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Abstract

In many scientific fields and several problems, Block Circulant Matrices (BCM) have been used for a long period of time. Each row of 

the BCM is a cyclic shift of its upper row to the right. BCM has been studied widely and there are closed-form solutions for problems 

of BCM. In these problems, the properties of near-BCM and BCM lead to a significant decrease in computational cost and efforts. In 

other words, these matrices are useful to perform some computational operations at the low cost. This study introduces a method 

for transforming a structure into a new type of Block Circulant Structure (BCS) by applying minor modifications. Furthermore, 

transformation of structural matrices into Block Circulant Matrices is discussed, and the properties of these matrices are then described 

in details. The methods introduce calculating eigenvalues and eigenvectors of these matrices instead of calculating the inverse of 

their matrices. To achieve this goal, the properties of near-Block and Block Circulant Matrices are used to analyze the structural 

stiffness matrices. In addition, the inverse of stiffness matrices for structures are calculated and utilized in structural mechanics. For 

clarification of efficiency and accuracy of the method, some examples are presented.
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1 Introduction
There are many mathematical concepts that can simplify 
problems and reduce computational cost while preserv-
ing the accuracy of the solutions. Block Circulant Matrix 
(BCM) has been already applied to many problems, more-
over the concepts of BCM have helped structural mechan-
ics for solving some of its problems. Mathematical rules, 
linear algebra and graph theory have some techniques by 
which calculation cost and size of the structural matrices 
can be reduced in repetitive, regular and circulant struc-
tures. If a structural model can be considered as the prod-
uct of two or three subgraphs, it is called regular and if all 
collections of identical parts are connected together in a 
regular form, it is called a repetitive structure. Symmetry 
and regularity of structures are discussed in details in 
books by Kaveh [1] and [2]. Repetitive structures have 
been widely studied by Kangwai et al. [3], Kangwai and 
Guest [4], and Zingoni [5] and [6].

In this paper, some results of researches which are per-
formed by Kaveh and Rahami [7, 8] are extended. They sim-
plified the model of regular structures by using graph prod-
ucts and linear algebra. Also they presented various types 
of circulant structures. Some irregular structures were 
analyzed by applying modifications [9, 10]. Static, modal 
analysis and free vibration of structures with some repet-
itive patterns have been studied [11], also some structures 
with different patterns are introduced. As results, some 
methods for nodal numbering and a method for analyzing 
these structures are presented. Shojaei et al. [12] performed 
static and dynamic analysis of structures using graph prod-
uct rules. In this study, Block Circulant Structure (BCS) 
and near-Block Circulant Structure were investigated in 
the form of new-Block Circulant Structure (BCS) with 
some modifications. It is noticeable that, Block Circulant 
Structure (BCS) and new-Block Circulant Structure (BCS) 
have different properties.
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Kaveh et al. [13] investigated the symmetric regular 
graphs and developed a method for symmetry analysis 
of regular structures. They computed the eigensolution 
of some special graphs using a combined graph-group 
method. They employed graph products to improve the 
conventional group theoretic method for decomposition of 
symmetric graphs. Kaveh et al. [14] used graph products 
to analyze the natural frequencies of the cable networks. 
In this method, they decomposed the structure matrix 
into submatrices of low dimensions. In some cases, these 
matrices are completely diagonal and have obtained their 
natural frequencies.

Kaveh and Fazli [15] performed structural systems 
analysis that had partial perturbations. In this method, 
they modified the formulation for the eigenproblem of 
these structures and obtained few lower eigenpairs of 
large-scale modified regular structures. The proposed 
method uses regular base model because it is simpler to 
analyze. Kaveh and Fazli [16] studied symmetric/regular 
structural configurations that can be shown by canonical 
forms. They also used a numerical method to extend the 
calculating concepts of matrix canonical forms to noncon-
forming regular structures. Kaveh and Fazli [17] proposed 
a numerical method based on single vector iterations to 
find several eigenpairs of modified system. In this method 
they used the characteristics and information derived from 
a decomposable model called the base model.

Kaveh et al. [18] presented a combined force method for 
analysis of near regular structures using the results of reg-
ular structures. These decompositions lead to the prefer-
ential solution of structures by converting the main prob-
lem into less complicated subproblems. Shojaei et al. [19] 
Examined finite element models of regular and near-reg-
ular systems using the rules of graph products. In finite 
element models, due to element repetition, regular/near 
regular patterns are very common in these models and 
regularity in their stiffness matrix is very common. They 
used the Kronecker products and the canonical forms to 
simplify the finite element analysis of planar elements. 
Kaveh and Shojaei [20] studied some of the different 
methods for efficient and optimal analysis of structures. 
They investigated the regular structures with extra nodes 
or elements. They obtained fast and optimal solution for 
design process by manipulation of the stiffness matrix and 
by using iterative methods.

In this paper, special structures named near-BCS and 
near-new-BCS are investigated. First, basic concepts and 
the required preliminary theories are presented, and it is 

shown that such matrices can be written as a sum of the 
Kronecker products of several matrix blocks. Also, eigen-
pairs of these matrices can be computed readily, and using 
the properties of the Kronecker products, their inverse 
matrices are calculated. Transformation of near-BCS and 
near-new-BC to BCS and new-BCS, respectively, are dis-
cussed later in this paper. The inversion of stiffness matrix 
can be carried out using the properties of BCM and new-
BCM. The aim of this article is to show that near-new-
BCS or near-BCS can be decomposed into the sum of two 
matrices which are a low-rank matrix and a BCM or new 
BCM, and then these matrices are solved the proposed 
method. Numerical examples are also given to support the 
theoretical results.

In Section 1, the difference between block and new-
Block Circulant Structure (BCS) is described, and a 
method to convert regular structures into Block Circulant 
Structure (BCS) is presented and in which cylindrical 
coordinate system must be used. In Sections 2 and 3, 
Block Circulant Matrix (BCM) and near-Block Circulant 
Matrix are investigated, respectively. Some properties of 
two types of matrices are explained and a way of using 
mathematical concepts for obtaining eigenpairs of BCM 
and new-BCM are shown. In Sections 4 and 5, near-block 
and near-new-Block Circulant Structure are introduced. 
Firstly, some theoretical concepts are proposed so as to 
convert some structures to new-block or Block Circulant 
Structure (BCS). Then the presented method is used for 
considering the effects of the added parts on a structure 
which are analyzed. In the following, some examples 
are provided in which the effectiveness of the proposed 
method for matrix of near-BCS is illustrated. The first one 
is a near-BCS that needs to be reformed to become a BCS, 
and the second one is a plate with a rectangular hole [21] 
and [22], that needs to be modified to become a near-new-
BCS, so mathematical rules and linear algebra can be used 
to improve the finite element analysis. In Section 6, the 
conclusion is presented.

2 Block Circulant Structure and new-Block Circulant 
Structure
There are many Block Circulant Structures (BCS) such as 
cooling towers, domes, etc. Such structures have mathe-
matical properties that can be more beneficial for reduc-
tion in cost of their analysis.

The general form of a Block Circulant Matrix in cylin-
drical coordinate can be expressed as:
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This matrix is an arrangement of blocks A, B, and B'. 
Any row of the Block Circulant Matrices is a cyclic shift 
of the upper row to the right. There are two blocks B and 
B' in the corners of the matrix, indicating that the nodes 
of the beginning and the end of the structure are con-
nected together. Furthermore, there are structures that 
can be modified in the form of a Block Circulant Matrix 
by changing in their matrices. For instance, consider the 
following matrix which, unlike BCM, is obtained using 
Cartesian coordinates:

In the following matrix Cartesian coordinate system is 
utilized to calculate stiffness matrix instead of Cylindrical 
coordinate system which is used in BCM.
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This type of matrix, by adding blocks to its two corners, 
becomes a singular matrix, because the first and the end 
nodes of the structure are not interconnected. To connect 
them, the first and the end nodes of the structure, the two 
blocks which were added to the structure matrix must have 
a minus sign, it means, –D and –D' are added to the matrix:
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Now, there is a new-Block Circulant Structure. In the 
following, the properties of these two types of matrices are  
described.

3 Block Circulant Matrix (BCM)
This study briefly discusses the properties of this kind of 
matrices (See [7] for additional details). Matrix K in Eq. (4)  
is a Block Circulant Matrix (BCM) and its eigenvalues and 
eigenvectors are shown by "e" and "V", respectively.
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Eigenvalues and eigenvectors of Block Circulant Matrix 
"K" can be defined as:

According to Eq. (6), the eigenvalues and eigenvectors  
of the Block Circulant Matrix K are H(ω) and (v Ä u), res- 
pectively.

4 New-Block Circulant Matrix (new BCM)
The new-Block Circulant Matrix has minus blocks in the 
corners and therefore the properties of Block Circulant 
Matrix cannot be used, and needs new formulation.
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I is an identity matrix of size n.
Eigenpairs of the new-Block Circulant Matrix is based 

on Eq. (9):
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The eigenvalues of the matrices P and P′ are conjugate 
and can be labelled as λ and ̅λ , respectively. Also their 
eigenvectors are equal and the corresponding names are 
called v.

V = v Ä u . (12)

KV K v u I C P D P D v u
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If eigenvalues and eigenvectors of 
(C + P Ä D + P′ Ä D′)u are γ and u, respectively, then:

C P D P D u u+ ⊗ + ⊗( ) =′ ′ γ .  (14)

Therefore:

KV v u= ⊗( )γ .  (15)

The eigenvalues and eigenvectors of the matrix K are γ 
and (v Ä u), respectively. Therefore, instead of computing 
of a high-order matrix, it is only necessary to calculate the 
eigenpair of its blocks, and the solution is generalized for 
the entire structure. In the following it is attempted to con-
duct an analysis of near-Block Circulant Structures using 
the BCM method.

Fig. 1 A Block Circulant Structure (BCS)
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Fig. 2 A near-Block Circulant Structure (near-BCS)

5 Analysis of near-block circulant structure using the 
concept of BCM
In this section two examples are presented for the anal-
ysis of near-block circulant structures. For this purpose, 
the concept of block circulant matrix in utilized leading to 
reduction in the dimensions of the matrices to be inversed.

Example 1: Figs. 1 and 2 are Block Circulant Struc-
ture and near-Block Circulant Structure, correspondingly. 
In Fig. 2, some elements of Block Circulant Structure are 
removed and it turned into an irregular structure.

The following overall stiffness matrix of near-Block 
Circulant Structure (Fig. 2) in cylindrical coordinate sys-
tem is presented as Eq. (16):

Kt = 

a
B

B

B
A
B
zero

zero
B

A
B

B

B
A

'
'

'





























. (16)

Kt = Kc + Kadded = 

A
B

B

B
A
B
zero

zero
B

A
B

B

B
A t t

'
'

'




























×

 

+ 

a A

zero

t t

−




















×

.

K RS
a A

zero
I zero

I

zero

added

t m

m t
= =

−





























[ ]

=

×

×





























−[ ][ ] ×
a A I zero

m t
.

 (18)

Using Eq. (19), the inverse of structural matrix of Fig. 2 
can be obtained as.

K K K K K R I SK R SKt c added c c c c
− − − − − − −= +( ) = − +( )1 1 1 1 1

1
1
. (19)

The inverse of the Block Circulant Matrix can be then 
achieved easily. Now we want to obtain the expression 
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Therefore, instead of computing the inverse of a t × t 
square structural matrix, it is only necessary to obtain 
the inverse a t × t square block circulant matrix and the 
inverse of an m × m square matrix. By removing the sup-
port nodes from the stiffness matrix of Fig. 1, a matrix 
of rank 576 is obtained. This matrix is a Block Circulant 
Matrix with 24 blocks of rank 24. With a slight modifica-
tions in this structure, a Block Circulant Structure (BCS) 
has been obtained. The order of this matrix is 576.

(17)
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Table 1 Elapsed time of inverse matrix analysis

Method Elapsed time (in seconds)

If we have reverse of the Block Circulant 
Matrix and use the proposed method 0.008376

Direct method 0.020217

       (a)                                      (b)                            (c)
Fig. 3 (a) Unmodified plate (b) modified plate  

(c) Circularized modified plate

We use the Eq. (25) to obtain the inverse of structure 
matrix. The results of the analysis are presented in Table 1.
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6 Analysis of near-new-Block Circulant Structure using 
concept of near-BCM
In the following example, the inverse of stiffness matrix of 
a plate with a square hole is calculated and analysis of the 
plate is presented. The global stiffness matrix is in Eq. (26).
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Using the Eqs. (27–28), inverse of the structural matrix 
of Fig. 3 is presented in Eq. (29).
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The multiplication of the matrices Id and I′d in Knc
–1 

causes only some of the rows and columns of the matrix 
Knc

–1 to be entered into the computation.
Example 2: There is a square steel plate in which a hole 

causes asymmetry. It is also fixed along it four edges, and 
in the following, other parameters are mentioned:

(Size: 20 × 20 in, thickness: 0.1 in, modulus of elastic-
ity: 30e6 lb/in2, Poisson coefficient: 0.3)

The plate is analyzed by using FEM in which meshing 
is done using elements with 4 nodes. By applying the mod-
ifications to Fig. 4(a), the corresponding matrix changes 
to new-Block Circulant Matrix with an extra stiffness 
matrix. Global stiffness matrix is achieved by deleting the 
support rows and columns of stiffness matrix. The global 
stiffness matrix is of size of 243. By making the modifica-
tions, this stiffness matrix becomes a new-Block Circulant 
Matrix, plus an extra stiffness matrix.

(a)                                                     (b)

(c)
Fig. 4 (a) A plate with a square  hole (b) Square plate (c) Extra element
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The reverse of Block Circulant Matrix is simply 
achieved. Now we want to calculate the reverse of 
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Therefore, instead of calculating the inverse of a t × t 
square matrix, it is adequate to find the inverse of a t × t 
square block circulant matrix and a matrix of size 4 m × 4 m.

If loads of 100 and –100 lb are applied at nodes of 51 and 
21, respectively, displacement contours will be obtained 
and shown in Fig. 5. The slopes in x and y directions are 
illustrated in Fig. 6 and Fig. 7, respectively.

Fig. 5 Displacement contours of the plate with a square hole

Fig. 6 Slope in x direction

Fig. 7 Slope in y direction
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7 Conclusions
In this paper, we discuss block circulant and new-Block 
Circulant Matrices, and methods to obtain their eigen-
pairs. Some structures can be turned into new-Block 
Circulant Structure with some extra elements. A method 
is proposed for analysis of these structures. For Block 
Circulant Matrices, firstly, the structure is converted into 
a new-Block or Block Circulant Structure (BCS) and then, 
by using the proposed method, inverse of the entire matrix 
is obtained. In other words, if one has inverse of the Block 

or new-Block Circulant Matrices, by using the proposed 
method, the inverse of the entire structural matrices can 
be obtained. To maintain the initial properties of the struc-
tural matrices, the influence of added parts on the struc-
tures is considered. In order to show the accuracy and 
efficiency of the proposed method, two examples are pre-
sented. According to the results, using the properties of 
new-Block and Block Circulant Matrices can simplify the 
structural analysis and decrease the computational cost.
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