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Abstract

New products ranging from simple components to complex structures should be designed to be optimal and reliable. In this paper, 

for the first time, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All uncertain 

variables are described by random distributions but those lack information are defined by variation intervals. For system RBDO of 

trusses, the first order reliability method, as well as an equivalent model and the branch and bound method, are utilized to determine 

the system failure probability; and Improved (μ + λ) constrained differential evolution (ICDE) is employed for the optimization process. 

Reliability assessment of some engineering examples is proposed to verify our results. Moreover, the effect interval variables on 

the optimum weight of the truss structures are investigated. The results indicate that the optimal weight depends not only on the 

uncertainty level but also on the equivalent standard deviation; and a falling-rising behavior is observed.
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1 Introduction
In traditional optimization procedure, most engineers 
assume that the design variables in the problem are deter-
ministic. However, different kinds of uncertainties are pre-
sented and needed to be accounted for the design optimiza-
tion process. Reliability based design optimization (RBDO) 
is a method that takes into account uncertainty due to the 
presence of random variables during the design process. 
The aim is to obtain a trade-off between a higher safety and 
a lower cost which is normally satisfied by setting a max-
imum allowed probability of failure [1]. In the real-world 
truss optimization problems, the source of uncertainty 
may be the variability of applied loads, spatial positions of 
nodes, and section and material properties [2].

Several attempts have been made in RBDO prob-
lems of truss structures by considering the displacement 
constraints and the stress limits of the components. Luo 
and Grandhi [3] proposed a reliability based multidisci-
plinary structural analysis for optimizing truss structures. 
Mathakari and Gardoni [4] developed a hybrid method-
ology by combining multi-objective genetic algorithms 
(MOGA) and finite element reliability analysis. The weight 
and reliability index of an electrical transmission tower are 

considered as the two objective functions for MOGA. The 
finite element reliability analysis performed by OpenSees 
software. Togan et al. [5] used the harmony search opti-
mization algorithm and double-loop strategy to perform 
RBDO based on the reliability index and performance 
measurement approaches. Yand and Hsieh [6] solved the 
discrete and non-smooth RBDO problem by integrat-
ing subset simulation with a new particle swarm optimi-
zation algorithm (PSO). Shayanfar et al. [7] developed a 
double-loop strategy for reliability-based optimization of 
structures by employing genetic algorithm (GA) as an opti-
mization approach and OpenSees software for finite ele-
ment reliability analysis. A new hybrid method, namely the 
SORA-ICDE, was developed by HoHuu et al. [8] by inte-
grating the sequential optimization and reliability assess-
ment (SORA) with an improved constrained differential 
evolution algorithm (ICDE) for solving RBDO of engi-
neering problems. Dizangian and Ghasemi [9] proposed 
a decoupled strategy for the reliable optimum design of 
trusses based on a design amplification factor combined 
with response surface method. Ho-Huu et al. [10] presented 
a new combination of an improved differential evolution 
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algorithm and an inverse reliability analysis for solving 
RBDO problem of truss structures with frequency con-
straints. Young’s modulus, mass density of the truss and 
the added masses were assumed to be the random design 
variables which have normal distribution. Hamzehkolaei 
et al. [11] proposed a decoupled RBDO method based on a 
safety factor concept, PSO and weighed simulation method. 
They showed that employing PSO as the search engine of 
RBDO and (weighed simulation method) WSM as the reli-
ability analyzer provide more accurate results. In a sim-
ilar study, they presented a method based on the hybrid 
improved binary bat algorithm (BBA) and weighed sim-
ulation method (WSM) for RBDO of truss structures with 
discrete-continuous variables [12]. Gomes and Corso [13] 
introduced a hybrid RBDO algorithm based on the genetic 
operations of GA, the position and velocity update of PSO 
for global exploration and the SQP for local search. They 
used FORM to account uncertainty in design and param-
eter variables. Stress, displacements, and frequency deter-
ministic and probabilistic constraints were considered in 
this study. Ho-Huu et al. [14] proposed a global single-loop 
deterministic approach by combining a single-loop deter-
ministic method (SLDM) and an improved different evolu-
tion (IDE), showed its capability to solve RBDO problems 
with both the continuous and discrete design variables.  
In SLDM, probabilistic constraints are converted to 
approximate deterministic constraints.

To solve RBDO of statically determinate truss struc-
tures, some studies can be found in the literature by mod-
eling the structural system as a series system. Dimou and 
Koumousis [15] proposed a new version of GA, namely 
competitive GA, and showed its application to the reli-
ability based optimal design of trusses. In a similar study, 
they utilized PSO algorithm instead of GA [16]. Togan 
and Daloglu [17] optimized a roof truss system by vari-
ous optimization methods including sequential quadratic 
programming (SQP), evolution strategy (EVOL), and GA. 

It should be noted that for a statically indeterminate 
truss, the assumption of a series system is inapplicable 
since the structural failure may occur after more than one 
component fail. To overcome this problem, some research-
ers modeled them as series-parallel systems and deter-
mined the failure of the system based on the failure paths 
concept. Hendawi and Frangopol [18] developed a proba-
bilistic redundancy factor to estimate the first yielding of 
the structure. Natarajan and Santhakumar [19] utilized 
the branch and bound method and developed a formula-
tion for RBDO of a transmission line towers. Thampan 

and Krishnamoorthy [20] proposed a modified branch-
and-bound (MBB) method to perform the system reliabil-
ity assessment of truss structures. They coupled MBB and 
GA to minimize the total expected cost of the structure. 
Based on some fundamental assumptions, Park et al. [21] 
proposed an efficient technique to determine the system 
reliability of a complex structure directly from the reliabil-
ities of its members. A single-loop method based on the 
matrix-based system reliability (MSR) technique was pro-
posed by Nguyen et al. [22] to solve RBDO of a 6-mem-
ber indeterminate truss structure. The MSR determines 
the probabilities of the system events by the matrix formu-
lation. Liu et al. [23] proposed a system reliability based 
design optimization for truss structures by integrating 
GA and Monte Carlo simulation together with the trained 
radial basis function (RBF) neural networks. Okasha [24] 
considered nonlinear material behavior in RBDO prob-
lems of indeterminate trusses. The system reliability deter-
mined by weighted average simulation method (WASM), 
and the optimization process performed by using the 
firefly algorithm. Hamedani and Kalatjari [25] develop a 
logical framework, called RBO-S&GTS, for system reli-
ability analysis of truss structures and simultaneous size 
and geometry optimization of truss structures subjected 
to structural system reliability constraint. Csébfalvi [2] 
presented a new theoretical model and a problem-spe-
cific metaheuristic approach when the only source of 
uncertainty was the variability of the applied load direc-
tions; The varying load directions were handled as uncer-
tain-but-bounded parameters. Benchmark results for this 
worst-load-direction oriented approach can be found in his 
other works [26, 27]. By extending and revising their pre-
vious work [28], Lógó et al. [29, 30] proposed a new type 
of plastic limit design procedures and carried out reliability 
analysis of steel frames with limited residual strain energy 
capacity; where the influence of the limited load carrying 
capacity of the beam-to-column connections of elastoplas-
tic frames multi-parameter static loading and probabilisti-
cally given conditions were taken into consideration.

As can be found from the previous studies, although 
they proposed some valuable and efficient methods in 
solving different kinds of RBDO problems, some key fea-
tures in the design process of truss structures are ignored. 
On the one hand, most of the previous works are dealt with 
the statically determinate trusses, whereas statically inde-
terminate truss are more practical because the distribution 
of the applied between the structural members loads is 
done better and also some elements can be failed without 
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compromising the viability of the structure [31]. On the 
other hand, research on solving the system RBDO prob-
lems of truss structures is focused on describing uncer-
tainty by random distributions. However, finding precise 
random distributions require a large amount of informa-
tion. Since in practical applications sufficient experimen-
tal samples are expensive and difficult to achieve, some 
assumptions should be made when using a probability 
model to perform the reliability analysis. However, several 
studies revealed that even a small deviation of the distri-
bution parameters from the real values can result in very 
large errors in the reliability analysis [32].

In order to overcome this problem, two hybrid uncer-
tain models have been proposed by integrating the tradi-
tional probability approach and the non-probability inter-
val analysis. The concept of these models is based on the 
use of variation intervals in the face of insufficient uncer-
tainty information. In this way, a more accurate reliabil-
ity analysis can be achieved by eliminating errors from 
assumptions on the probability distributions [33].

In the first model, random variables with sufficient 
information and ones lacking enough uncertainty infor-
mation are treated as random distributions and intervals, 
respectively. While in the second one, all random variables 
are described by random distributions but some key dis-
tribution parameters of them which lack information are 
defined by variation intervals. For a good overview about 
hybrid uncertain models, the interested reader is referred 
to the work by Jiang et al. [34].

For the first hybrid uncertain model, a number of studies 
have been published. Du et al. [35] proposed a single-loop 
RBDO to deal with the uncertain variables described by 
the mixture of probability distributions and intervals. 
Du [36] formulated a reliability analysis framework with 
the aim of investigating computational tools to deter-
mine the effects of random and interval inputs on direct 
and inverse reliability analysis results. By considering 
both random variables and interval variables, a sensitivity 
analysis method was proposed by Guo and Du [37]. They 
introduced six sensitivity indices based on the first-order 
reliability method (FORM) to investigate the sensitivity 
of the average reliability and reliability bounds. Based on 
the probabilistic reliability model and interval arithme-
tic, Qiu and Wang [38] developed a new model to improve 
interval estimation for reliability of the hybrid structural 
system. Jiang et al. [39] proposed an equivalent model for 
reliability analysis with random and interval variables. By 
changing the interval variables to corresponding uniform 

distributions, the original problem was converted into a 
conventional reliability analysis problem with only ran-
dom variables. Xie et al. [40] proposed a new hybrid reli-
ability analysis by decomposing the probability analysis 
loop and interval analysis loop into two separate loops. 
Furthermore, a new interval analysis method is formu-
lated based on the monotonicity of limit-state function.

The second hybrid uncertain model was first proposed 
by Elishakoff and Colombi [41] by formulating an anti-op-
timization problem. Non-linear buckling of a column 
with initial imperfection was investigated by Elishakoff 
et al. [42] based on the probability and non-probability 
approaches. Moreover, they showed that the results from 
both of them were critically contrasted. Qiu et al. [43] pro-
posed an approach to obtain the interval of the system fail-
ure probability from the statistical parameter intervals of 
the basic variables. Jiang et al. [33] proposed a new struc-
tural reliability analysis by conducting a monotonicity 
analysis for the probability transformation process, and 
two efficient algorithms were formulated based on the 
reliability index and performance measurement approach. 
In another work, they presented a detailed description of 
the effects of interval parameters on the limit state func-
tion [44]. Huang et al. [45] developed a decoupled RBDO 
algorithm by utilizing the reliability analysis presented in 
previous work by Jiang et al. [44] and an incremental shift-
ing vector (ISV) technique. 

In this paper, for the first time, the first hybrid uncertain 
model is considered to system RBDO problems of truss 
structures; and the effect of interval variables on the opti-
mum weight of the structure is investigated which can be 
beneficial to select and define a proper variation intervals in 
the design process. The reliability analysis we use is based 
on the work by Jiang et al. [39] and the optimization pro-
cess is performed by using the ICDE algorithm. The rest of 
this paper is organized as follows. Section 2 presents the 
ICDE algorithm. In Section 3 a brief description of the reli-
ability assessment with and without interval variables, sys-
tem reliability analysis for truss structures as well as reli-
ability based design optimization are presented. Numerical 
and structural examples are proposed in Section 4. Finally, 
the conclusion is presented in Section 5.

2 The improved (µ + λ) constraint differential evolution 
(ICDE) algorithm
According to the relatively fast convergence rate, low stan-
dard deviation from the mean value in different runs of 
algorithm and ease of implementation [46], we used ICDE 
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algorithm for optimization process in this study. ICDE is a 
robust version of differential evolution algorithm to solve 
the constrained optimization problem. Two main parts of 
ICDE are the improved (μ + λ)- differential evolution (IDE) 
and the archiving-based adaptive tradeoff model [47]. The 
next sections briefly introduce the main parts algorithm.

2.1 Differential evolution (DE) algorithm
The differential evolution (DE) was first developed by Storn 
and Price (1997). It is one of the most successful and widely 
used metaheuristic algorithms to solve continuous optimi-
zation problem. DE is a population-based algorithm which 
uses three evolutionary operators, i.e., mutation, crossover, 
and selection operators. Note that the diversity of the popula-
tion is guaranteed by using the mutation and crossover oper-
ators. The main steps of DE algorithm are described below. 

Step 1 - Generating initial population: In this step, an 
initial population containing μ parents are generated ran-
domly in the search space as follows:

X LB UB LBi
t rand i= + −( ) = …. , , , , ,1 2 µ  (1)

in which Xi
t is the current individual in the t-th genera-

tion (in the initial population t is equal to zero), rand is 
used to create a random number in [0,1] and LB and UB 
indicate the lower and upper bound of the design variables 
respectively.

Step 2 - Generating the mutant vectors: In each genera-
tion, mutant vectors Vi are generated based on the follow-
ing four strategies [47]:
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where r1, r2, r3, r4 and r5 are different integers selected from 
the set {1, 2,…, μ} and satisfy {r1 ≠ r2 ≠ r3 ≠ r4 ≠ r5}, Xbest

t  
and Xi

t are respectively the best and the current individual 
in t-th generation and scale factor F, is selected randomly 
between 0 and 1. After generation of mutant vectors, they 
are checked against the boundary constraints and the fol-
lowing modification is performed:
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Step 3 - generating trial vectors by crossover operator: 
In this step, by using the binomial crossover, some ele-
ments of the current vector is replaced by some elements 
of mutant vector to produce the trial vector Ui:
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Step 4 - comparing the trial vector and current vector: 
Finally, the trial vector compare with the current vector 
according to their objective function values and the bet-
ter one with better objective value will survive in the next 
generation:
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2.2 Improved (µ + λ) - differential evolution (IDE) 
algorithm
The ICDE utilizes an improved version of the DE, called 
IDE, which have better population diversity. In IDE, the 
offspring population Qt is generated from the current pop-
ulation Pt based on the following three steps. At the end 
of these steps, the offspring population will have λ = 3μ 
individuals.

Step 1: set Qt = Æ;
Step 2: generate three offspring for each individual in Pt:
• for the first offspring y1, use the "rand/1" mutation 

strategy and the binomial crossover;
• for the second offspring y2, use the "rand/2" mutation 

strategy and the binomial crossover;
• for the third offspring y3, use the "current-to-best/1" 

strategy and improved breeder genetic algorithm 
(iBGA) [47]. 

Step 3: update the offspring population, 
Qt = Qt È y1 È y2 È y3;
In order to obtain a good balance between the popu-

lation diversity and convergence of the population, two 
different mutation strategies are performed in the "cur-
rent-to-rand/best/1" in step 2. In the first one, the "current-
to-rand/1" strategy is used to increase the global search of 
the algorithm, while the second one increases the conver-
gence rate of the population toward the global optimum. 
When the generation number is more than a threshold 
value, the second phase begins.
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2.3 Archiving-based adaptive tradeoff model (ArATM)
In constrained optimization, three possible situations may 
exist in a combined population, Ht, resulting from the com-
bination of the offspring population Qt and the parent pop-
ulation Pt. These situations are the infeasible, semi-feasi-
ble and feasible situations and each of them has different 
constraint-handling method in the ArATM. By perform-
ing the procedure described below, ArATM simultane-
ously satisfies the constraints and optimizes the objective 
function of the problem.

In the infeasible situation, since all individuals violate 
the constraints, the population should be guided toward 
the feasible region very quickly to maintain the popula-
tion diversity. For this purpose, the original problem trans-
formed to a bi-objective optimization problem and a good 
tradeoff between two objectives, the objective function 
and the degree of constraint violation is made. Moreover, 
the individuals that have no chance to survive into the next 
generation will be stored in an archive to compete with the 
individuals of the next combined population Ht + 1. In this 
way, the population diversity can be increased during the 
optimization process.

In the semi-feasible situation, the combined population 
contains both feasible and infeasible individuals. In this 
situation, the algorithm benefits from not only the feasible 
individuals but also some infeasible ones since they may 
have important information to find the global optimum. To 
fulfill this aim, by using an adaptive fitness transformation 
scheme, some feasible individuals with small fitness val-
ues along with some infeasible individuals with both small 
degree of constraint violation and small fitness values are 
selected to survive into the next generation.

In the feasible situation, all individuals are feasible and 
the comparison between them is performed only based on 
their fitness values. Therefore, those with better fitness 
value constitute the next population.

3 Reliability and reliability based design optimization
3.1 Archiving-based adaptive tradeoff model (ArATM)
The Failure probability of a limit state function (or failure 
mode) can be calculated using a probabilistic reliability 
analysis:

P P G X f X dXf XG X
= ( ) ≤( ) = ( )

( )≤∫0
0

,  (9)

where Pf is the failure probability, G(X) indicates the limit 
state function which is a function of random variables X, 
and fX(X) is the joint probability density function of X. 
The reliability R is defined as

R Pf= −1 .  (10)

Because of some difficulties in computing the above 
multi-dimensional integral [48], one of the most com-
monly used approximation methods called first order reli-
ability method (FORM) is used in this study. The ease of 
the computational difficulties is provided through the sim-
plifying the integrand fx(x) and approximating G(X). First, 
the shape of the fx(x) is simplified by mapping X into the 
independent standard normal space (i.e. U-space) [49]:

Φ ΦU F X U F X i ni X i i X ii i
( ) = ( ) = ( )  = …, , , , ,

-1
1 2 , (11)

in which FXᵢ and Φ–1 are cumulative distribution function 
(CDF) and inverse standard normal CDF, respectively. The 
limit state function can be written in U-space as follows

G X G T U G U( ) = ( )( ) = ( ),  (12)

where T indicates a probability transformation and G(U) 
is the transformed limit sate function in the U-space. Note 
that, for transformation, methods such as Rosemblatt 
[49], Nataf [50] or linear [48] transformation can be used 
based on the correlation between the random variables. 
Next, the limit state function is approximated by the first 
order Taylor expansion at a point with the highest proba-
bility density on the limit state function in U-space [51]. 
Geometrically, it is a point, namely the most probable 
point (MPP), with the shortest distance from the origin of 
U-space to G(U) = 0. This minimum distance determines 
the reliability index [52]:

β =

( ) =






min

. .

,
U
U

s t G U 0
 (13)

where β is the reliability index. Now, failure probability in 
Eq. (9) can be determined by the following equation:

Pf = −Φ( ),β  (14)

where Φ is the standard normal CDF. It should be noted 
that, In order to use FORM for variables with non-normal 
distribution, we can use their equivalent mean and equiv-
alent standard deviation [53].

3.2 Reliability analysis for random variables with both 
random and interval variables
When both random and interval variables are involved in 
a structure, the limit state function G(X) will be changed 
to G(X, Y) where Y is an m-dimensional vector containing 
all the interval variables [39]:
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Y Y Y Y Y Y i mL R
i i

L
i
R∈  ∈   = …, , , , , , .1 2  (15)

Therefore the limit state function is related to not only the 
random variables X but also the interval variables Y. More- 
over, due to the interval variables, the transformed limit 
state described by G(X, Y) = 0 will not be a single surface, 
but a strip enclosed by two bounding surfaces SL and SR .

S G X Y S G X YL Y R Y
: min , , max ,:( ) = ( ) =0 0  (16)

As shown in Fig. 1, SL and SR are respectively the lower 
and upper bounding surfaces of G(X, Y) as Y changes. 
Jiang et al. [39] proposed that for each bounding surface, 
we can obtain reliability indexes through FORM and 
define a hybrid reliability index βh:

β β βh L R∈ , ,  (17)

where βL and βR indicate the reliability index of the lower 
and upper bounding surfaces, respectively. βh is not a deter-
ministic value but a possible variation range of the reli-
ability index formed by interval parameters Y. Moreover, 
the failure probability of the structure will belong to an 
interval.

P P Pf f
L

f
R L R∈  = −( ) −( ) , ,φ β φ β  (18)

Since a strict reliability requirement can be satisfied 
only by focusing on the worst case, our most concern in 
this study is practically the upper bound of this interval. 
Therefore, according to Eqs. (17) and (18), only βL or Pf

R 
should be determined to show the reliability degree of a 
structure. By using Eqs. (13) and (16), the following opti-
mization problem can be solved to compute βL.

β L

U

L Y

U

subject to S G U Y

=

= ( ) =
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
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: min , 0
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This problem can be decomposed into the following 
two-layer nesting optimization: 

Outer-layer optimization
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Inner-layer optimization
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The inner-layer optimization is used to find the extreme 
values of the limit-state function in terms of Y, and Y* 
indicates the corresponding optimum values for interval 
variables. For practical engineering problems, solving 
the above nesting optimization leads to an extreme com-
putational cost. Jiang et al. [39] proposed an equivalent 
model for the above hybrid reliability with both random 
and interval variables, which is a conventional reliability 
analysis problem with only random variables. Hence, only 
through evaluating the reliability of the equivalent model 
the original hybrid reliability can be easily computed.

Their equivalent model is based on changing the interval 
variables to corresponding uniform distributions. Therefore, 
a hybrid reliability problem with random variables X and 
interval variables Y can be changed to a conventional reli-
ability problem with only random variables. By satisfying 
Karush–Kuhn–Tucker necessary condition [54], they math-
ematically proved that the original problem and the equiv-
alent problem have a same solution of X and Y when using 
the FORM to compute their reliability.

3.3 System reliability analysis for truss structures
For a truss structure, a member fails when the internal 
force exceeds the strength of the member. It can be writ-
ten as follows:

G R A Si i i i= − ,  (22)

where Ri is the allowable stress, Ai and Si are respectively 
the cross sectional areas and the internal force of the i-th 
member. By using the FORM, failure probability of mem-
ber i can be evaluated as follows:

P P Gi i i= ( ) = −( )≤ 0 Φ β ,  (23)

where βᵢ is the reliability index for i-th member. The inter-
nal force vector can be formulated as [1]:

S b Li
j

l

ij j=
=
∑
1

3

,  (24)
Fig. 1 Limit-state strip by considering the interval variables
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where Lj is the external load applied to the structure, l is 
the number of nodes and bij is the load coefficient of mem-
ber i with respect to Lj. For a statically determinate truss, 
bij are constant while those of a statically indeterminate 
truss become functions of Ai. According to the nature of 
the structure, system failure occurs in parallel, series or a 
combination of both. For parallel failure, the system fail-
ure takes place when all failure modes in that system fail. 
While for series system, system failure results from the 
failure in any failure mode.

In case of a statically determinate truss, failure of the 
structure happens when any member fails. Therefore, the 
structural failure probability is estimated by modeling the 
structural system as a series system. However, in case of 
a statically indeterminate truss, estimating of the struc-
tural failure is very complex because failure of a member 
will not always result in failure of the whole system. In 
this case, we deal with a system composed of combinations 
of series and parallel subsystems. When failure of a mem-
ber occurs, redistribution of loads takes place and thus the 
external loads are sustained by the members in survival. 
By repeating this process, system failure of the structure 
results when a specified number of members are failed 
and structure is turned into a mechanism. Failure of the 
structure is defined by investigating the singularity of the 
total structure stiffness matrix formed by the remaining 
members. After failure in p members, by using the matrix 
method, stress analysis is carried out and the internal forces 
of the remaining members are determined as follows [1]:

S b L a r a r
i e e

j

l

ij j ie e ie ee p p p1 2 1 1

1

3

, , ,
,

( )
=

= − −…−∑  (25)

where suffix (e1, e2, …, ep) shows a failure path including 
a set of failed members and their sequential order of fail-
ure, aij are the coefficients of influence and rj indicated the 
residual strength of the j-th failed member. It should be 
noted that, the residual strength for a member of a brittle 
material is zero, while for a member of a ductile material 
is equal to yield strength (in tension) or buckling strength 
(in compression). 

In this study, we utilize one of the most popular appro-
aches called branch and bound method, to find system 
failure probability of statically indeterminate trusses. It is 
based on the failure paths which result in a failure mode. 
In this method, lower and upper bounds of the structural 
failure probability are determined by selecting dominant 
failure paths and discarding the failure paths that have 
negligible occurrence probability. 

Note that due to the large number of failure modes and 
the complexity of the calculation of the real statistical cor-
relation between the failure modes, especially in the stat-
ically indeterminate truss structures, the Cornell’s upper 
bound [55] is utilized to evaluate the system failure proba-
bility in this study for simplicity. However, for taking into 
account the real statistical correlation between the failure 
modes, Ditlevsen's bound can be used [56]. For statically 
determinate truss, it is equal to the sum of the failure prob-
ability of the members; while for statically indeterminate 
truss, it is equal to the sum of the upper bound of each 
failure path. 

3.4 Reliability based design optimization
RBDO formulations can be classified into component 
and system reliability. In the first one, only one single 
structural member with a single failure mode is investi-
gated. However, in a real structure, more than one mem-
ber can fail because of the existence of a large number 
of possible failure modes. In order to obtain the second 
one, it is required to know the component reliability and 
the relationship between the system and its components. 
Optimization problem under the component reliability 
constraints can be stated as [57, 58]:

min

:

,

W L A

Subject to P P

i i
i

m

i i
t

=

≤




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


=
∑ρ
1  (26)

where W is the weight of the structure, ρ is the density of 
the material, Li, Ai are the length and cross-section area of 
member i, respectively; Pi and Pi

t are respectively the fail-
ure probability and the target failure probability of mem-
ber i. For system reliability based optimization, the above 
formulation can be expressed as follows:

min

:

.

W L A

Subject to P P

i i
i

m

t
sys sys
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


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


=
∑ρ
1  (27)

In which Psys and Psys
t  are the failure probability and the 

target failure probability of the system. RBDO is based 
on three parts, including structural analysis, optimization 
procedure and reliability analysis. The first one is needed 
to obtain the response of the structure; the second one is 
used to find the design variables with minimum objective 
function; and the last one is performed to compute the 
reliability constraints of the RBDO. There are different 
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strategies in the literature to link these parts together, e.g., 
single-loop, double-loop and decoupled, each having its 
own advantages and disadvantages. 

Single-loop and decoupled strategies, despite the 
acceptable computational efficiency, have some disadvan-
tages that limit their usage. Both of them avoid the reli-
ability analysis by defining equivalent optimality condi-
tions. In single-loop strategies, the most probable point is 
approximated based on approximation methods such as 
lower-order polynomial functions or derivatives of the per-
formance functions. Since they are approximation meth-
ods, there is no guarantee to obtain accurate results [6]. 
Decoupled strategies break the reliability analysis and the 
optimization procedure into sequential cycles. In these 
methods, the original problem is transformed to a deter-
ministic optimization with constraints that are changed 
based on the reliability analysis cycle. They begin with a 
deterministic optimum and then try to find a close feasible 

solution satisfying the reliability constraint. When there 
exists multiple local optima and the reliable solution is not 
close to the deterministic optimum, they cannot provide 
satisfactory performance [6]. 

Although it suffers from the computational effort com-
pared to other strategies, we use the double-loop strategy 
based on the reliability index approach (RIA) because of 
its simplicity and accuracy [59–61]. 

As shown in Fig. 2, the double-loop strategy is a nested 
optimization problem where the inner loop deals with reli-
ability assessment and structural analysis, while the outer 
loop deals with the minimization of the objective function. 
In this work, we utilize ICDE optimization algorithm in 
the outer loop of the RBDO. The process of solving RBDO 
problems is briefly described with the following steps: 

1. Generate an initial parent population (Pt) with μ indi-
viduals, which are selected uniformly and randomly 
from the search space. 

Fig. 2 Flowchart of RBDO using ICDE algorithm
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2. Perform the system reliability analysis for each indi-
vidual as follows:
(i) Generate the limit state function for each member 
of the truss structure using Eqs. (22) and (25).
(ii) Using Eq. (13), calculate the reliability index (or 
probability of failure) for each limit state functions 
defined before. If there are interval variables, change 
them to their related uniform distributions.
(iii) Calculate the failure probability of the system 
using Cornell's upper bound.

3. Compute the objective function (i.e. weight of each 
individual or the truss structure), constraint viola-
tion (i.e. the difference between the maximum allow-
able of structural system failure probability and the 
failure probability of the system) for each individual. 

4. Generate the offspring population (Qt) with λ off-
spring by performing IDE on all the individuals in Pt 
(see Section 2.2).

5. Execute step 2 for each individual in Qt.
6. Combine Pt with Qt to obtain a combined popula-

tion (Ht).
7. Select μ potential individuals from Ht to form the next 

population by ArATM strategy (see Section 2.3).
8. Check the termination criterion. If it is not satisfied 

go to Step 4; otherwise, stop and output the best indi-
vidual in Pt.

4 Numerical results
In this section, several engineering design problems taken 
from the literature are investigated. Since the execution of 
the system reliability analysis for each individual (i.e., each 
truss structure) in the double-loop strategy is a time con-
suming process, the inner loop (see Fig. 2) is performed in 
parallel. The computing machine used for this work con-
sists of an Intel Xeon at 2.9 GHz with 40 cores and 40 GB 
RAM. The ICDE algorithm is coded in MATLAB program-
ming software and the parameters are set as follows: μ = 
20, CR = 0.8, F = 0.9 and δ = 0.0001. μ, CR, F and δ are 
the population size, the crossover control parameter, a uni-
formly distributed random number between 0 and 1, and the 
tolerance value for the equality constraints respectively in 
the ICDE algorithm [39]. The optimization process will be 
terminated when there is no improvement of the solutions 
after 150 iterations. Note that, for all considered truss struc-
ture examples, failure of the members is assumed to occur 
under tension or compression. However, the allowable ten-
sion and compression stresses are taken to be the same.

4.1 Reliability assessment of engineering problems
4.1.1 A cantilever beam
As shown in Fig. 3, consider a cantilever beam which is 
Subjected to a horizontal force Px and a vertical force Py. 
The limit state function according to maximum stress at 
the fixed end of the beam is defined as follows [39]:

G b h P P S P L
b h

P L
bhx y

x y
, , , ,( ) = − −

6 6

2 2
 (28)

where b, h and L indicate the width, height of the cross 
section and the length of the beam, respectively; S denotes 
the yield strength which is equal to 320 MPa. As shown 
in Table 1, while b, h and L are random variables follow-
ing normal distribution, Px and Py are treated as interval 
variables.

From the percentage values proposed in Table 2, it can 
be seen that our result is better than those reported in the 
previous studies.

The main reason why we obtain a smaller value for βL is 
that we utilize a robust meta-heuristic algorithm, ICDE, in 
this paper to solve Eq. (13); while in the previous studies a 
traditional gradient based algorithm, HL-RF, is used which 
can be most likely trapped in a local optimum solution.

4.1.2 A cantilever tube
In this example, the reliability analysis of a cantilever tube 
proposed in Fig. 4 is performed under three external loads 
F1, F2 and P, and a torsion T. The maximum von-Mises 
stress σmax on the top surface of the tube at the origin should 
be less than a yield strength Sy. The limit state function is 
defined as follows [39]:

Fig. 3 A cantilever beam [39]

Table 1 Uncertain variables for the cantilever beam

Type of 
variable

Random 
variables

Distribution 
parameter 1

Distribution 
parameter 2

μ σ

Normal

b (mm) 100 15

h (mm) 200 20

L (mm) 1000 100

Lower bound Upper bound

Interval
Px (N) 47000 53000

Py (N) 23000 27000



Zaeimi and Ghoddosain
Period. Polytech. Civ. Eng., 64(1), pp. 42–59, 2020|51

Table 2 Reliability analysis for the cantilever beam

b (mm) h (mm) L (mm) Px (N) Py (N) βL Percentage 
Decrease

This work 78.8211 25037.04 50200.9 1039.05 189.9932 78.8211 -

Equivalent 
model [39] 75.7 27000 53000 1044.7 188.8 75.7 12.43 %

SSL [39] 73.7 25080 50454.08 1046.8 188.3 73.7 18.54 %

g Sy maxX( ) = −σ ,  (29)

where σmax is defined as follows:
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σx, τzx, M, A and I are respectively the normal stress, tor-
sional stress, bending moment, area and moment of iner-
tia; which can be given by:
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Uncertain variables are described in Table 3. In this 
problem parameters t, d, P, T and Sy are described by ran-
dom variables, and L1 and L2 are treated as interval vari-
ables. According to the results which are shown in Table 4, 
our result is superior compared to those drawn from the 
literature in the sense of the reliability index. 

Table 3 Uncertain variables for the cantilever beam

Type of 
variable Random variables Distribution 

parameter 1
Distribution 
parameter 2

Normal

μ σ

t (mm) 5 0.1

d (mm) 42 0.5

P (N) 12000 1200

T (N.m) 90 9

Sy (MPa) 220 22

Lower bound Upper bound

Interval
L1 (mm) 110 130

L2 (mm) 50 70

A B

Uniform
θ1 0 10

θ2 5 15

u α

Type I 
extreme value

F1 (N) 3000 300

F2 (N) 3000 300

Cumulative distribution function for Type I extreme value and uniform

distribution are exp exp− −
−


















X u
α

 and X A
B A
−
−

, respectively.

Table 4 Reliability analysis for the cantilever tube

This work Equivalent model [39] SSL [39]

β 3.08 3.42 3.69

Percentage 
Decrease - -9.94 % –16.53 %

t (mm) 4.98 4.97 4.97

d (mm) 41.77 41.70 41.70

P (N) 12258.46 12310.00 12338.00

T (N.m) 90.15 90.00 90.00

Sy (MPa) 169.80 168.00 162.00

θ1 4.97 4.92 4.93

θ2 9.97 9.90 9.91

L1 (mm) 122.88 130.00 125.00

L2 (mm) 62.38 70.00 65.00

F1 (N) 3989.39 3436.00 3473.00

F2 (N) 3334.55 3468.00 3472.00

Fig. 4 A cantilever tube [39]
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4.1.3 Statically indeterminate 6-member truss structure
In this example, we consider a statically indeterminate 
6-member truss with one degree of redundancy as shown 
in Fig. 5. The material density and the modulus of elasticity 
are respectively 2700 kg/m3 and 70.6 GPa. The cross-sec-
tional areas of the members are equal to 2.3 cm2 [62]. It is 
assumed that the yield stress and applied loads are stati-
cally independent with normal distribution. Table 5 shows 
the distribution parameters of uncertain variables.

Since it is a statically indeterminate structure, we use 
branch and bound method to determine failure paths and 
their corresponding failure probabilities. Due to the uncer-
tain applied loads and yield stresses, members may prob-
ably fail in tension or compression. There are 30 potential 
failure modes for this structure, e.g. (2+→6+), (5–→6+), etc., 
where superscripts + and – indicate tension and compres-
sion, respectively. 

The dominant failure modes and their corresponding 
β-value are listed in Table 6. As can be observed from the 
percentage change in this table, our results are better than 
or equal to those reported in the work by Shao and Murotsu 
[62] in term of the reliability index of each failure path.

4.2 System reliability based design optimization with 
interval variables
In order to performing system RBDO, the branch and 
bound method and an equivalent model are utilized to 
determine the system failure probability of each individ-
ual in the ICDE algorithm (i.e. each solution candidate). 
It should be noted that the failure probability of the struc-
tural system Psys should be less than or equal to the target 
system failure probability Psys

t .

4.2.1 Statically indeterminate 6-member truss structure
In this example, the system RBDO of the 6-member truss 
structure shown in Fig. 5 is investigated. The cross-sec-
tional areas are continuous variables which are taken from 
the interval [0,10] [1]. By assuming that the yield stress 
and applied loads are statistically independent normal 

random variables, for two values of Psys
t , weight optimiza-

tion of the structure is performed under different cases of  
interval variables. 

As shown in Table 7, each case indicates that which 
variable is defined by an interval. They are defined as fol-
lows: (1) the yield stress of the members (2) the external 
loads (3) both of the yield stress of the members and exter-
nal loads. Note that when uncertainty level (α) is equal 
to zero, the corresponding variable is treated as a random 
variable with normal distribution.

The results are presented in Tables 8–9 and Figs. 6–7. 
Note that the percentage values in tables indicate the per-
centage change in the optimum weight for different levels 
of uncertainty. It can be found that for both values of Psys

t , 
the optimum weight of the structure shows a falling-rising 
behavior by increasing the uncertainty level value. 

Since the interval variables are changed to the corre-
sponding uniform distributions (see Section 3.2) and the 
equivalent mean and equivalent standard deviation of 
variables with non-normal distribution are used in the 
FORM (see Section 3.1), this behavior can be traced to the 
equivalent standard deviation. It should be noted that the 
equivalent mean of a variable with uniform distribution 
is the same as the mean value of a variable with normal 
distribution.

Fig. 5 Statically indeterminate 6-member truss structure [62]

Table 5 Distribution parameters for uncertain variables of statically 
indeterminate 6-member truss structure [62]

Variable Distribution µ Coefficient of 
variation

Load (KN)

L1 Normal 50 0.2

L2, L4 Normal 50 0.2

L3, L5 Normal 50 0.2

Yield stress 
(KN/cm2) σyield Normal 27.60 0.05

Table 6 Dominant failure modes for statically indeterminate 6-member 
truss structure

Failure path This work Ref [62] Percentage change

2+→6+ 3.05273 3.05279 –0.00197

1+→6+ 3.44798 3.44789 0.00261

5–→6+ 4.87714 4.87714 0

2+→3+ 6.99760 6.99763 –0.00043

1+→3– 8.12484 8.12484 0

3–→5– 9.97030 9.97309 –0.02798

2+→4– 10.08970 10.08970 0

1+→4– 11.18300 11.18300 0

4–→5– 12.65880 12.65880 0

4+→6+ 15.02090 15.02090 0
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For each case and Pf
max = 0 1. , the changes of equiva-

lent standard deviation (σeq) are presented in Figs. 8–10. 
Variables with numbers 1 to 6 are related to the yield stress 
of members of the truss; and those with numbers 7 to 11 
are corresponded to the applied loads. Note that for α = 0, 
all uncertain variables have normal distributions and there 
is no interval variables.

For case 1 in Fig. 8, it can be observed that there is a 
direct relationship between the σeq and optimum weight 
of the structure. For a certain value of α, if the equivalent 
standard deviation is less than the corresponding value for 
α = 0, the optimum weight decreases. For instance, from 
α = 0 % to α = 5 %,the optimin weight is decreased from 
3.610 to 3.578 due to the reduction of σeq. On the contrary, 
for α ≥ 10 %, the optimin weight is increased by increasing 
the equivalent standard deviation. Similar behavior can be 
seen for case 2 in Fig. 9, where applied loads are defined 
with intervals. In this case, decreasing of the optimum 
weight is occurred for α ≥ 5 %.

From Fig. 10 for case 3, for all values of α, the equiv-
alent standard deviations of the applied loads indicates a 

Table 7 Uncertain variables for the 6-member truss structure

Case # Variable Interval
Normal Distribution

μ Coefficient of variation

1
Load (kN)

L1 - 50 0.2

L2, L3 - 30 0.2

L4, L5 - 20 0.2

Yield stress (kN/cm2) σyield [27.6 (1 – α), 27.6 (1 + α)] - -

2
Load (kN)

L1 [50 (1 – α), 50 (1 + α)] - -

L2, L3 [30 (1 – α), 30 (1 + α)] - -

L4, L5 [30 (1 – α), 30 (1 + α)] - -

Yield stress (kN/cm2) σyield - 27.60 0.05

3
Load (kN)

L1 [50 (1 – α), 50 (1 + α)] - -

L2, L3 [30 (1 – α), 30 (1 + α)] - -

L4, L5 [30 (1 – α), 30 (1 + α)] - -

Yield stress (kN/cm2) σyield [27.6 (1 – α), 27.6 (1 + α)] - -
α is the uncertainty level

Table 8 System reliability based design optimization of the 6-member truss structure with 

α (%) 0 5 10 15 20 25 Case #

Weight (kg)

3.610 3.579 (–0.9%) 3.627 (0.5%) 3.709 (2.7%) 3.825 (6.0%) 3.978 (10.2%) 1

3.610 2.861 (–20.7%) 2.861 (–20.7%) 3.082 (–14.6%) 3.213 (–11.0%) 3.345 (–7.3%) 2

3.610 2.772 (–23.2%) 2.993 (–17.1%) 3.230 (–10.5%) 3.482 (–3.5%) 3.761 (4.2%) 3

Table 9 System reliability based design optimization of the 6-member truss structure with 

α (%) 0 5 10 15 20 25 Case #

Weight (kg)

3.958 3.907 (–1.3%) 3.984 (0.7%) 4.116 (4.0%) 4.310 (8.9%) 4.576 (15.6%) 1

3.958 2.970 (–25.0%) 3.100 (–21.7%) 3.256 (–17.7%) 3.426 (–13.4%) 3.605 (–8.9%) 2

3.958 2.842 (–28.2%) 3.145 (–20.5%) 3.477 (–12.2%) 3.853 (–2.7%) 4.287 (8.3%) 3

Fig. 6 Effect of the uncertainty levels on the optimum weight of the 
6-member truss structure with Psys

t = 0 1.

Fig. 7 Effect of the uncertainty levels on the optimum weight of the 
6-member truss structure with Psys

t = 0 01.
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reduction behavior, while those of the yield stress of the 
members are decreased only for α ≤ 5 %. In this case, 
decreasing of the optimum is observed for the uncertainty 
levels between 5 % to 20 %.

4.2.2 Statically indeterminate 16-member truss 
structure
Consider a statically indeterminate 16-member truss 
with three degree of redundancy shown in Fig. 11. The 
Young's Modulus E, the density ρ, and the lengths L1 and 
L2 are respectively 206 GPa, 2700 kg/m3, 121.9 cm and 
91.44 cm [21]. The cross-sectional areas are continues 
design variables taken from [0,15]. Uncertain variables are 
listed in Table 10 and it is assumed that the yield stress and 
applied loads are statistically independent. For two values 
of Psys

t , the size optimization of the truss structure is per-
formed under the same cases that defined in the previous 
example.

For different uncertainty levels, the optimum weight 
and cross sectional areas of the structure are presented 
in Tables 11–13. In addition, the changes of the optimum 
weight with respect to changes in uncertainty level are 
shown in Figs. 12–13.

Fig. 8 Effect of the equivalent standard deviation on the optimum 
weight of the 6-member truss structure with Psys

t = 0 1.  case 1

Fig. 9 Effect of the equivalent standard deviation on the optimum 
weight of the 6-member truss structure with Psys

t = 0 1.  for case 2

Fig. 10 Effect of the equivalent standard deviation on the optimum 
weight of the 6-bar truss structure with Psys

t = 0 1.  for case 3 Fig. 11 Statically indeterminate 16-member truss structure [21]

Table 10 Uncertain variables for the 6-member truss structure

Case # Variable Interval
Normal Distribution

μ Coefficient of variation

1
Load (kN) P - 44.45 0.1

Yield stress (kN/cm2) σyield [27.6 (1 – α), 27.6 (1 + α)] - -

2
Load (kN) P [44.45 (1 – α), 44.45 (1 + α)] - -

Yield stress (kN/cm2) σyield - 27.60 0.1

3
Load (kN) P [44.45 (1 – α), 44.45 (1 + α)] - -

Yield stress (kN/cm2) σyield [27.6 (1 – α), 27.6 (1 + α)] - -

α is the uncertainty level
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Table 11 System reliability based design optimization of the 16-member truss structure for case 1

Psys
t 10–1 10–5

α (%) 0 5 10 15 20 25 0 5 10 15 20 25

A1 2.904 1.667 1.444 2.848 1.730 2.159 3.525 2.373 2.553 2.719 3.529 4.257

A2 6.926 5.638 5.464 6.682 6.447 6.946 9.461 6.826 7.285 8.111 9.909 11.723

A3 4.222 4.979 5.474 4.167 6.049 6.048 5.606 5.073 5.306 6.041 6.447 7.811

A4 3.529 2.033 1.814 3.396 2.070 2.538 4.305 2.932 3.132 3.340 4.267 5.060

A5 7.440 7.398 7.761 7.280 8.724 9.076 9.983 8.121 8.678 9.940 11.445 14.439

A6 1.097 1.406 1.313 1.203 2.288 2.022 0.979 1.029 1.191 1.485 1.473 2.217

A7 3.844 3.607 4.140 3.657 4.048 4.660 5.273 4.149 4.341 4.860 5.757 6.967

A8 2.309 1.484 0.955 2.363 2.036 2.034 2.280 1.645 1.939 2.141 2.398 3.138

A9 3.338 3.358 4.150 3.046 3.573 4.123 4.700 3.911 4.024 4.403 5.149 5.893

A10 3.165 2.472 2.198 3.249 3.211 3.407 3.668 2.845 3.145 3.469 3.904 4.654

A11 0.379 0.598 0.628 0.377 0.700 0.995 0.657 0.686 0.568 0.588 0.788 1.349

A12 1.673 1.298 0.985 1.692 1.813 1.991 1.797 1.475 1.546 1.687 1.881 2.444

A13 0.431 0.515 1.165 0.258 0.360 0.457 0.993 0.695 0.794 0.924 1.156 1.366

A14 2.622 2.155 1.601 2.764 2.852 3.043 2.833 2.407 2.496 2.699 2.976 3.703

A15 0.277 0.325 0.720 0.162 0.240 0.306 0.653 0.475 0.493 0.592 0.738 0.905

A16 0.354 0.411 0.897 0.230 0.303 0.383 0.827 0.577 0.639 0.761 0.952 1.132

weight (kg) 14.085 12.440
(-11.7%)

12.897
(-8.4%)

13.724
(-2.6%)

14.667
(4.1%)

15.850
(12.5%) 18.108 14.290

(-21.1%)
15.201

(-16.1%)
16.946
(-6.4%)

19.73
(9.0%)

24.199
(33.6)

Table 12 System reliability based design optimization of the 16-member truss structure for case 2

Psys
t 10–1 10–5

α (%) 0 5 10 15 20 25 0 5 10 15 20 25

A1 2.904 1.963 1.700 1.836 2.868 2.541 3.525 2.914 2.845 3.081 3.116 3.531

A2 6.926 6.000 5.886 6.205 6.903 7.006 9.461 8.414 8.409 8.809 9.066 9.471

A3 4.222 5.235 5.545 5.502 4.400 4.855 5.606 5.787 6.064 6.051 6.305 6.166

A4 3.529 2.299 2.063 2.246 3.460 3.228 4.305 3.558 3.499 3.736 3.812 4.239

A5 7.440 7.791 8.109 8.095 7.594 8.075 9.983 9.986 10.251 10.360 10.725 10.800

A6 1.097 1.823 1.814 1.793 1.160 1.302 0.979 1.371 1.455 1.361 1.449 1.615

A7 3.844 3.630 3.885 3.990 4.011 4.306 5.273 4.854 4.994 5.159 5.342 5.401

A8 2.309 2.002 1.693 1.808 2.349 2.105 2.280 2.047 2.088 2.160 2.312 2.705

A9 3.338 3.201 3.616 3.658 3.423 3.800 4.700 4.389 4.486 4.641 4.797 4.734

A10 3.165 2.837 2.701 2.868 3.187 3.215 3.668 3.200 3.328 3.530 3.766 4.236

A11 0.379 0.514 0.758 0.743 0.395 0.498 0.657 0.532 0.557 0.608 0.700 0.681

A12 1.673 1.592 1.660 1.661 1.657 1.625 1.797 1.584 1.598 1.712 1.857 2.113

A13 0.431 0.271 0.352 0.417 0.510 0.759 0.993 0.891 0.980 0.994 1.014 0.942

A14 2.622 2.515 2.561 2.591 2.667 2.561 2.833 2.495 2.549 2.715 2.963 3.365

A15 0.277 0.181 0.220 0.263 0.318 0.489 0.653 0.596 0.628 0.648 0.664 0.597

A16 0.354 0.213 0.281 0.349 0.446 0.619 0.827 0.753 0.800 0.841 0.844 0.755

weight (kg) 14.085 13.311
(-5.5%)

13.557
(-3.7%)

13.928
(-1.1%)

14.362
(2.0%)

14.856
(5.5%) 18.108 16.789

(-7.3%)
17.164
(-5.2%)

17.750
(-2.0%)

18.491
(2.1%)

19.333
(6.8%)
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It can be see that the optimum weight of the structure is 
falling and then rising by increasing the uncertainty level. 
Therefore, it is affected not only by the uncertainty level 
but also by the equivalent standard deviation, like the pre-
vious example. For each case, increasing of the optimum 
weight is occurred for values of  equal or greater than 
20 %. In addition, the maximum and minimum reduc-
tion of the optimum weight is observed for α = 0.05 and, 
α = 0.15 respectively. 

5 Conclusions
Traditional system reliability based design optimization 
(RBDO) of truss structures is generally focused on describ-
ing uncertainty by probability approach that requires a 
large amount of information to determine precise distribu-
tions of uncertain variables. In this study, the first hybrid 
uncertain model is applied to the system RBDO of trusses. 
All uncertain variables are described by random distribu-
tions but those lack information are defined by variation 
intervals. For all the considered structural problems, the 
effect of the uncertainty level on the optimum weight of 
the truss is investigated for different cases. Each case indi-
cates that which variable, applied loads or yield stress of 
the members, is defined by an interval. The results show 

Fig. 12 Effect of the uncertainty levels on the optimum weight of the 
16-member truss structure with Psys

t = 0 1.

Fig. 13 Effect of the uncertainty levels on the optimum weight of the 
16-member truss structure with Psys

t = −
10

5

Table 13 System reliability based design optimization of the 16-member truss structure for case 3

Psys
t 10–1 10–5

α (%) 0 5 10 15 20 25 0 5 10 15 20 25

A1 2.904 2.143 2.406 2.005 1.784 2.363 3.525 2.236 2.516 2.606 3.463 4.430

A2 6.926 5.504 5.996 6.199 6.411 7.415 9.461 5.928 6.986 7.899 9.900 12.309

A3 4.222 3.815 3.989 5.064 6.056 6.053 5.606 4.146 4.780 6.066 6.721 8.024

A4 3.529 2.649 2.918 2.411 2.105 2.787 4.305 2.794 3.100 3.175 4.156 5.208

A5 7.440 6.244 6.741 7.713 8.705 9.224 9.983 6.753 7.952 9.892 11.782 14.913

A6 1.097 0.644 0.903 1.442 2.187 1.958 0.979 0.723 0.991 1.539 1.662 2.231

A7 3.844 3.263 3.466 3.965 4.265 4.806 5.273 3.444 3.955 4.806 5.813 7.279

A8 2.309 1.322 1.772 1.664 2.016 2.148 2.280 1.367 1.791 2.070 2.535 3.263

A9 3.338 3.126 3.139 3.646 3.769 4.240 4.700 3.291 3.666 4.328 5.110 6.203

A10 3.165 2.195 2.575 2.763 3.228 3.540 3.668 2.263 2.888 3.316 4.078 5.059

A11 0.379 0.411 0.323 0.764 0.818 1.031 0.657 0.373 0.390 0.544 0.751 1.241

A12 1.673 1.124 1.283 1.569 1.836 2.071 1.797 1.110 1.328 1.605 2.006 2.628

A13 0.431 0.470 0.469 0.422 0.424 0.573 0.993 0.646 0.747 0.895 1.139 1.468

A14 2.622 1.791 2.084 2.480 2.889 3.172 2.833 1.758 2.175 2.597 3.150 3.969

A15 0.277 0.290 0.298 0.268 0.273 0.375 0.653 0.401 0.454 0.580 0.754 1.009

A16 0.354 0.407 0.389 0.343 0.352 0.472 0.827 0.505 0.593 0.752 0.955 1.231

weight (kg) 14.085 11.203
(-20.5%)

12.263
(-13.0%)

13.502
(-4.1%)

14.895
(5.8%)

16.496
(17.1%) 18.108 11.936

(-34.1%)
13.985

(-22.8%)
16.599
(-8.3%)

20.110
(11.1%)

25.247
(39.4%)
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that the optimum weight of the structure is falling and 
then rising by increasing the uncertainty level. In order to 
investigate this behavior, the effect of the equivalent stan-
dard deviation on the optimum weight is considered. In 
our future work, we intend to consider both the first and 

second hybrid uncertain model to system RBDO problems 
of truss structures. In addition, we intend to use Ditlevsen's 
bound and consider the real statistical correlation between 
failure modes, because correlation between failure modes 
is neglected in Cornell's bound.
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