modeling of the RVE or RUC affects the homogenization 
results. Indeed the RVE depends on the investigated mor-
phological or physical property, the contrast in the prop-
erties of the constituents, and their volume fractions. For 
given wanted precision and number of realizations, it is 
possible to provide a minimal volume size for the com-
putation of effective properties. For composites, the RVE 
is the smallest material volume element which must con-
tain a sufficient number of inclusions, which makes the 
effective moduli independent of assumed homogeneous 
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forces or displacements on the RVE boundary. For reg-
ular masonry, as it is the case in the present work, it is 
useful to consider the pattern which is repeated periodi-
cally inside the masonry structure and to apply numerical 
periodic homogenization approach using FEM. At last, the 
obtained orthotropic effective properties are used to com-
pute the behavior of a masonry wall subjected to compres-
sive loadings [18, 42, 43].

The layout of the paper is as follows. The first step (see 
Fig. 1) of the proposed model is detailed in Section 2.

A recall of the PCW estimates for effective moduli of 
a microcracked media with isotropic distributions of ran-
domly oriented (closed or opened) cracks is provided. After 
that the identification procedure of the MM 's six parame-
ters for the microcracked mortar at short and long terms 
allowing the expression of its creep function is presented. 
The last part in Section 2 shows an illustrative example 
for the followed methodology in step 1. Section 3 deals 
with the second step (Fig. 1) of the proposed model based 
on numerical periodic homogenization of regular masonry 
accounting for creep of both brick units and mortar joints 
(bricks are assumed to be safe unlike mortar). Section 4 
validates the proposed numerical model by comparison 
with analytical expression for local displacement at the 
top of a compressed masonry wall with rigid bricks and 
'standard' viscoelastic mortar joints. At last, the relevance 
of the proposed model is illustrated by investigating the 
case of a masonry wall subjected to compressive loadings.

2 Instantaneous global properties of viscoelastic 
microcracked mortar (step 1)
The results of brittle fracture mechanics - the Griffith's 
theory - could be useful if we move from the real temporal 
space to the symbolic one due the Laplace-Carson (LC) 
transform. In the symbolic space, the apparent behavior of 
the mortar is linear elastic. This procedure allows the use 
of expressions available in the literature for the displace-
ment's jump induced by the crack [43]. Assuming again 
that the displacement jump field depends linearly on the 
macroscopic stress, it is possible to define an effective lin-
ear behavior for the microcracked mortar in the symbolic 
space using one of the available homogenization schemes 
(dilute, Mori-Tanaka, self-consistent, PCW or others [41]). 
To determine the global behavior in the real space time, 
it is possible to apply the inverse of the LC transform in 
some simple cases. It is then interesting to approach in 
the symbolic space, at least in short and long terms, the 
symbolic effective stiffness (or compliance) by an exist-
ing rheological model. For example, if the undamaged 
mortar behaves as the Modified Maxwell model, we try 
to approach the symbolic effective behavior of the corre-
sponding microcracked mortar by the same model. After 
validation of this approximation at short and long terms, 
the inversion of the apparent effective stiffness will be 
straightforward. Therefore, the effective behavior of the 
micro-cracked viscoelastic mortar could be expressed in 
the real space time.

Fig. 1 Basic steps followed by the propose model: (s1) and (s2)
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In this work, in the symbolic space, the Ponte-Castañeda 
and Willis homogenization scheme (PCW) [46] is adopted 
for its ability of properly accounting for interactions and 
influence of spatial distribution of microcracks by con-
trary to the dilute scheme.

2.1 Ponte-Castañeda & Willis model
We distinguish the case of closed from that of opened 
cracks as shown in the following

2.1.1 Closed cracks
We assume that the mortar contains a set of closed cracks 
with unit normal n and that the contact between the two 
crack lips is frictionless. In contrast to open cracks, it is 
necessary to take into account the fact that a compressive 
normal stress can be transmitted through the contact of 
the crack lips, while the shear stress in the crack plane 
remains zero. Adopting a continuum micromechanics 
approach, the closed crack is represented by a flat ellip-
soidal inhomogeneity filled with an isotropic fictitious 
material having a zero shear modulus, µc = 0 and a non-
zero bulk modulus, kc ≠ 0. Accordingly Cc = 3kcJ where J  
is the spherical fourth-order projector. For randomly ori-
ented closed cracks requiring an averaging process on 
crack orientations, the effective symbolic bulk and shear 
moduli read
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where νm
* is the symbolic Poisson's ratio, km

* and μm
* are 

respectively the matrix's symbolic bulk and shear moduli.

2.1.2 Open cracks
When all microcracks in the RVE (Representative Volume 
Element) are open, the global symbolic deformation is 
elastic and the effective symbolic stiffness tensor C ̃ read
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where the effective bulk and shear moduli are given in the 
symbolic space by K is the deviatoric fourth-order projec-
tor defined by K = I – J and symbolic properties of the safe 
(uncracked) matrix are given by
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2.1.3 Opening-closure transition criteria
A crack is opened means that its lips are free of stress 
which can be expressed as follows 

� �xy yy yu� � ��� ��0 0: ,  (4)

where [uy] is the displacement jump across the upper and 
lower crack surfaces. The last condition implies that the 
asymptotic stress at infinity is a tensile stress �

yy

� � 0  oth-
erwise crack closure occurs. Accordingly, a frictionless 
closed crack, which is a model of unilateral contact, can 
be defined as follows 

� �xy yy yu� � �� �� �0 0 0, : .  (5)

The transition between the two regimes is defined by 
the relations  

� �xy yy yu� � �� �� �0 0: .  (6) 

2.2 Identification procedure of existent rheological 
model at short and long times
Whatever the state of the crack (open or closed), the follow-
ing described identification procedure remains available. 
Only mortar properties at the macroscopic scale change 
owing to the state of the crack and the adopted homogeni-
zation scheme accounting for the presence of cracks.

The series expansion of the PCW estimates for the mor-
tar's bulk's and shear symbolic modulus at the vicinity of 
p = 0 gives
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and at the vicinity of p = ∞, it reads
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are assumed to be known. For example, for open cracks, 
using theorems on the initial and final values given by 
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the PCW 's symbolic bulk's and shear's moduli (Eq. (3)) 
of a non-aging linear viscoelastic (n.a.l.v.) microcracked 
mortar following the MM 's model can be approached, at 
least at short and long terms, by expressions (14) provided 
in [43] available for a mortar with a matrix (uncracked 
mortar) following the MM 's rheological model

k k d
pk d d
k d p d

d
p

MM R c
M c M

s
c

M c M
s

c

MM R c

�

�

� � � � � � � �
� � � � �

� � � �

�

�

� �

/

/

3

3

�� �

� �
M c M

d
c

M c M
d

c

d d
d p d
� � � �

� � � � �

�

�

�
�

�

�
�

/

/

.
2

2

 (10)

The series expansion of Eq. (10) at the vicinity of p = 0 gives
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At the vicinity of p = ∞, MM 's symbolic moduli can be 
approximated by

k k k
k

p
O pMM R

se
m
se m

e

M
s

MM k
e

M
e M

e

�

�

� �
� �

�

�� � � � �

=

=

( ) ( / ),3 1

2

2

2

�

� � �
�

22

2
1

�M
d p

O p� ( / ).

 (12)

The Eq. (7) = Eq. (11), Eq. (8) = Eq. (12) allow the iden-
tification of the following expressions for the six effective 
MM 's parameters for the HEMm (the homogeneous equiv-
alent material to the microcracked mortar)

k k k k k kR
se

m
se

R
se

M
s

k
e

M
e

k
e

� � � �

� � �

�

�

  

 

0
0 0

0
1

0
0 0

3, , ,

, ,

�

� � � �� � MM
d � 2 0

1
� ,

 (13)

respectively for spherical and deviatoric parts.

The characteristic times of the spherical and devia-
toric parts of the Modified Maxwell model followed by the 
microcracked viscoelasticortar are respectively
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At last, the approximate creep function of a microc-
racked mortar which matrix follows the MM 's model reads 
in Eq. (15).
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2.3 Illustrative example
In order to illustrate the above described identification 
procedure whether for mortar with open or closed cracks, 
it is proposed to consider hereafter the case of a microc-
racked mortar which properties at the safe state are given 
in Table 1.

2.3.1 Closed cracks
Dilute and PCW estimates for effective elastic and viscous 
properties (explicit functions of the parameter dc) of the 
considered microcracked viscoelastic mortar with closed 
cracks are provided in the Table 1. For closed cracks, we 
recall that the bulk's modulus of the microcracked mortar 
coincides with that of the safe matrix which is independent 
from the crack density. Accordingly, the PCW and dilute 
estimates for the spherical part of the mortar's behavior 
coincide and are also independent from crack density dc.

As shown on Table 2, only expressions of the effec-
tive properties related to the deviatoric part of the mor-
tar's behavior differ with the adopted predictive model. 
Accordingly, also the PCW estimate for the mortar's 
"effective Poisson's ratio" is a function of the crack density 
(but it is time free). 

Table 1 Elastic and viscous moduli of the mortar (one term, n = 1) 
tested by Brooks et al. [30, 31]

E0 (MPa) Ν ei τM (days)

Mortar 7700 0.2 0.7602 7.1
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This expression is obtained by an exact inversion of the 
Laplace-Carson transform as follows
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which is not heavy to carry out by contrary to the LC 
inversion [51] of PCW estimate for the mortar's effective 
creep function.

Fig. 2(a) demonstrates that the mortar's "effective 
Poisson's ratio" increases with the increase of the crack 
density in the case of closed cracks. It remains lower than 
0.5 showing that the mortar is far from to be incompress-
ible. In case of closed cracks, the damage is assumed to do 
not evolve [47], accordingly, hereafter the crack density dc 
is assumed to be constant.

Fig. 3 reports time-evolution of the mortar's Young's 
modulus for different crack densities values (dc = 0, 0.2, 
0.55, 1). Qualitatively, it shows that the PCW estimate 
decreases rapidly with time t during a period of about 
5.106 ≈ 58 days. In a second stage, it stabilizes or reaches a 
non-null asymptotic limit. This trend is also available for 
dc = 1. Quantitatively, this asymptotic limit decreases with 
the increase of the crack density.

On Fig. 4 are depicted the PCW and dilute estimates 
for the mortar's Young's moduli evolutions with crack den-
sities at times t = 20 and 1000 days. It can be observed 
that PCW and dilute models provide close estimates 
for the effective modulus ẼPCW(t,dc) for a crack density 
0 ≤ dc ≤ 0.25. Beyond this interval, the percent error
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Between these estimates increases to exceed 10 % for 
dc ≥ 0.55 as shown on Fig. 5. It can also be remarked that 
the PCW effective estimates are softer than the dilute ones 
which is an expected result due to the fact that the PCW 
model accounts for cracks interactions by contrary to 
the dilute scheme. For mortar with closed cracks, it can 
be concluded that dilute estimate remains acceptable for 
every time t and crack density dc < 0.55 (see Figs. 5 and 6). 
Otherwise this model highly overestimates the effec-
tive Young's modulus of microcracked mortar. Besides, 

Table 2 Closed cracks: identified MM's parameters for the microcracked mortar at the macroscopic scale (effective properties) using the PCW and 
dilute homogenization models

PCW
model

kR (MPa) kM (MPa) ηs (MPa.s)

1025.81 3251.97 5.9846 109

μR (MPa) μM (MPa) ηd (MPa.s)

Dilute
Model

μR μM ηd

� �
�

769 358
3245 73

2 10938
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1 0 948148
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9
.
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(a)

(b)
Fig. 2 Evolution of the PCW estimate for the effective "Poisson's ratio" 
of the microcracked mortar with crack density dc in the case of closed 

(a) and open (b) cracks
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cumulative errors for both viscoelastic constituents (mor-
tar and bricks) if bricks are also assumed to be microc-
racked could lead to (highly) stiffer macroscopic estimates 
for the masonry.

2.3.2 Open cracks and time-dependent crack density
By contrary to the case of closed microcracks, both spher-
ical and deviatoric parts of the mortar's behavior are 
affected by the presence of open cracks. Accordingly, 
the six effective mortar's (elastic and viscous) parameters  
identified after averaging process on randomly oriented 
cracks based on the PCW model are different from those 
provided by the dilute scheme. Table 3 provides these para- 
meters for both PCW and dilute models when the microc-
racked mortar's properties at the safe (uncracked) state are 
given in Table 1.

Based on these identified parameters, it is possible to 
calculate explicitly the effective creep function and hence 
the mortar's Young's modulus and its effective "Poisson's 
ratio" in the case of open cracks.

v
d d

d dPCW
c c

c c
�
� � �� �
� � ��
0 185394 0 369141 0 2

0 926971 0 369141

. . .

. . ��  (18)

By contrary to the case of closed cracks, Fig. 2(b) shows 
that the mortar's effective "Poisson's ratio" decreases with 
the increase of density dc. The later should not exceed 0.41 
otherwise the mortar's effective "Poisson's ratio" tends 
towards negative values which is aberrant. In the fol-
lowing, for the case of microcracked mortar with open 
cracks, we assume that the condition dc ≤ 0.41 is fulfilled. 
Moreover, for the sake of showing the trends, we assume 
firstly that crack density is constant. Secondly, since dam-
age evolves in mortar (or more generally a media) with 
open cracks, than crack density is assumed to evolve fol-
lowing a power-law time function as prescribed by [54] for 
the sake of simplicity and as a first assumption.

Constant crack density. Fig. 7 shows that the PCW esti-
mates for the mortar's Young's modulus decreases with 
the increase of damage but does not vanish for dc ≤ 0.4. 
Moreover as predicted by the dilute scheme [42], the PCW 
estimates stabilizes beyond t ≥ 2.107 ≈ 231 days and tend 
towards none null asymptotic limits even if the PCW model 
provides softer estimates than the dilute ones for t ≤ 1000 
days (see Fig. 8). The huge difference between the PCW and 
dilute estimates mainly beyond dc = 0.2 (see Figs. 9 and 10) 

Fig. 3 Closed cracks: PCW estimates for the evolution of the mortar's 
effective Young's modulus versus "Ln(time)"

Fig. 4 Closed cracks: comparison between PCW and dilute estimates 
for the microcracked mortar's effective Young's modulus (t = 1000 days) 

versus crack density

Fig. 5 Closed cracks: percent error between PCW and dilute estimates 
for the microcracked mortar's effective Young's modulus (t = 20 and 

1000 days) versus crack density

Fig. 6 Closed cracks: percent error between PCW and dilute estimates 
for the microcracked mortar's effective Young's modulus versus time
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demonstrates that the presence of open cracks implies a 
high interaction level between the micro-cracks by con-
trary to the same density of closed cracks. Accordingly, for 
damaged mortar with open cracks it is important and more 
rigorous to assess its effective Young's modulus by means 
of the PCW model instead of the dilute one if dc > 0.2.

Time-dependent crack density evolution. As noted 
above, for the sake of simplicity, the crack density is assu-
med to accumulate in the following form as proposed by  
Shrive et al. [52]

d t t
c

i t

t

D D

n

� � � �

�
�

�

�
�

�
�

0

100�
� �

,  (19)

where τD is a constant damage time which refers to the 
time where most damage would occur. The coefficients are 
taken here as τD = 800, η = 0.3, and n = 10. dc(t) represents 

Table 3 Open cracks: identified MM's parameters for the microcracked mortar at the macroscopic scale using the PCW and dilute homogenization models

PCW
model

kR (MPa) kM (MPa) ηs (MPa.s)

µR (MPa) µM (MPa) ηd (MPa.s)

Dilute
model 

kR kM ηs

µR µM ηd

� �
�

1025 81
1442 55

0 703125
.

.

. dc
� �

�
3251 97

4573 08

0 703125
.

.

. dc
� �

�
5 9846 10

8 41593 10

0 703125

9
9

.
.

. dc

� �
�

769 358
2028 58

1 31836
.

.

. dc
� �

�
2438 98

6430 89

1 31836
.

.

. dc
� �

�
2 99233 10

7 88993 10

1 31836

9
9

.
.

. dc

1025 81

1 2 84444

.

.+ dc

3251 97

1 2 84444

.

.+ dc
5 98466 10

1 2 84444

9
.

.+ dc

769 358

1 1 51704

.

.+ dc

2438 97

1 1 51704

.

.+ dc
2 99233 10

1 1 51704

9
.

.+ dc

Fig. 7 Open cracks: PCW estimates for the mortar's Young's modulus 
versus "Ln(Time(s))" for different crack densities

Fig. 8 Open cracks: PCW and dilute estimates for the microcracked 
mortar's Young's modulus versus crack density at instants t = 20  

and 1000 days

Fig. 9 Open cracks: percent errors between PCW and dilute estimates 
for the micro-cracked mortar's Young's modulus versus crack density 

either for t = 20 and 1000 days

Fig. 10 Open cracks: percent errors between PCW and dilute estimates 
for the microcracked mortar's Young's modulus with different crack 

densities (dc = 0, 0.1, 0.2, 0.3 and 0.4) versus time
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the level of damage accumulated from the time at which 
damage starts, t0, to the time of evaluation t. In the cal-
culations here, damage is assumed to begin at 400 days. 
The rate of damage accumulation with this model is slow 
initially, but accelerates over time, as shown on Fig. 11 
reporting Fig. 4.4 in [52]. 

For the sake of showing the trends and effects, quite 
considerable damage is assumed to occur in a relatively 
short time in this example. Here damage factor attains 
about 0.33 after 1000 days with the damage starting at 400 
days. Damage initially accumulates at a very low rate but 
then increases rapidly [52].

Fig. 12 shows a rapid decrease of the mortar's Young's 
modulus for t ≤ 5.107 (s) ≈ 578 (days). After that it tends 
towards an asymptotic limit of about 2000 (MPa). At 
a third step, it decreases rapidly for t ≥ 8.107 (s). It can 
also be observed that for the considered time power-law 
crack density, dilute and PCW estimates for time evolu-
tion of the mortar's effective Young's modulus are close 
for t ≤ t1 = 8.107 (s) ≈ 925 (days) (Fig. 13). This can be 
argued by the fact that dc is negligible below t1. After that 

(that means when t > t1) this damage parameter increases 
rapidly. Accordingly the mortar's effective Young's mod-
ulus decreases rapidly and it can be observed that the 
PCW estimates are (highly) softer than the dilute ones. 
Moreover, errors between these estimates exceed 10 % 
beyond t2 = 8.4 107 (s) ≈ 972 (days). This trend is consistent 
with that observed on Fig. 9

3 Actual global properties of microcracked masonry 
using periodic homogenization (step 2): viscoelastic 
bricks and mortar
In this part, both of brick and mortar are assumed to fol-
low the Generalized Maxwell (GM) model. For the sake 
of simplicity, only one term is considered for the GM 
model [34]. Accordingly rheological model followed by 
bricks and mortar coincide with the MM 's model which 
tends towards a "purely" elastic behavior both at the vicin-
ity of 0 or at infinity as shown below
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The mortar's behavior can then be considered elastic 
and damaged at short and long terms as it evolves with 
crack density variation. Its behavior, at each time t, can 
be described by two effective parameters: the Poisson's 
ratio (Eq. (16)) if cracks are closed (respectively, Eq. (17), 
if cracks are opened) and "Young's modulus" ẼPCW(t, dc) = 
1//J ̃PCW(t, dc) if damaged or ẼPCW(t) = 1/J ̃PCW(t) other- 
wise (dc = 0). The considered bricks are assumed to be 
isotropic, safe (uncracked) with a viscoelastic behavior 
following the MM 's model with parameters data given in 
Table 4. 

Fig. 11 Non-linear evolution of damage ratio with time [52]

Fig. 12 Comparison between dilute and PCW estimates: time evolutions 
of the microcracked mortar's Young's modulus with open cracks which 

crack density is assumed to be a time power-law function

Fig. 13 Open cracks which crack density evolves following a time 
power-law function: percent error between PCW and dilute estimates
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Bricks can than be considered to be "elastic" with a 
time-dependent "Young's modulus" (see Fig. 14).

E t
J t e

b
MM
b t

� � �
� �

�
� � �

1 7990 83

1 0 5327
1 60017 10

7

.

.
. .

 (21)

Dimensions of the bricks are the following: height 
a = 55 mm, width b = 120 mm and thickness s = 250 mm. 
Mortar joints are 10 mm thick. For the viscous rheological 
model, since the instantaneous Young's moduli E0 for the 
MM 's model is given by E0 = E(t = 0) = ER +EM where the 
relaxation moduli is set equal to EM = eiE0 then the spring's 
Young's moduli ER reads ER = (1 − ei)E0. ei is a dimension-
less parameter.

Now, according to the fact that the considered masonry 
shows regular arrangement of bricks and mortar's joints, 
it is possible to consider only a periodic cell and carry 
out numerical periodic homogenization using FE method. 
Moreover, as this periodic cell presents two axes of sym-
metry, normal and tangential directions along the unit vec-
tors n and t, respectively, only its quarter (see Fig. 15) will 
be retained for computation.

When applying a constant macroscopic stress and 
assuming that the per phase localization tensor Ar is time 
independent as previously mentioned in [43] following 
the hypothesis of Deudé et al. [53] then the average strain 
ε–r per phase r and the masonry's overall behavior reduce 
respectively to � �r rA� : and � �� C : where the over-
all stiffness is given by C C A= : . Recall that the aver-
age strain localization over the periodic cell reads A I= . 
It is then important to determine components of the local-
ization strain tensor A

ijkl

r . To assess the effective "elastic 
engineering constants", it is proposed to subject the unit 

cell to three types of loadings: axial compression along n, 
axial compression along t and shear loading as shown on 
Fig. 15). In this case, strain localization components A

ijkl

r

are given by the following equations:
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The localization strain tensor A is assumed to be orth-
otropic. Since the symmetry of the Cauchy strain tensor 
both in the anisotropic and isotropic spaces is required, it 
follows that A A Aijkl

r
jikl
r

jilk
r= = (minor symmetry).

The major symmetry of Ar is also necessary A Aijkl
r

klji
r= . 

Accordingly only the components Axxxx, Ayyyy, Axyxy = Axyyx 
and Ayxxy = Ayxyx are not null. Owing to the classical Voigt 
notation, the constitutive behavior law of the unit cell reads
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Table 4 Elastic and viscous moduli of brick (one term, n = 1) [30, 31]

E0 (MPa) Ν ei τM (days)

Brick 17100 0.15 0.5327 33.8

Fig. 14 Time evolutions of the "effective Young's moduli" of the 
considered viscous brick and mortar

Fig. 15 Boundary and symmetry conditions for the considered quarter 
cell subjected to axial normal (a) or tangential (b) compression or shear 

(c) loadings
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where � ��� �V is the overall applied stress on the peri-
odic cell. The software Cast3M [54] has been used to pro-
vide local mechanical fields and mainly average mechan-
ical fields such as strain ε̄ r, stress σ ̄ r over each phase 
r(r = b for bricks, m for mortar) and macroscopic strain 
� � �� �f fb

b
m

m  calculated in order to deduce compo-
nents of the effective stiffness tensor C̃  (Eq. (23)). The five 
engineering "constants" are then given by

1

1





   





E t d
C

C C C C

E t d
C

tt c

nnnn

nnnn tttt ttnn nntt

nn c

,
,

,

� �
�

�

� �
� ttttt

nnnn tttt ttnn nntt

nt c ntnt nt c

C C C C

t d C t d

   







�

� � � �

,

, , ,� � �� � � � �










C
C

t d C
C

nntt

tttt
nt c

ttnn

nnnn
, , .�

 (24)

Recall that for an isotropic material (brick and mortar), 
components of the stiffness tensor Cr (r = b, m) read (25)
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are respectively the bulk and shear moduli.
Fig. 16 reports the time evolution of PCW estimates 

for the masonry's effective Young's Ẽxx, Ẽyy and shear μ̃xy 
moduli. Qualitatively, it can be observed that the Young's 
moduli decrease quickly during the first 100 days to attain 
almost their half initial values (at t = 0). Beyond 100 days, 
these moduli stabilize during a period of about 600 days 
before decreasing again rapidly beyond t = 800 (days), but 
less quickly compared to the first 100 days period. Recall 

that similar trends were observed for dilute estimates of the 
curves "masonry's effective Young's moduli versus time" 
where considered bricks were rigid [42]. Effective shear 
moduli is softer than effective Young's moduli (is about 
Ẽxx/6, and Ẽyy/4). Moreover, by contrary to Young's mod-
uli, it decreases progressively for t ≤ 100 days and t ≥ 800 
days (there is no sudden nor intensive decrease). Fig. 17 
shows that masonry's macroscopic estimates derived from 
PCW and dilute schemes are very close for t ≤ 800 days 
(error lower than 4 %).

Beyond this instant the percent error between the two 
estimates increases rapidly to exceed 10 % and even reach 
24 % at t = 1000 days. At each time t, the PCW estimates 
are a softer than the dilute ones. On Fig. 18 are depicted 
time-evolutions of percent error
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Fig. 16 Times evolutions of the effective properties of a masonry cell 
constituted by viscous bricks and microcracked mortars joints with open 
cracks which crack density evolves following a time power-law function

Fig. 17 Comparison between PCW and dilute estimates for effective 
properties of a masonry cell constituted by viscous bricks and 

microcracked mortars joints with open cracks which crack density 
evolves following a time power-law function

Fig. 18 PCW effective estimates for periodic masonry cell with 
microcracked mortar joints (open cracks):  comparison between elastic 

and viscous bricks
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between macroscopic properties of masonry with elas-
tic and viscous bricks. The highest gap between the two 
cases is observed for the Ẽyy modulus. The brick's viscos-
ity increases stiffness along the normal direction y. This 
difference stabilizes around 12 % during a period of about 
600 days after a rapid increase during the first 200 days. 
Beyond t = 800 days, Err(%) increases to exceed 15 %. 
For Ẽxx modulus, differences between the elastic and vis-
cous cases is almost negligible since it is lower than 4 % 
for t ≤ 800 days. Similarly to the modulus Ẽyy, the error for 
Ẽxx increases rapidly for t ≥ 800 days to exceed 15 % at t = 
1000 days. By contrary to moduli Ẽxx and Ẽyy, shear modu-
lus of masonry with viscous bricks is softer than masonry 
with elastic bricks. Beyond t = 900 days, this trend is 
reversed. However difference between effective modulus 
μ̃xy for the two cases (elastic and viscous) remains accept-
able (lower than 8 % for t ≤ 1000 days).

4 Local behavior of a masonry wall: open cracks
Since in the case of closed cracks, the damage is assumed 
to not evolve [47] and in order to consider interesting prob-
lems accounting for crack density evolution, it is proposed 
in this section to deal only with the case of open cracks.

4.1 Rigid bricks: comparison between numerical and 
analytical solutions
In order to validate the herein proposed numerical model, 
it is suggested in this part to compare its result in terms 
of vertical displacement of a compressed wall along the y 
direction (Fig. 19(a)) to the analytical solution of a homo-
geneous plate submitted to the same vertical compressive 
load and assuming the hypothesis of "in-plane stress" [55]. 
Here, bricks are assumed to be rigid while mortar is vis-
coelastic following the Generalized Maxwell rheological 

model which elastic and viscous properties (one term) are 
provided in Table 1. Accordingly, the mortar's Young's 
modulus evolves at safe (dc = 0) and micro-cracked (dc fol-
lowing time power-law relation (18)) states as reported on 
Fig. 20. It can be noticed that while error between these 
states (safe and micro-cracked) is lower than 6 % for time 
t ≤ 750 (days), it increases relatively quickly after this limit 
to reach 22 % at t = 900 (days).

For a homogeneous vertically compressed plate, we 
recall that the analytic solution is given by [55] 

u x H t Q H
A t Ls

q H
A ty F F, ,� � �
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2222
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where L and H are respectively the width and height of 
the panel and s is the brick thickness. Q1 and q1 = Q1/(Ls) 
denote respectively the total vertical load and pressure 
applied at the top of the masonry panel. AF

ijkl represent 
approximate expressions for the homogenized relaxation 
coefficients provided by the kinematically admissible 
solution given in [55]. Particularly, 
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where a denotes the height of the brick, eh is the thickness 
of the mortar head joints and 

K t
E t

h
m

m m
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 (29)

is the bulk relaxation moduli of horizontal interfaces. 
In this work, note that viscoelastic behaviors of the bed 
and head joints (indexed respectively by 'b' and 'h') are 
assumed to be coincident and are defined by the relaxation 
function Em(t) (instantaneous "Young's modulus" of the 
mortar given by Em = 1/JMM

app (see Eq. (15)).

Fig. 19 Rigid bricks and viscoelastic mortar joints: Real (a) and equivalent homogenized (b) masonry panels subjected to a vertical distributed load 
applied at the top [56]
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On the other hand, to obtain the local numerical solu-
tion for this structure, the real heterogeneous problem 
(Fig. 19(a)) is substituted by the homogenized one denoted 
by MHE(t, dc) (Fig. 19(b)) which orthotropic properties 
used for finite element resolution of the considered prob-
lem are determined due to the periodic homogenization 
procedure previously described in Section 3. 

Fig. 21 reports time evolution of the vertical displace-
ment at the top of the compressed masonry wall composed 
of rigid bricks and (safe or microcracked) viscoelastic mor-
tar. At the safe state of the mortar joints, this figure allows 
comparison between finite elements solution and analyti-
cal one provided by Eq. (27) assumed to be the reference 
solution. It can be seen that numeric and analytic solutions 
show similar qualitative trends. Quantitatively, numeric 
solution is very close to the analytical one. Indeed, accord-
ing to Fig. 22, the error between numerical and analyti-
cal (red curve) solutions does not exceed 7 % for all time 
0 ≤ t ≤ 1000 (days). This non-null error (at safe state of vis-
coelastic masonry) can be explained by the fact that analytic 
model implies approximate expressions for homogenized 
relaxation coefficient (AF

2222). Moreover, it is available for 
masonry with rigid bricks connected by interfaces, how-
ever the herein proposed numerical model accounts for 
finite thickness of mortar joints (here set equal to 10 mm).

The curve describing the evolution of the displacement 
uy at the top of the compressed wall (Fig. 21) with micro-
cracked mortar joints shows qualitative trend similar to 
that observed for masonry wall with safe mortar joints till 

t = 600 (days). After that the absolute value of the displace-
ment uy does not stabilize as it increases with time. This 
is consistent with the decrease of the microcracked mor-
tar's Young's modulus observed on Fig. 20. The difference 
between safe and micro-cracked states is highlighted by 
the blue curve depicted on Fig. 22 showing that presence 
of micro-cracks induces a gap between uy results lower 
than 13 % for time t ≤ 750 (days) but which increases with 
time to reach (for example) 31,3 % at t = 900 (days). It 
is worth noting that Fig. 22 reports also curve estimating 
error between numerical results for uy at the top of the 
compressed wall with mortar joints at safe and microc-
racked states. Qualitatively, the trend of this curve is sim-
ilar to that estimating error between analytic and numeric 

Fig. 20 Mortar joints: Time evolutions of the "instantaneous global Young's moduli Em" of the considered viscoelastic mortar at safe and 
microcracked states and the error (%) between these moduli

Fig. 21 Rigid bricks and viscoelastic mortar joints: Time evolutions of 
the local vertical displacement uy at the top of the panel
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results at safe state of mortar joints. Quantitatively, this 
curve shows errors lower than those provided by blue 
curve. Indeed for t ≤ 760 days, this error is below 7 %. 
After that, it can reach almost 25 % at t = 900 days which 
is consistent with the decrease of the microcracked mor-
tar's Young's modulus observed on Fig. 20.

4.2 Viscoelastic bricks: numerical solution
This part aims to assess the relevance and efficiency of 
the proposed model based on the coupling between PCW 
homogenization model and Griffith's brittle theory. For 
this purpose, we consider the problem of a viscoelastic 
masonry wall of dimensions L = 1560 mm (length) and 
H = 1040 mm (height) submitted to compressive loadings 
(three distributed loads at the top and two lateral edges and 
an additional concentrated load F applied on the top) as 
shown on Fig. 23. Bricks are assumed to be safe and vis-
cous following the MM 's rheological model. The mortar's 

(respectively, brick's) material data used to compute this 
problem are given in Table 1 (respectively, Table 4). Crack 
density is assumed to evolve according to a time power-law 
function (Eq. (19)). On the other hand, as the arrangement 
of the bricks is regular, the effective behavior of the panel 
is assumed to be well estimated by that of a periodic cell 
which effective behavior (macroscopic effective stiffness) 
is determined in Section 3. The wall can then be modeled 
as a homogeneous material which properties coincide with 
those of the equivalent material HEM-2 (Fig. 1(e)). 

On Fig. 24 are depicted the normal and shear stresses 
distributions in the compressed wall at t = 900 days. 
Qualitatively, it can be observed that, under BC-2, dis-
tribution of the stress field σyy is symmetric (Fig. 24(a)) 
by reference to the symmetry axis of the panel (x = L/2) 
unlike that of the shear stress σxy which is anti-symmetric 
(Fig. 24(b)). Similar trends are observed on Fig. 25 related 
to the case of a wall under compressive loadings without 

Fig. 22 Time evolutions of the error between analytic (safe mortar) and numerical (safe and microcracked mortar) solutions for vertical displacement 
uy at the top of the compressed wall

Fig. 23 Masonry panel submitted to boundary conditions BC-1 (a), BC-2 (b) and equivalent problem (c) for masonry under BC-2
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concentrated load F (boundary condition BC-1) showing 
however different stress localization zones: at the right and 
left corners of the top of the wall. By contrary, normal and 
shear stresses concentrate at the vicinity of the applica-
tion's point of the concentrated load F when considering 
wall under boundary condition BC-2. Moreover, although 
under BC-1, compressive loadings induce only compres-
sion (σyy ≤ 0) throughout the area of the wall, the additional 
load F make appears tensile stresses (σyy ≥ 0) in small area 
surrounding the application point P of the load F as a reac-
tion (response) to the highest values of normal compressive 

stresses reached around point P. Quantitatively, compari-
son between Figs. 24 and 25 shows that the magnitude of 
the local normal stress throughout the wall under BC-1 
is negligible compared to that attained in a wall under 
BC-2. Under condition BC-1, it can also be observed that 
the induced local shear stress is negligible compared to 
the induced local normal stress. For wall under BC-2, the 
shear stress is not negligible but (almost 4 times) lower 
than local normal stress. Fig. 26 illustrating evolutions of 
stress components at the middle height of the wall (y = H/2) 
along the x axis shows difference of stresses magnitudes 

Fig. 25 Local normal (left) and shear (right) stress snapshots throughout a wall (with viscous bricks) under BC-1

Fig. 24 Local normal (left) and shear (right) stress snapshots throughout a wall (with viscous bricks) under BC-2

Fig. 26 PCW estimates at time t = 900 days for the evolutions of the local stress σyy (left) and σxy (right) versus abciss x in the middle height of a 
wall with viscous bricks: comparison between boundary conditions BC-1 and BC-2
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between boundary conditions BC-1 and BC-2 demonstrat-
ing that a concentrated load at the middle length of the 
wall increases the stresses magnitudes and even implies a 
peak for normal (shear) stress along the axis of the load F.

Fig. 27 allows comparison between PCW and dilute 
estimates for the local normal and shear stresses. For the 
normal stress, these estimates are close except around the 
axis of symmetry of the wall where dilute scheme gives 
softer estimates than PCW model (a percent error of about 
8 % is attained at the peak of stress σyy). This error value 
is acceptable, however it can be (quite) harmful if we 
study the risk of failure of the wall. Moreover, this error 
increases in the vicinity of the application point of the con-
centrated load (it can exceed 80 % inside the stress local-
ization area). Although Fig. 27(b) shows close estimates 
deriving from dilute and PCW models, the percent error 
between these estimates reaches 46 % (Fig. 28) at three 
zones: near right and left wall edges and area surrounding 
application point of the concentrated load. This difference 
is clearly harmful and even dangerous when predicting 
failure of this compressed wall. The PCW model is then 

greatly recommended rather than the dilute homogeniza-
tion model in order to anticipate efficiently the collapse of 
masonry compressed wall. On the other hand neglecting 
brick's creep can be acceptable when estimating the nor-
mal local stress (see Fig. 29) since error between mason-
ries with elastic and viscous bricks is lower than 4 % at 
the level of the wall's middle height, however it is strongly 
harmful for the prediction of magnitudes of shear stresses 
for which evolution of error along the axis x shows a strong 
jump at the level of the wall's symmetry axis.

For comparison purpose between strain fields inside 
masonry under boundary condition BC-1 and BC-2, 
Fig. 30 reports εxy and εyy strain evolutions curves versus 
the x axis. Globally, under these boundary conditions, it 
is observed that the MM 's model predicts small strains. 
Moreover, qualitatively, these evolutions show similar 
trends (symmetric and anti-symmetric evolutions by ref-
erence to the axis x = L/2 respectively for εyy and εxy) as 
those observed for the normal and shear stress. Indeed, 
under BC-1, normal strain is almost constant with varia-
tion of the abciss x.

Fig. 27 Boundary condition BC-2: comparison between PCW and dilute estimates for the evolutions of normal and shear stresses versus x axis (wall 
with viscous bricks) and study of the effect of accounting for creep of bricks

Fig. 28 Percent error between dilute and PCW estimates for local normal (left) and shear (right) stresses in the middle height of the wall (case with 
viscous bricks)
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However absolute value of the strain εyy presents a peak 
around the symmetry axis of the wall. The magnitude of 
this peak is two times higher than values of normal strain 
attained at the level of the wall's edges. Clearly, normal 
strains induced by condition BC-2 are higher than those 
attained under condition BC-1 due to the additional con-
centrated load F. This remark remains available for the 
shear strain predicted at the wall line y = H/2. Sign of cor-
responding shear peaks under BC-1 and BC-2 are opposite.  

For masonry with viscous bricks, comparison between 
dilute and PCW estimates for the local normal (shear) strain 
field as depicted on Fig. 31(a) (respectively 31(b)) shows 
that the dilute scheme highly underestimates (in terms of 
absolute value) the PCW predictions (considered as a refer-
ence local solution) for all abciss x  [0, L]. Errors between 
PCW and dilute estimates for normal and shear strains are 
significant. For the former, this error varies between 48 % 
and 59.3 %. for shear strain Err(%) belongs to the interval 
[10 %, 66.9 %]. Similarly to the shear stress, the maximal 
error value for shear strain is attained around the symmetry 

axis of the wall (x = L/2). This result confirms again that 
neglecting cracks interactions highly underestimates stress 
and strain local (normal and shear) fields throughout the 
compressed wall. This could lead to false interpretations 
of the magnitude of local stress and strain fields through-
out the studied wall and accordingly to not properly antic-
ipate the wall's failure. At last, comparison between PCW 
predictions for the strain fields for masonries with elas-
tic and viscous bricks (Fig. 32) reveals that absolute nor-
mal strain values attained inside the masonry with elastic 
bricks are higher than masonry with viscous bricks. In this 
context, errors for normal strain varies between 12.4 % and 
17.8 %. However evolution of error related to shear strain 
show a strong jump around the symmetry axis of the wall. 
Otherwise it varies between about 4.3 % and 18.1 %

5 Synthesis of the results
In the following, Tables 5 and 6 summarize trends of 
above obtained results at three levels: micro-cracked mor-
tar, masonry periodic cell and compressed wall.

Fig. 29 Percent error between PCW estimates for local normal (left) and shear (right) stresses in the middle height of the wall: effect of bricks' creep

Fig. 30 PCW estimates at time t = 900 days for the evolutions of the local strain εyy (left) and εxy (right) versus abciss x in the middle height of a wall 
with viscous bricks: comparison between boundary conditions BC-1 and BC-2
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Table 5 Comparison between PCW and dilute estimates at three levels: microcracked mortar, masonry periodic cell and compressed wall

Trends

Mortar's effective Young's modulus
DIL > PCW, Err ≥ 10%, for dc ≥ 0.25, if open cracks (0.55 if closed cracks).

Masonry's effective cell properties (open cracks & dc = time power-law function)
DIL ≥ PCW (Err → 19 to 24% for dc → 0.33)

Local fields in a compressed wall (open cracks & dc = time power-law function)

σ yy
DIL and σ yy

PCW  are close (−8% ≤ Err ≤4%])

( σ yy
DIL slightly stiffer than σ yy

PCW )

� �

� �

xy
DIL

xy
PCW

yy
DIL

yy
PCW

Err

Err





� ��� ��� �
� �� �

15 45

47 60

%, %

%, %��� �
� �� ��� �� �xy

DIL
xy
PCW Err 10 70%, %

6 Conclusions and perspectives
This work provides a multi-scale improved model to the 
earlier one proposed in [43, 42] allowing rigorous assess-
ment at short and long-terms of global and local behavior 
of microcracked viscoelastic masonry. Advantages of the 
proposed model are mainly related to the none recourse 
to numerical inversion of the Laplace-Carson transform 

[57, 58] when assessing the overall creep behavior of mor-
tar and periodic masonry cell, to the ability of this model 
to take into account cracks interactions, creep of bricks 
units and variation of mortar's "Poisson's ratio" with crack 
density. Assuming that the PCW estimates are the refer-
ence solution at local and global levels, this work shows 
that the dilute scheme overestimates the micro-cracked 

Fig. 31 Boundary condition BC-2: comparison between PCW and dilute estimates for the evolutions of normal and shear stresses versus x axis (wall 
with viscous bricks) and study of the effect of accounting for creep of bricks

Fig. 32 Local normal (left) and shear (right) strain snapshots throughout a wall (with viscous bricks) under BC-2
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mortar's overall properties whether with open or closed 
cracks. This result is available at the level of the mason-
ry's periodic cell (with open cracks which crack density 
evolves owing to a time power-law function) in terms 
of overall orthotropic properties. At the level of a com-
pressed masonry wall with a concentrated load exerted 
on its top, it has been observed that dilute estimates for 
local shear stresses highly underestimate the PCW ones. 
Moreover, even if percent error for dilute and PCW esti-
mates for the local normal stress can be acceptable at the 
middle height of the wall, it can be significant in the wall 
area located at the vicinity of application point of the con-
centrated load. These results demonstrates that using the 
dilute scheme instead of the PCW model to predict the 
local behavior of a compressed wall can be harmful when 
investigating the risk of failure. This work shows also 
that viscosity of bricks increases the overall stiffness of 
masonry cell (of about 15 % to 17 % for Ẽyy and 8 % for μ̃xy 
if dc = 0.33) for none negligible crack density (dc ≥ 0.12) 
of microcracks inside mortar joints. This effect is more 
significant along the direction of head joints even if dc is 
small (0 ≤ dc ≤ 0.12). At the level of the investigated com-
pressed wall, creep of bricks induces higher strains but 
lower (normal and shear) stresses except around the axis of 

symmetry of the wall (direction of the concentrated load) 
where relative error between local normal (shear) stresses 
in masonry with elastic and viscous bricks attain its peak. 
This error is (highly) more significant for local shear 
stresses at the vicinity of wall edges (of about 20 %) and 
mainly around the axis of the concentrated load (x = L/2). 
Moreover this demonstrates the fact that neglecting the 
creep of bricks could false prediction of failure in the wall.

In this work, for the sake of simplicity and trends, the 
crack density is assumed to follow a time power-law func-
tion [52]. In the future, it will be interesting to investigate 
damage propagation in a thermodynamics framework [48] 
or by a stress criterion [59]. For bricks and mortar, consid-
ering creep functions following the Generalized Maxwell 
(GM) model with two terms could enrich and increase the 
accuracy of predictions provided by the proposed model. 
Moreover, it could be interesting to assess the relevance 
of the proposed model by comparison with a "full" het-
erogeneous finite elements model (by modelling all bricks 
and microcracked viscoelastic mortar joints). At last, 
accounting for thermal loading could extend this model 
for refractory linings present for example in blast furnaces 
subjected to compressive loads resulting from constrained 
thermal expansion [60, 61].
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