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Abstract

In condition monitoring of structures, acceleration time histories are usually recorded due to ease of instrumentation. In cases where 

the information about a displacement time history is required, the acceleration data needs to be integrated to obtain the velocity 

and then the velocity needs to be integrated to obtain the displacements. However, the numerical integration of the acceleration 

data usually introduces an unrealistic drift component to the velocity as well as displacement. This paper presents an eigenfunction 

method to derive velocity and displacement time histories from a given acceleration time history. The paper analyzes displacements in 

two case studies using the numerical integration as well as the proposed eigenfunction method. It is concluded that the eigenfunction 

method is a viable approach to derive the displacement information from the acceleration data.
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1 Introduction
The displacement time history of structures under dynamic 
effects is useful in (1) detecting effects of soil-struc-
ture interaction [1], (2) determining forces acting on a 
soil-structure interface in the substructure method [2], 
and (3) determining inter-story drift ratios of buildings 
under seismic excitations in performance-based seismic 
design [3, 4]. However, in practice, it is extremely difficult 
and cumbersome to measure displacement time histories 
buildings.

Because the acceleration time history is easily mea-
sured by accelerometers, numerical integration is usu-
ally used to determine velocity and displacement from the 
measured acceleration. However, numerical integration 
often leads to unrealistic and large drifts in the velocity 
and displacement [2, 5]. Reasons for the drifts in velocity 
and displacement have been studied for a long time [6, 7]. 
Previous studies showed that an offset in acceleration 
records caused by the instrument could lead to the drift. 
In addition, the random noise in acceleration records could 
also cause the drift in velocity and displacement during 
single or double integration.

To resolve the problem of drift, the method of baseline 
correction and the method of filtering have been developed 
in previous studies [2, 8, 9] to adjust the original time histo-
ries. The baseline correction method applies some forms of 
polynomials to correct the original acceleration, and thus, 
obtain corrected acceleration without drift. However, Iwan 
and Chen [10] showed that velocity and displacement may 
be underestimated due to the baseline correction. Boore [6] 
also pointed out that baseline correction would remark-
ably change displacement response spectrum of the orig-
inal ground motions at long periods. In addition, the base-
line correction may still yield unreasonable displacements 
(i.e., remarkable drift), which was demonstrated by labora-
tory shaking table tests on digital instruments [2, 11]. The 
acausal Fourier filtering is another method to eliminate the 
drift in displacement time history [9]. This method needs 
the original acceleration time history to be padded with 
zeros at both ends, and thus adds considerable length. This 
method requires the zero-padded portion to obtain accu-
rate velocity and displacement waveforms when integrat-
ing from zero. Consequently, it may need more analysis 
runtime for structural dynamic analysis [12].

https://doi.org/10.3311/PPci.14179
https://doi.org/10.3311/PPci.14179

mailto:kdai@scu.edu.cn


Li et al.
Period. Polytech. Civ. Eng., 63(4), pp. 1052–1061, 2019|1053

Li et al. [5] investigated reasons causing the drift in 
velo-city and displacement time histories by integrating 
acceleration. Their study reported that, in addition to con-
ventionally recognized reasons (such as offset and random 
noise in acceleration records) causing the drift in velocity 
and displacement [6, 8], the over-determinacy associated 
with integration is another reason contributing to such 
drift. To overcome the over-determinacy, Li et al. [5] fur-
ther developed eigenfunctions associated with a sixth-or-
der  differential  equation,  which  satisfies  all  necessary 
boundary conditions of the problem.

Since the eigenfunction was developed by Li et al. [5], 
different methods have been proposed to modify real 
recorded ground motion using the eigenfunction to gen-
erate drift-free spectrum-matched ground motions [5, 13]. 
However, the capability of eigenfunction to determine 
displacement time history in structural dynamic analysis 
remains unknown.

Based on previous studies regarding reasons contribut-
ing to the drift in displacement time histories, the objec-
tive of this study is to propose the eigenfunction method to 
determine velocity and displacement time histories from 
acceleration data, resolving the drift in time histories 
caused by the over-determinacy. The paper is organized 
as follows. Section 2 introduces the eigenfunction method 
that involves improvement of the acceleration integration 
over the study of Li et al. [5]. The Section 3 validates the 
eigenfunction method to determine velocity and displace-
ment. Then, the Section 4 presents two examples that use 
the eigenfunction method to determine velocity and dis-
placement time histories of vibrating bridges. From these 
two examples, capabilities of the eigenfunction method to 
determine displacement and velocity from acceleration 
data are illustrated. Conclusions of this study are summa-
rized in the last section of this paper.

It is noted that, the eigenfunction method determines 
displacement time history under the assumption that dis-
placement time history that exactly or approximately sat-
isfies zero initial and end conditions; discussion of deter-
mining displacement time history for structures presenting 
damage and nonlinear response is beyond the scope of this 
current work. Also, pre-processing steps, such as remov-
ing noise and dealing with distortions and errors from var-
ious sources containing in the measured acceleration, are 
still required before the application of the eigenfunction 
method. The eigenfunction method focuses on eliminat-
ing the drift in displacement caused by over-determinacy 
associated with integration.

2 The eigenfunction method
2.1 Drift in displacement and velocity
Velocity V t u t( ) ( )=   is the integration of acceleration 
A t u t( ) ( )=  , and displacement D t u t( ) ( )=  is the integration  
of velocity V t u t( ) ( )=  . If A(t), V(t), and D(t) satisfy these 
relationships, they are called consistent time histories in 
this study. If structures do not undergo any permanent 
deformation under dynamic effects, their acceleration, 
velocity, and displacement responses should satisfy the 
zero initial and end conditions, i.e., 

A A T V V T D D T(0) = ( ) = (0) = ( ) = (0) = ( ) = 0,  (1)

where T is the duration of the time histories.
A realistic, non-drifting displacement process, which is 

consistent with the accelerogram associated, is paramount 
in dynamic analysis of structures, such as multiple support 
excitation analysis of large-span space structures. Some 
supports may be on different parts of a structure, and 
each support point may undergo different displacements. 
Multiple support excitation analysis of large-span space 
structures needs to consider seismic anchor movements 
and the inertia effects. If the calculated displacement pres-
ents drift or the baselines are improperly corrected, the 
analysis results from the incorrect displacement inputs 
may lead to an erroneous conclusion about the design [14].

In addition to conventional reasons (such as an offset in 
acceleration records, and random noise) causing the drift 
in velocity and displacement, it is important to understand 
the over-determinacy associated with integration contrib-
uting to such drift. To illustrate the contribution, consider 
an acceleration time history:

A t k t
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where n denotes the number of terms for the sine func-
tions, and εk is a small positive constant. Obviously, accel-
eration A(t) given by Eq. (2) satisfies  the zero initial and 
end conditions. Integrating Eq. (2) yields the velocity and 
displacement:
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In Eqs. (3) and (4), V(t) and D(t) must satisfy the last four 
zero initial and end conditions in Eq. (1). However, there 
are only two constants, i.e., C0 and C1, in the equations. As 
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a result, the problem becomes over-determinate. Suppose 
that V(t) and D(t) are made to satisfy the zero initial and 
end conditions:

1. From V(0) = 0, Eq. (3) gives C T
kk

k

n

1
1 2 1

= ⋅
+=
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π( )
.

2. From D(0) = 0, Eq. (4) gives C0 = 0. Hence, 
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From Eq. (5), it is derived that
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ment time histories do not satisfy the zero end conditions 
and present drift. On the other hand, if V(t) and D(t) are 
made to satisfy the zero end conditions, then they will not 
satisfy the zero initial conditions. Therefore, drift in veloc-
ity and displacement time histories from integrating accel-
eration time history cannot be avoided.

It is noted that, this study does not deny the contribu-
tion of other factors (such as noise) for the drift of dis-
placement. As discussed in previous studies [15, 16], the 
distortions and errors from various sources (such as per-
turbations of the base of the seismic instrument in the 
form of rotations and tilts, and digitization errors) embed-
ded in the recorded acceleration signal could contribute to 
the drift in displacement.

2.2 Eigenfunction 
To resolve the over-determinacy associated with integra-
tion when determining velocity and displacement consis-
tent with the known acceleration, Li et al. [5] proposed the 
eigenfunction.

In the study of Li et al. [5], the displacement eigenfunc-
tion is expressed as
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The velocity eigenfunction φ̇(t) and the acceleration 
eigenfunction φ�(t) are written as,
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The coefficients C1, C2,…, C6 in Eqs. (7) to (9) are deter-
mined as follows,
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where

CS SC± ±± ±= 3
2 2
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For C1, C2,…, C6 to have nontrivial solutions, the deter-
minant of the coefficient matrix should be 0, yielding the 
eigenequation:

8 2 16
2

3

2
2 3 0sin sin sin cosh sin cosh .ν ν

ν ν
ν ν− − × + × =  (11)

The eigenequation (Eq. (11)) is a transcendental equa-
tion and has infinitely many roots or eigenvalues. It can be 
shown that there are two sets of roots:

1. The first set of roots are given exactly by
sin( / ) :ν 2 = 0 ν π= 2 1 2k k, , ,...=  
2. The second set of roots are 9.4270555709, 

15.7079533785, 21.9911486180, 28.2743338821, 
etc., which are given approximately by cos( ) :ν /2 0=
ν π= (2 1) 1 2k k+ =, , ,.... It is impossible to find analy- 
tically exact solutions; but for ν > 30, the approxima- 
tion is quite good with relative error smaller than 10-12.

Therefore, the eigenvalues can be written as 
ν λ πn nT n= = ( 1)+ ,  n =1 2, , , in which the results are 
exact when n is odd and approximate when n is even.
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For each eigenvalue νn, the corresponding eigenvector  
Cn ={ , , , } 1 21 2 6C C C nn n n

T
 , , ,= , can be otbained from 

Eq. (10) and the eigenfunction φn(t) is determined from  
Eq. (7).

2.3 Determine velocity and displacement time histories
In this study, the eigenfunction method is proposed to 
determine displacement and velocity from acceleration 
data. For acceleration time history A(t)with duration T 
and sampled at N discrete time instances t i ti = ( 1)− ∆ , 
i N=1,2, , , where ∆t T N= / ( 1)− , a procedure to deter- 
mine V(t) and D(t) is proposed as follows:

1. If the acceleration shows near-zero values at both 
ends  (i.e.,  the  acceleration  approximately  satisfies 
the zero initial and end conditions), add zeros at both 
ends. The new zero-padded acceleration A̅ (t) has the 
duration T̅, and sampled at N̅  discrete time instances; 
N̅  – N denotes the total number of zero-padded por-
tion at both ends.

2. Decompose zero-padded A̅ (t) using a set of N̅  eigen-
functions (the number of  eigenfunctions is the same 
with the number of discrete time instances):

A t a tn n
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then Eq. (13) becomes
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4. Solve  the  and  determine  the  coefficients  of  expan-
sion an, where n N=1 2, , , .

5. Determine velocity and displacement time histories 
using the coefficients of expansion an:

V t a t D t a t
n

N

n n
n

N

n n( ) = ( ), ( ) = ( ).
=1 =1

∑ ∑ϕ ϕ  (16)

6. Remove zero-padded portions of V̅ (t) and D̅(t) at both 
ends, and obtain the velocity V(t) and displacement 
D(t) consistent with the original acceleration A(t).

It is noted that, the velocity V(t) and displacement D(t) 
obtained through zero-padded A̅ (t) can avoid the unrealis-
tic value of zero at both ends of velocity V(t) and displace-
ment D(t), which is enforced by the eigenfunction. Thus, 
velocity V(t) and displacement D(t) may show some minor 
values  at  both  ends;this  does  not  contradict  the  starting 
point of the proposed eigenfunction method because the 
zero-padded time history, including A̅ (t), V̅ (t), and D̅(t), 
satisfy the zero initial and end conditions.

3 Validation
In Section 3, two examples are adopted to validate the 
eigenfunction method in this study to determine the dis-
placement.  The  first  example  uses  the  recorded  ground 
motion, and the second example uses one set of experi-
ment data (including the measured acceleration and dis-
placement time histories), which was provided by Dr. 
Claudia C. Marin-Artieda from the Howard University.

In the first example,  the El Centro earthquake ground 
motions (E-W component, including consistent accel-
eration, velocity, and displacement time histories) from 
Pacific Earthquake Engineering Research Center (PEER) 
strong motion database are used. The velocity and dis-
placement time histories determined by the eigenfunction 
method are shown in Fig. 1. It is seen that the velocity and 
displacement time histories determined by the eigenfunc-
tion method exactly match the velocity and displacement 
provided by the PEER strong motion database.

In the second example, the measured experiment data 
was recorded on an earthquake simulation testing program 
that was conducted in 2014 at the Structural Engineering 
and Earthquake Simulation Laboratory, at the State 
University of New York at Buffalo. K600 Krypton camera 
and LED sensors were used to capture the displacement 
time histories. The accuracy of the displacement time his-
tories defined by the Krypton camera is 1:5000±1 mm [17].

In the experiment, an input acceleration to simulate the 
120 % of the recorded roof acceleration at San Bernardino 
5-story hospital, station CSMIP23634, channels 9 under 
the Landers earthquake (California Integrated Seismic 
Network, CISN) was applied to a seismic isolated system 
that support a simulated equipment [17]. The acceleration 
and displacement responses of the seismic isolated system 
were recorded by sensors.

Simple processing has been performed to these raw 
accelerations recorded by sensors. First, remove the mean 
of  the  raw acceleration. Next,  apply  the Butterworth fil-
tering to remove the noise with frequencies lower than 
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0.1 Hz. The eigenfunction method is then applied to the 
processed accelerations, and determine corresponding 
displacements. To evaluate accuracy of the eigenfunc-
tion method to determine the displacement time history, 
a parameter of relative error et is defined as (Yt – Ct)/pgd, 
where Yt denotes the recorded displacement time history, 
Ct denotes the computed displacement time history, and 
pgd denotes the maximum absolute value of Yt. The Mean 
Squared Error (MSE) based on et is defined as 

MSE =
1 2

1n
et

t

n

=
∑ ,  (17)

where n denotes the total number of the discrete time 
history.

Fig. 2 and Fig. 3 show input time histories and response 
time histories of the seismic isolated system, respectively. 
Fig. 2(b) and Fig. 3(b) demonstrate that the displace-
ment determined by the eigenfunction method. Values of 
MSE for the displacement time histories in Fig. 2(b) and 
Fig. 3(b) are 0.0221 and 0.0105, respectively. The displace-
ment determined by the eigenfunction method matches 
the measured displacement, although some minor differ-
ence exist, which may be due to the noise in the measured 
displacement. 

To investigate the displacement calculated through base-
line correction, double integration is firstly applied to the 
processed input acceleration, and corresponding displace-
ment is determined, as seen in Fig. 4(a), in comparison 

El Centro earthquake ground motion
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with the measured displacement. Fig. 4(a) shows that the 
displacement by integration presents some errors in com-
parison with the measured displacement. Particularly at 
points near the end of the time history, where the displace-
ment by double integration remarkably deviates from the 
measured displacement and presents drift. The value of 
MSE is equal to 0.0326. To remove the drift, baseline cor-
rection (including linear, quadratic, and cubic polynomial 
methods) is performed to the processed input accelera-
tion using SeismoSignal software [18]. Then, the corre-
sponding displacements are calculated by integration, as 
presented in Fig. 4(b) (Because the baseline correction 
using the cubic polynomial method yields almost the same 
result as compared with that of the quadratic polynomial 
method, the displacement from cubic polynomial method 
is  not  shown  in  this  figure).  Fig.  4(b)  demonstrates  that 
the baseline correction does not improve estimation of the 
displacement time history; the displacement time history 
still remarkably deviates from the measured displacement 
and present drifts near the end points. Values of MSE for 
the displacement time history using linear method and 
quadratic method are 0.0325 and 0.0357, respectively. The 
drift is probably caused by the over-determinacy associ-
ated with the integration.

4 Case studies
4.1 Case 1: seismic response analysis of a bridge
In this case example, finite element method is used to ana-
lyze the seismic responses of a nine-span viaduct steel 

girder bridge subject to a set of tri-directional ground 
motions.  A  finite  element model  of  the  bridge  is  estab-
lished by the SAP2000, as seen in Fig. 5. 

The tri-directional ground motions recorded at the 
station "Beverly Hills-14145 Mulhol" during the 1994 
Northridge Earthquake are used as seismic excitations 
to simulate dynamic responses of the bridge. The origi-
nal tri-directional ground motions are scaled to the same 
peak ground acceleration, i.e., 0.15 g. Plots of these scaling 
tri-directional ground motions are presented in Fig. 6(a). 
The horizontal-1, horizontal-2, and vertical components 
are respectively applied to the longitudinal, transverse, 
and vertical directions of the bridge in simulation. 

Seismic responses (including relative acceleration, rel-
ative velocity, and relative displacement responses) of one 
selected point, i.e., joint 1 (see Fig. 5), are calculated by 
the SAP2000 and shown in Fig. 6(b) and Fig. 7. The rela-
tive velocity and displacement responses calculated by the 
SAP2000 are used as benchmark. Using relative accelera-
tion responses calculated by the SAP2000, relative veloc-
ity and displacement responses are further determined by 
the eigenfunction method, in comparison with the bench-
mark, as presented in Fig. 6(b) and Fig. 7. They clearly 
show that the velocity and displacement responses deter-
mined by the eigenfunction method exactly match the 
benchmark. This example demonstrates that the eigen-
function method could determine accurate velocity and 
displacement responses of vibrating structures from sim-
ulated acceleration responses. 

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
Time (sec)

D
is

p
la

ce
m

en
t 

(c
m

)

0 10 20 30 40 50 60 70
Time (sec)

Measured displacement
By linear polynomial method
By quadratic polynomial method

(a) (b)

Measured displacement

By double integration

Fig. 4 Input time history: (a) measured displacement and displacement determined by integration; (b) measured displacement and displacement 
determined through baseline correction

Joint 1

Fig. 5 Finite element model of the bridge in SAP2000



1058|Li et al.
Period. Polytech. Civ. Eng., 63(4), pp. 1052–1061, 2019

4.2 Case 2: structural response measurement
In this case example, based on sensor-measured accelera-
tions of Painter Street Overpass (PSO), velocity and dis-
placement are determined by the eigenfunction method. 
PSO is a two-span, prestressed concrete box-girder bridge. 
It has end diaphragm abutments and a two-column bent. 
The bridge was constructed in 1973 to cross over the four-
lane US Highway 101 in Rio Dell, California. After con-
struction of the bridge, it was instrumented with 20 strong 
motion sensors. The general dimension and parts of strong 
motion instrumentation are shown in Fig. 8.

Until now, accelerograms of 18 earthquakes have been 
recorded by these sensors. These recorded accelerograms 
are all available at Center for Engineering Strong Motion 
Data (CESMD), and have been processed and reviewed by 
California Geological Survey or United States Geological 
Survey. In this case example, accelerograms recorded 

during  the  Petrolia  Earthquake  in  1992  are  used;  one 
accelerogram recorded at ground near abutment of the 
bridge, and one accelerogram recorded at the bridge deck, 
are particularly selected. As seen in Fig. 8, Channel 17 
measured accelerograms at ground near eastern abutment, 
and Channel 7 measured accelerograms at middle of the 
bridge deck. 

The accelerograms recorded at the eastern abutment of 
the bridge and at the middle of bridge deck are respec-
tively presented in Fig. 9 and Fig. 10, together with their 
corresponding velocity and displacement time histories 
obtained by direct numerical integration and by the eigen-
function method. Previous seismic investigation [20] indi-
cated that the Petrolia Earthquake in 1992 did not cause 
any permanent deformation at the bridge or the ground. 
Thus, the displacement of these accelerograms should be 
close to 0 at the end of the shaking.
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Fig. 9 demonstrates that displacement time history obta-
ined by the numerical integration presents a slight drift, with 
a value of –2.62 cm at the terminal. The displacement time 
history determined by the eigenfunction method presents a 
value of –0.67 cm at the terminal, which is closer to 0, in 
comparison with the peak value of displacement time his-
tory, i.e., 6.03 cm. Fig. 10 indicates that, the displacement 
time history obtained by the numerical integration shows 
remarkable drift at the terminal, with a value of –5.28 cm. 
The displacement time history determined by the eigen-
function method presents a value of –0.66 cm at the termi-
nal, which is also close to 0, in comparison with the peak 
value of the displacement time history, i.e., 6.94 cm. The 

remarkable drift in the displacement time history deter-
mined by numerical integration contradicts the fact of 
no permanent deformation with the bridge deck after the 
earthquake [20].

It is noted that, because the displacement time histories 
in Fig. 9 and Fig. 10 were obtained from the eigenfunction 
method through zero-padded A̅ (t) avoid the unrealistic 
zero value at both ends of displacement. The displacement 
time histories determined by the eigenfunction method 
show some minor values at both ends; this does not con-
tradict the starting point of the proposed eigenfunction 
method because the zero-padded time history exactly sat-
isfy the zero initial and end conditions.
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This example demonstrates that displacement time his-
tories obtained by the numerical integration may cause 
misleading judgement with respect to deformation of the 
bridge subjected to vibration. It may also provide mis-
leading information with respect to integrity and service-
ability of a structure during structural health assessment. 
Using the eigenfunction method, realistic displacement 
time histories could be determined, and dependent struc-
tural information could be derived accurately.

5 Conclusions
In this study, a new method was proposed to determine 
velocity and displacement of vibrating structures from 
acceleration data. A major advantage of the proposed 
method is that computed velocity and displacement do not 
have any unrealistic drift. In addition, because the eigen-
function method is derived analytically, the velocity and 
displacement obtained by this method do not suffer from 
numerical errors and the problem of over-determinacy 
associated with the numerical integration method.

This paper also presented one recorded ground motion 
and one set of experiment data to validate the eigenfunc-
tion method. In addition, two case studies also demon-
strated the capabilities of the eigenfunction method to 
determine  velocity  and  displacement.  Efficiency  of  the 

eigenfunction method to derive displacement from accel-
eration data was illustrated in these two case studies. The 
displacement determined by the eigenfunction method 
could be further used to solve engineering problems such 
as inter-story drift ratio of buildings, soil-structure interac-
tion analysis etc. It is necessary to mention that the eigen-
function method cannot be applied to determine perma-
nent ground displacement.
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