
Cite this article as: Ábrahám, Gy., Auer, P., Dósa, Gy., Dulai, T., Werner-Stark, Á. "A Reinforcement Learning Motivated Algorithm for Process Optimization",
Periodica Polytechnica Civil Engineering, 63(4), pp. 961–970, 2019. https://doi.org/10.3311/PPci.14295

https://doi.org/10.3311/PPci.14295
Creative Commons Attribution b |961

Periodica Polytechnica Civil Engineering, 63(4), pp. 961–970, 2019

A Reinforcement Learning Motivated Algorithm for Process
Optimization

Gyula Ábrahám1*, Peter Auer2, György Dósa1, Tibor Dulai1, Ágnes Werner-Stark1

1 Faculty of Information Technology, University of Pannonia,
 Egyetem str. 10., 8200, Veszprém, Hungary
2 Department of Mathematics and Information Technology, University of Leoben,
 Franz-Josef str. 18, 8700, Leoben, Austria
* Corresponding author, e-mail: abraham.gyula@virt.uni-pannon.hu

Received: 30 April 2019, Accepted: 14 August 2019, Published online: 27 September 2019

Abstract

In process scheduling problems there are several processes and resources. Any process consists of several tasks, and there may be

precedence constraints among them. In our paper we consider a special case, where the precedence constraints form short disjoint

(directed) paths. This model occurs frequently in practice, but as far as we know it is considered very rarely in the literature. The goal is

to find a good resource allocation (schedule) to minimize the makespan. The problem is known to be strongly NP-hard, and such hard

problems are often solved by heuristic methods. We found only one paper which is closely related to our topic, this paper proposes

the heuristic method HH. We propose a new heuristic called QLM which is inspired by reinforcement learning methods from the area

of machine learning. As we did not find appropriate benchmark problems for the investigated model. We have created such inputs

and we have made exhaustive comparisons, comparing the results of HH and QLM, and an exact solver using CPLEX. We note that a

heuristic method can give a "near optimal" solution very fast while an exact solver provides the optimal solution, but it may need a

huge amount of time to find it. In our computational evaluation we experienced that our heuristic is more effective than HH and finds

the optimal solution in many cases and very fast.

Keywords

process scheduling, reinforcement learning, scheduling, resource allocation

1 Introduction
We deal with an optimization problem that occurs e.g. in
an office. A typical example is a municipal, immigration,
or tax office where many documents are processed. We
divide the documents into two types. For the first type of
documents, the processing is easy, and any officer can do it.
The second type of documents is processed by some offi-
cer, but then in a second phase need to be checked by the
officer herself or by another officer.

Another typical example is the construction of a build-
ing. The construction can be split into several activities
like foundation, walling and engineering work, etc., and
there are precedence relations between them. Several
groups of workers may work on the construction and
the efficiency of these groups may vary for the different
activities. The activities should be distributed among the
working groups so that the construction is finished as
soon as possible.

A similar example is the reconstruction of a family
house. A team of workers with different skills comes to
the house for the reconstruction. The reconstruction com-
pany wants to assign activities to the workers such that the
work is finish as soon as possible.

We model the problem as scheduling tasks on unrelated
machines with precedence constraints. In the first men-
tioned application (i.e. office management) the officers or
workers correspond to the machines, and the processing
steps of the documents or the building activities corre-
spond to the tasks. For example, for the second type of
documents, there are two tasks, the processing and the
checking, and there is a precedence relation between them.
The machines are unrelated, which means that the officers
can handle the documents with different efficiencies.

Our problem belongs to the area of process schedul-
ing. In process scheduling problems, we consider several

http://
https://doi.org/10.3311/PPci.14295
mailto:abraham.gyula%40virt.uni-pannon.hu?subject=

962|Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019

processes, each consisting of several tasks, and a set of
resources. The resources need to be assigned to the tasks
of the processes such that several constraints are satisfied.
In our study, the objective is to minimize the overall exe-
cution time of all processes (the makespan).

Process scheduling is a computationally hard problem.
Such hard problems are often solved by heuristic meth-
ods. In this paper, we introduce a method that is motivated
by reinforcement learning. In the following section, we
introduce the relevant issues of scheduling to provide con-
text for our research. Then we briefly introduce reinforce-
ment learning and in particular Q-learning in Section 2. In
Section 3, we define the scheduling problem we are consid-
ering. Our proposed algorithm is presented in Section 4,
and it is computationally evaluated in Section 5. We finish
the paper with our conclusions in Section 6.

1.1 Scheduling
In this section we give a very short overview about the
scheduling problem we are considering. Generally, sched-
uling problems consist of two main components: the
resources and the tasks (jobs). The goal is to allocate the
resources to the tasks during certain time periods such
that some objective is optimized.

The resources can be machines, processing units,
humans, and so on. The tasks are the operations that must
be completed using the resources. The tasks may have pri-
ority levels, earliest start times or due dates. These param-
eters influence the scheduling. There are several types of
objectives, for example minimizing the lateness of tasks.
An excellent overview of scheduling can be found in [1].
We mention here also the seminal works of Graham [2, 3].

1.1.1 Scheduling unrelated machines with precedence
constraints
Scheduling unrelated machines minimizing the makespan
is a classical problem denoted by R||Cmax. Here job j on
machine Mi has processing time pij. Lenstra et al. [4] pres-
ent a polynomial-time 2-approximation algorithm for this
problem. The result is slightly improved by Shchepin and
Vakhania [5] who gave a (2 – 1/m)-approximation for m
machines. However, it is also proven in [4] that one can-
not get any worst-case ratio better than 3/2 unless P = NP.

In this paper, we consider the case where there are also
precedence constraints between some jobs. These prece-
dence constraints are given by a directed graph G. The
nodes of the graph correspond to the tasks and an oriented
edge means that the predecessor must be finished before

the successor can be started. We will consider only such
precedence constraints that are represented by a chain
graph, where the in-degree and the out-degree of any ver-
tex is at most one. This means that the graph is a union of
directed disjoint paths and isolated points.

Hermann et al. [6] and Liu and Yang [7] are the only
papers we are aware of that deal with unrelated machine
scheduling with precedence constraints represented by
chain graphs. In [6] three kinds of lower bounds (LB1,
LB2, and LB3) and several heuristics for this problem are
introduced. A case study on 33 inputs compares the solu-
tions of the heuristics to the maximum of the lower bounds.

Liu and Yang [7] propose a more efficient heuristic, and
their method is also applicable to more general problems
than those are considered here.

There are also several other papers on the topic, but we
think [6] is the only one which is comparable to our paper,
since only this paper considers chain-type precedence con-
straints (and provides results). In [7] the investigated prob-
lem is more general but the paper doesn't provide experi-
mental results for precedence constraints of this type.

Recently, there is considerable interest in new models
for scheduling unrelated machines. We list several such
models below.

In [8] the authors consider a difficult model called Team
Work Scheduling where from a set of workers we can cre-
ate working teams and under several constraints it is given
that the team is how effective to make some kind of job.
For any job we choose a team. This choice of the team
determines the processing time of the job, e.g. a bigger
team can execute the job faster. Any team can work only
one job at any time, and any job must be processed by
some team. The teams should be chosen so that the given
collection of jobs is made as soon as possible. This model
generalizes the unrelated scheduling model.

Another related model is called Multiprofessor
Scheduling [9]. In this model there are professors and
instructors and some teaching activities should be assigned
to them satisfying several constraints. The problem is a gen-
eralization of scheduling of unrelated machines since these
professors have different abilities to deliver the lessons.
For example, one is expert in Algebra and another profes-
sor is expert in Geometry. Moreover, for some lectures it
is required that some instructors must be also present (to
learn how to teach this subject). This case is very similar
to a construction where for example, for painting the walls
a master and a utility worker are needed. The paper gives
complexity results and approximation algorithms.

Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019 |963

A special model of Multiprofessor Scheduling is con-
sidered in [10], where restricted assignment scheduling is
investigated with the presence of several kinds of resource
constraints. In [10] paper also complexity results and
approximation algorithms are given.

1.1.2 Related work using reinforcement learning for
scheduling problems
Orhean et al. [11] introduced a reinforcement learning
based scheduling method for a distributed cloud system.
The goal was to optimize the performance of the cloud sys-
tem by resource scheduling. Aydin and Öztemel [12] devel-
oped a dynamic scheduling technique that is trained by
reinforcement learning. Stefán [13] applied the Q-learning
method for a permutation flow shop problem, where the
goal is to minimize the sum of idle times of the machines.
In [14], Stefán gave a detailed description of the algorithm
for the flow shop problem. We built our algorithm partly on
his ideas. Gabel and Riedmiller [15] used Q-learning for
a job shop scheduling problem by applying a neural net-
work to approximate the Q-function. Shahrabi et al. [16]
used reinforcement learning to enhance the performance
of a dynamic job shop scheduling method. Further exam-
ples for applying reinforcement learning to scheduling
problems are [17, 18, 19]. We note that Q-learning is rarely
applied to scheduling problem, one such paper is [20].

2 Reinforcement learning
Reinforcement learning (RL) [21] is an area within machine
learning which considers learning mid- to long-term poli-
cies. A policy is a mapping from the observed state of an
agent to an action that the agent should perform. A distin-
guishing property of reinforcement learning problems is that
the benefit of an action is typically not immediately observ-
able but is received as a delayed reward. The objective of an
optimal policy is to maximize the sum of received rewards.

Formally, a reinforcement problem is described by a
Markov Decision Process (MDP) with a set of states S,
a set of actions A, transition probabilities p(s'|s, a) and a
reward function r(s, a). If action a is taken in state s, then
reward r(s, a) is received and the state transitions into
state s' with probability p(s'|s, a). The goal is to find a pol-
icy π: S → A, that selects an action for each state such that
the sum of expected discounted rewards is maximized.
This sum of expected discounted rewards is the value of
the policy, and for a state it can be calculated as

V r s s p s s a Vs

s

sπ ππ γ() ()= ()() + ()′∑, | ,
'

' , (1)

where γ [0, 1) is the discount factor that determines the
importance of future rewards. If the discount factor is 0,
then the objective is greedy as it considers only the imme-
diate reward. However, if the discount factor is close to 1,
then the objective is to maximize the long-term rewards.

To optimize the policy the optimal Q-function is helpful,

Q s a r s a p s s a V s
s

*

'

*
, , | ,() = () + () ()′ ′∑γ , (2)

V s Q s aa
* *

max ,() = () . (3)

Here V *(s) is the value of the optimal policy, and Q * is
the expected value, if in state s at first action a is chosen,
and then the optimal policy is followed. From the opti-
mal Q-function the optimal policy is easily constructed
by choosing in state s the action a that maximizes Q*(s, a).
Thus, many reinforcement-learning algorithms try to esti-
mate the optimal Q-function. An important algorithm
is Q-learning [22], which can be derived as an iterative
approximation scheme from Eq. (2) and Eq. (3).

2.1 Q-learning
Let (s1, a1, r1), (s2, a2, r2) be the sequence of observed states
st, the chosen actions at, and the received rewards rt, over
time steps t = 1, 2, … . Then Eqs. (1, 2) suggest the following
update rule for an approximation of the optimal Q-function,

Q s a Q s a

r Q s a

t t t t t t t

t t t a t t

+

+

() = −() ()
+ + ()()

1

1

1, ,

, ,max

α

α γ
 (4)

Q s a Q s at t+ () = ()1
, , , (5)

where αt is a suitable learning rate. The learning rate deter-
mines to what extent the newly acquired information over-
writes the previous one. If αt = 0, then the agent does not
learn anything; if αt = 1, then no previous information is
kept. The discount factor γ [0, 1) determines the impor-
tance of future rewards.

It can be shown [22], that with this update rule Qt con-
verges to Q* if ∑tαt = ∞, ∑tαt

2 = ∞, and each state-action
pair (s, a) appears infinitely often in the sequence (s1, a1),
(s2, a2), … . The last condition is not controlled by the
Q-learning update rule, but needs to be guaranteed by an
appropriate exploration strategy that selects the actions at.
There is a significant number of such exploration strate-
gies, and a popular one is the ε-greedy strategy, which in
each time step selects with probability 1 – εt the action at
that maximizes Qt(st, a), and with probability εt selects an
action chosen uniformly at random. Another popular strat-
egy is Boltzmann exploration.

964|Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019

2.2 Boltzmann exploration
Boltzmann exploration selects action randomly according
to the probabilities

p a s e

e
t t

Q s a

a

Q s a

t

t

t

t

| ,

,

,
() =

()

()

∑

τ

τ

 (6)

where τt is a decreasing temperature parameter. For large τt
the action selection is almost uniformly random, whereas
for τt close to 0 the selection is almost deterministic. Our
algorithm will use Boltzmann exploration to try out dif-
ferent schedules.

2.3 Episodic Q-learning
An MDP is episodic if it is restarted after each episode
(s1, a1, r1), (s2, a2, r2), …, (sn, an, rn), sn + 1 where sn + 1 is the
terminal state of the episode. The end of an episode is
determined either by the number of steps taken or by a
stopping condition. For episodic MDPs the Q-learning
update can be performed only once after each episode, and
it is particularly simple if the states visited in an episode
are all distinct.
Then for k = 1, …, n, Qt + 1 (sk, ak) = (1 – αt) Qt(sk, ak)
+ αt(rt + γtmaxa Qt(sk + 1, a))
and
Qt + 1(s, a) = Qt(s, a) for (s, a) not among the (sk, ak).
Our algorithm will use episodic updates of the Q-function.

3 The considered problem
Below we define our scheduling problem in detail. Given
are n tasks (called also jobs) denoted by T1, … Tn and m
machines (also called resources) denoted by R1, … Rm. The
machines are unrelated, such that the processing time of
a task depends on the machine it is assigned to. Let pir
denote the processing time of task Ti if it is processed by
machine Rr. It is possible that a machine is not suitable
to process some job, in this case the processing time is
infinite. There are precedence constraints among the jobs,
which are defined by a directed graph G. We restrict our
attention to problems where G is a chain graph partitioned
into vertex disjoint paths. These paths we call processes.
Some processes may contain only one task.

At any time, any machine can process at most one task,
and the execution of a task cannot be preempted. The
objective of a schedule is to minimize the makespan.

As illustration we give a small example in Fig. 1:
There are two processes (Proc1, Proc2) and four machines
(R1, R2, R3, R4). Proc1 consists of tasks T1 and T2, while

Proc2 consists of tasks T3, T4 and T5. Fig. 1 also shows
which machines can execute the individual tasks.

In Fig. 2, the tasks are scheduled on the machines in
certain time slots such that the precedence constraints are
satisfied. The processing times of the tasks on the respec-
tive machines (p1, 1 = 3, p2, 2 = 8, p3, 3 = 6, p4, 2 = 2, p5, 4 = 10)
are given in parentheses after the names of the tasks.

The schedule in Fig. 2 results in a makespan of
3 + 8 + 2 + 10 = 23 time units. In Fig. 3 we show another
schedule with a reduced makespan of 6 + 2 + 10 = 18 time
units, which is in fact an optimal schedule.

In the next section we introduce a method which sched-
ules the tasks one by one in a greedy fashion according to
some order of the tasks. A good order of the tasks is cal-
culated by a method inspired by reinforcement learning.

Fig. 1 Example of processes, tasks, and machines

Fig. 2 A feasible schedule for the processes

Fig. 3 Optimal schedule for the processes

Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019 |965

4 The proposed method
For the scheduling problem described in the previous sec-
tion, we propose the new heuristic QLM (Q-Learning
Motivated heuristic). We want to find a "good" permu-
tation (or order) of tasks such that allocating the tasks
greedily in this order to the machines will result in a small
makespan. This greedy algorithm works as follows. The
next task will always be assigned to the machine that will
finish the task the earliest. This is the appropriate version
of Graham's list scheduling algorithm [2, 3]. To find a
good ordering of the tasks, we follow the approach of [17]
to compute values Q(i, j) for each pair of tasks Ti and Tj
that represent how advantageous it is if task Ti is directly
followed by task Tj in the list of the tasks. For calculating
the values Q(i, j) we devise an algorithm that is motivated
by reinforcement learning, in particular Q-learning [22].

Our method can be summarized as follows:
(1) determine a good order for the tasks based on the
Q-values;
(2) schedule the tasks greedily according to the deter-
mined order;
(3) calculate the makespan of the schedule;
(4) calculate the reward based on the current value of
the makespan and the best makespan so far;
(5) update the Q-values.
The above (1)–(5) steps are repeated for a certain num-

ber of iterations. In the next section we describe the algo-
rithm in detail.

4.1 Generating a task sequence from the Q-values
We assume that values Q(i, j) have been calculated for all
tasks Ti and Tj. For notational convenience we assume that
there is a task T0 with processing time 0 which will be
always the first task in the order. Then the Q(0, i) can be
used to select the first task of a sequence. A task sequence
Lt = (i0, i1, …, in), i0 = 0, is built incrementally and ran-
domly based on the values Q(i, j) using Boltzmann explo-
ration. Let A = { j1, …, jl} be the set of indices j such that,
according to the precedence constraints, task Tj is eligible
for execution after completion of tasks Ti1, …, Tik. Then ik + 1

is selected among the j A with probability

p e
B

B ej

Q i j

i A

Q i j
k

k

= =

()

∈

()

∑
,

,

,
τ

τ .

4.2 Calculating the Q-values
Our heuristic QLM (Q-Learning Motivated heuristic) is
motivated by considering the sequential selection of an
ordering as a reinforcement learning problem. The states

would be initial orderings of tasks Ti1, …, Tik, and the pos-
sible actions would be the tasks that are eligible as the next
task Tik + 1, obeying the precedence constraints.

Since such a state space would be exponential in the
number of tasks, we use a crude approximation of the
states by representing each initial ordering Ti1, …, Tik only
by its last task Tik. While a lot of information is lost by
using such approximate states, our experiments indicate
that still very good orderings of the tasks can be found. The
obvious reward would be the negative makespan, thereby
punishing schedules with large makespan. However, since
the makespan becomes available only after the last task
is scheduled, the Q-learning algorithm would receive a
(negative) reward only for scheduling the last task. Then
the Q-learning updates would propagate these rewards to
the other states, which would take many update iterations.
Therefore, we instead use episodic Q-learning, where the
Q-values are updated all together only after a schedule is
finished, and we use a modified reward signal to acceler-
ate convergence. Since we are not interested in the exact
Q-values but use only the relative order of Q-values to
select the next task in the schedule, we define the rewards
relative to the current best makespan.

Our algorithm proceeds in episodes t = 1, 2, …, where
in each episode t a sequence Lt of the tasks and a corre-
sponding schedule is calculated, based on the current
Q-values Qt(i, j). For the first episode all Q-values are ini-
tialized to 0, i.e. Q1(i, j) = 0. For each episode t the algo-
rithm proceeds as follows:

• Calculate a task sequence Lt = (it,0, it,1, …, it,n) based
on the Q-values Qt as in Section 3.1.

• Calculate a schedule by greedily scheduling the
tasks in the order of sequence Lt.

• Obtain the makespan zt of this schedule.
• The reward is calculated as follows. Let Z = maxs < t zt.

Let rt = 10 if zt < Z; rt = 0, if zt = Z; rt = –1 if zt > Z.
• Update the Q-values: for k = 1, …, n let Qt + 1(it,k–1, it,k)

= (1–α) Qt(it,k–1, it,k) + α(rt + γ ∙ maxiBk, Qt(it,k, i)),
where Bk is the set of (indices of) tasks that can directly

follow task Tit,k. There is no change in the other Q-values.
We give the flowchart of the algorithm on Fig. 4.
The result of the algorithm is the schedule with the min-

imum makespan observed over all iterations. In our com-
putational experiments we used the parameters α = 0.8 and
γ = 0.7. For the selection of a sequence Lt by Boltzmann
exploration we use the parameter τt = τ0 × dt for some con-
stant 0 < d < 1. The method is not very sensitive in respect
to the choice of d, we set d = 0.99.

966|Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019

Fig. 4 Flowchart of the algorithm

Table 1 Processing times

Processing times T1 T2 T3 T4

M1 5 1 8 7

M2 2 10 4 3

Table 2 The Q-values after 299 iterations

Q299 T0 T1 T2 T3 T4

T0 - –3.333 5.810 14.036 -

T1 - - 4.979 –1.692 7.673

T2 - –2.102 - 0.065 1.996

T3 - 5.893 12.448 - –1.000

T4 - 10.000 - –1.000 -

4.3 A toy example
For illustration we give a small example for the calcula-
tions in the (t + 1)-th iteration of the algorithm. We con-
sider two machines and four tasks, the processing times
are given in Table 1. There is only one precedence con-
straint: T2 → T4 which means that T2 must be finished
before T4 starts.

We applied our algorithm to this data. After t = 299 iter-
ations we arrived at the Q-values given in Table 2.

The best makespan so far is Z = 7, the current
makespan is z299 = 8, and the current order of the tasks is
L299 = (1, 2, 3, 4).

We show the calculation for iteration t + 1 = 300. First,
we determine the new list: A1

300 = {1, 2, 3}. Task T4 has a pre-
decessor and is not contained in this set. Boltzmann explo-
ration uses the values of Q299(0, 1), Q299(0, 2), Q299(0, 3) for
the calculation. Let us assume that T2 is chosen as the first
element of the list.

Now A2
300 = {1, 3, 4}. Boltzmann exploration uses

Q299(2, 1), Q299(2, 3), Q299(2, 4) for the calculation, and we
assume that T3 is chosen as the second element of the list.

For the choice of the third element, A3
300 = {1, 4},

Q299(3, 1), Q299(3, 4) are used for the calculation, and T4
may be chosen as the third element of the list.

Finally, A4
300 = {1}. Thus, the generated list is

L300 = (2, 3, 4, 1). We create the corresponding schedule,
and the makespan will be z300 = 7. Since the value of Z is
also 7, r300 = 0.

During the update procedure the Q-values are updated:
from the Q299(i, j) the next Q300(i, j) are calculated, Q(0, 2),
Q(2, 3), Q(3, 4), Q(4, 1).

4.4 Some notes
In our calculations we used the parameters α = 0.8 and
γ = 0.7; these values were efficient in the calculations. We
experimented also with other parameter values without a
noticeable difference in efficiency. Only if both parame-
ters were set to 1 the algorithm did not converge. We ran
the algorithm 10 times for 2000 iterations in each and
report the best result. For the Boltzmann exploration the
initial value of τ was chosen to be 2000.

5 Computational experiments
First, we considered a small example that was solved both
in [6] and [7]. In this example there are 7 tasks (T1–T7),
3 precedence constraints (T1 → T3 → T7; T2 → T6), and
the corresponding processing times. This small example
is optimally solved in [7], the optimal makespan is 13, and
the heuristic method of [6] gives a solution with makespan
15. For this example, our Q-Learning based method was
also able to find the optimal solution.

For further experiments, we followed [6] and [7]. In [6],
another 33 scheduling problems were solved, but unfor-
tunately the complete data of these instances are not pro-
vided. In [7], the authors define problem classes by giv-
ing the number of machines, the number of tasks, and the
number of precedence constraints. The processing times
of the tasks are randomly generated from some discrete
uniform distribution. However, the generation of the pre-
cedence constraints is not given. We combined the two
procedures for generating inputs as follows.

We have chosen some of the 33 examples considered
in [6], where we have chosen examples that differ signifi-
cantly from each other. In particular, we have chosen #1,
#2, #5 from the small examples in [6], and one of the big-
gest examples, namely #28. (We kept the original instance
numbering.) We considered these examples as input types.
That is, we have created four input classes. In the first
class (Class #1) the number of tasks is n = 14, the number

Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019 |967

of machines is m = 8 and the number of precedence con-
straints is NC = 5. The corresponding data for the other
three classes #2, #5, and #28 can be seen in Table 3. For
each type the processing times are chosen uniformly at
random from {1, 2, …, 10}.We continued our investiga-
tions so that first we generated one input from each input
class. For each input we ran our heuristic QLM, calculated
the lower bounds LB1 and LB2 form [6], and also tried
to calculate an optimal schedule using the CPLEX solver.
The results are shown in Table 3.

Recall that n is the number of tasks, m is the number of
machines and NC denotes the number of precedence con-
straints. For each input we executed 10 independent runs of
QLM and the number of iterations was chosen as 2000 in
each run. The total running time of our algorithm always
was below 1 second except in case of example #28, where
it remained below 4 seconds. Therefore, we do not give the
running time of our algorithm QLM in the above table. For
determining the optimal solution, we used the mixed inte-
ger formulation of [7] and we used the CPLEX solver. We
note that for running CPLEX we used the NEOS home-
page [23]. CPLEX is a commercial solver for linear and
mixed integer programs. CPLEX is considered one of the
best such solvers, possibly only outperformed by Gurobi
(which is also a commercial solver) in some cases. For
more information see the homepages at [24, 25].

We believe that comparing our algorithm with CPLEX
is very informative. As we have mentioned above, we have
found only two papers ([6] and [7]) that deal with simi-
lar scheduling problems like ours. The algorithms of these
two papers are called HH and SS. Comparison with these
two algorithms would not be completely fair, as they are
defined for somewhat different problems. The difference
is in the type of the precedence relations, as they deal with
more general cases. We deal only with such precedence

Table 3 Numerical examples

Example # #1 #2 #5 #28

n 14 28 27 74

m 8 7 4 19

NC 5 8 1 10

LB1 10 11 7 4

LB2 4 9 18 5

CPLEX LB 10 11 7 5

CPLEX UB 10 11 18 10

QLM 10 11 18 5

QLM-freq 10/10 3/10 1/10 9/10

QLM-gap 0 % 0 % 0 % 0 %

relations that form disjoint paths. This is a very typical
case in some real-life problems, as we discussed in the
Introduction. Thus, we believe that the most truthful com-
parison is with an exact solver. However, we also compare
our algorithm to algorithm HH, as discuss below.

For each example we allowed 1000 seconds for the
run of the CPLEX solver. For some examples this was to
enough to find the optimal solution, and in Table 3 we give
the lower and upper bound (CPLEX_LB, CPLEX_UB) on
the solution that was determined by CPLEX.

For our QLM algorithm we give the best solution found
(QLM), in how many of the 10 runs an optimal solution was
found (QLM-freq), and the percentage by which the best
QLM solution exceeds the optimal solution (QLM-gap).

We mention, as described above, that the input exam-
ples we solve are not necessarily the same examples that
were solved by the HH algorithm in [6]. Reason is that [6]
gives only the number of precedence constraints but not
sufficient detail to replicate the experiments. Nevertheless,
we note that the gaps of Algorithm HH for some inputs
chosen from the four input classes are 0 %, 15 %, 8 %, and
8 %, respectively.

5.1 Evaluations of the results
The first example (i.e. example #1) was easy to solve for
both CPLEX and our QLM algorithm. CPLEX could pro-
vide the optimal solution in less than one second, and our
algorithm also found an optimal solution very fast in all
of the 10 runs. Also, algorithm HH could find the optimal
solution according to [6].

Example #2 was harder, the gap of algorithm HH (for
a similar input from this type) is 15 % while the gap of
QLM is 0 %. (If the gap is 0, this means the algorithm
could find the optimal solution.) Our algorithm could find
the optimal solution in 3 out of 10 runs. The problem was
also harder for CPLEX, we note that it found an optimal
solution in 11 seconds.

Example #5 is significantly harder. Our algorithm could
find the optimal solution only once among the 10 runs.
This example also was hard for CPLEX. It found the opti-
mal solution within 1000 seconds but could not verify its
optimality, since the lower bound that CPLEX found was
smaller than the optimal solution.

Example #28 is a much bigger example. Surprisingly it
was not hard for the QLM algorithm (the optimal solution
was found in 9 out of 10 runs). This example was really
hard for CPLEX. Its best lower bound equals the opti-
mum value (i.e. 5), but the best solution it found was 10,

968|Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019

so the gap of CPLEX is big here. Note that the model of
the problem (which is given in [7]) has 7030 discrete vari-
ables and 412°287 linear constraints. The CPLEX solver
would provide a better solution if it is allowed more time.
We emphasize that the running time of our algorithm
remains very low, 10 runs (2000 iterations in each) needed
4 seconds in total.

5.2 More detailed investigations
For a more investigation we considered the four input
classes #1, #2, #5, and #28 again and generated 10 more
examples for each class.

For Class #1, our heuristic QLM found an optimal solu-
tion for all 10 examples. The optimal makespans are as fol-
lows: 9, 5, 9, 8, 8, 4, 9, 17, 7, and 10. For each example
QLM found the optimal solution in all 10 out of 10 runs.
CPLEX could also find the optimal solution for each exam-
ple very quickly (in less than 0.1 sec). These experiments
completely agree with the results in Table 3. The algorithm
finds optimal solution 10/10 times. (There are 10 inputs and
for each input we performed the algorithm 10 times.)

Let us consider what are the orders of the tasks in the 10
optimal solutions. These orders are listed below.

1 8 4 5 0 11 10 7 3 6 9 12 13 2
10 2 4 0 11 3 7 8 1 6 9 12 5 13
0 8 7 10 5 1 3 6 2 4 11 9 12 13
1 5 8 10 2 7 11 4 0 3 6 9 12 13
4 11 0 2 10 5 7 3 1 8 6 9 12 13
5 1 4 7 0 11 2 10 8 3 6 9 12 13
5 8 2 0 7 4 1 11 3 6 10 9 12 13
8 11 5 0 1 7 3 4 6 10 2 9 12 13
4 0 2 1 11 3 6 9 7 10 5 12 8 13
4 0 2 1 10 7 3 8 6 11 5 9 12 13

Without taking far-reaching conclusion, we conclude that
• the orders are not the same,
• still there are some similarities like 13 is almost

always the last task, and 12 and 13 are often directly
after each other, etc.

For Class #2, the best solutions found by algorithm
QLM, the frequencies of QLM finding the best solutions,
and all other data are shown is Table 4.

For example, for the first input within Class #2 among the
10 runs the makespan of the schedule was 9 six times and
in the remaining four times it was weaker (i.e. it was 10).
For the same input LB1 = 8 and LB2 = 7. This means that
the optimal value is at most 9 and at least 8. Still remained
a gap with the previous information we cannot decide what
is the optimum. The same result was provided by CPLEX,

its best solution has value 9 and the lower bound provided
by CPLEX is 8. The consequence is that QLM provided the
same result like CPLEX (in case of the first input within
Class #2) but much faster. Since this is the most relevant
information we wrote this to rows by bold letters.

The lower bound of CPLEX is worse than LB in the
next cases: 2-th, 3-rd, 5-th, 7-th, 9-th. In the case of the
6-th input the upper and also the lower bounds equal to 7
which means that the found solutions are optimal. If we
compare the result of QLM with LB, we can realize that
our solution is also optimal in the 7-th and 9-th case, but
this could not be verified by CPLEX. Regarding Class #3
we provide the appropriate results in Table 5.

We can verify the optimality of QLM (comparing it to
LB) for the 5-th and 7-th inputs. CPLEX never gave better
solution than QLM but it provided slightly worse result for
the 3-rd input. It is worth to mention that the gaps between
the lower and upper bounds of CPLEX are really huge. For
example, for the first input these values are 5 and 18 while
LB is 16, a much better lower bound.

We conclude that QLM gives the same or better bounds
than CPLEX and much faster. These investigations con-
firm our first impression about this input class which we
gave in Table 3. In Class #4 the results are in Table 6.

Table 4 Numerical results for Class #2

1 2 3 4 5 6 7 8 9 10

QLM 9 8 8 9 12 7 7 8 7 11

QLM-freq 6 10 10 3 6 2 6 7 9 6

LB 8 7 7 8 9 7 7 6 7 9

CPLEX LB 8 6 5 8 7 7 6 6 5 9

CPLEX UB 9 8 8 9 12 7 7 8 7 11

Table 5 Numerical results for Class #3

1 2 3 4 5 6 7 8 9 10

QLM 18 20 17 19 16 20 17 19 21 17

QLM-freq 10 9 7 8 2 10 1 8 9 10

LB 16 18 15 18 16 19 17 18 19 16

CPLEX LB 5 8 5 7 6 8 5 8 6 6

CPLEX UB 18 20 18 19 16 20 17 19 21 17

Table 6 Numerical results for Class #4

1 2 3 4 5 6 7 8 9 10

QLM 6 5 6 6 6 5 6 6 5 5

QLM-freq 6 1 7 10 10 1 10 8 1 3

LB 6 5 5 5 5 5 5 5 5 5

CPLEX LB 6 4 4 5 5 4 3 5 5 4

CPLEX UB 13 9 11 9 9 15 9 9 8 10

Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019 |969

Here QLM provides the same solution like LB in half
of the cases, in the other half cases it is bigger only by one.
So, we can verify the optimality of QLM in 5 cases out of
10 cases, but this input type is really hard for CPLEX as it
provided very weak upper bounds. This conclusion is very
similar to that we got for the input class in Table 3.

Finally, we mention that all data (processing times and
precedence relations) and all results for QLM and CPLEX
are gladly provided by the authors via e-mail.

6 Conclusions
In this study we investigate a special case of a scheduling
problem that exists in the literature: we deal with schedul-
ing unrelated machines with precedence constraints. The
specialty is in the type of precedence constraints: they
form short disjoint paths. We argue that this special case
is relevant and interesting, e.g. in civil engineering. There
are only a few algorithms in the literature that are relevant
for related models. Our algorithm is the first one for this
specific case and thus a valuable contribution.

We have shown how a Q-learning motivated method
can be applied for solving this process scheduling prob-
lem. It is not trivial to make Q-learning applicable in this
setting, since the large state space makes a generic appli-
cation of reinforcement learning infeasible.

With our simplification of the state space our method is
shown to be quite powerful. It is an interesting open ques-
tion how this technique can be applied to other scheduling
problems.

Currently there are no results regarding the worst-case
approximation ratio for the type of scheduling problems
we have considered in this paper. This is also an interest-
ing research topic for future work.

Acknowledgement
The authors acknowledge the financial support of
Széchenyi 2020 under EFOP-3.6.1-16-2016-00015, and
also Stiftung Aktion Österreich-Ungarn 99öu5. Moreover
Dósa acknowledges the financial support of NKFIH under
the grant SNN 129364.

References
[1] Pinedo, M. L. "Scheduling. Theory, Algorithms and Systems", 4th

ed., Springer, Boston, MA, USA, 2012.
 https://doi.org/10.1007/978-1-4614-2361-4
[2] Graham, R. L. "Bounds for certain multiprocessing anomalies", The

Bell System Technical Journal, 45(9), pp. 1563–1581, 1966.
 https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
[3] Graham, R. L. "Bounds on Multiprocessing Timing Anomalies",

SIAM Journal on Applied Mathematics, 17(2), pp. 416–429, 1969.
 https://doi.org/10.1137/0117039
[4] Lenstra, J. K., Shmoys, D. B., Tardos, E. "Approximation algo-

rithms for scheduling unrelated parallel machines", Mathematical
Programming, 46(1–3), pp. 259–271, 1990.

 https://doi.org/10.1007/BF01585745
[5] Shchepin, E. V., Vakhania, N. "An optimal rounding procedure

gives a better approximation for scheduling unrelated machines",
Operations Research Letters, 33(2), pp. 127–133, 2005.

 https://doi.org/10.1016/j.orl.2004.05.004
[6] Herrmann, J., Proth, J.-M., Sauer, N. "Heuristics for unrelated

machine scheduling with precedence constraints", European Journal
of Operational Research, 102(3), pp. 528–537, 1997.

 https://doi.org/10.1016/S0377-2217(96)00247-0
[7] Liu, C., Yang, S. "A heuristic serial schedule algorithm for unrelated

parallel machine scheduling with precedence constraints", Journal
of Software, 6(6), pp. 1146–1153, 2011.

 https://doi.org/10.4304/jsw.6.6.1146-1153
[8] Dosa, Gy., Kellerer, H., Tuza, Zs. "Team Work Scheduling", In:

MATCOS-16, Middle-European Conference on Applied Theoretical
Computer Science, Koper, Slovenia, 2016, pp. 80–82. [online]
Available at: http://matcos16.iam.upr.si/en/resources/files//published-
material/is2016volumeh---matcos.pdf [Accessed: 10 August 2019]

[9] Dosa Gy., Tuza, Zs. "Multiprofessor scheduling", Discrete Applied
Mathematics, 234, pp. 195–209, 2018.

 https://doi.org/10.1016/j.dam.2016.01.035
[10] Dosa, Gy., Kellerer, H., Tuza, Zs. "Restricted assignment scheduling

with resource constraints", Theoretical Computer Science, 760, pp.
72–87, 2019.

 https://doi.org/10.1016/j.tcs.2018.08.016
[11] Orhean, A. I., Pop, F., Raicu, I. "New scheduling approach using

reinforcement learning for heterogeneous distributed systems",
Journal of Parallel and Distributed Computing, 117, pp. 292–302,
2018.

 https://doi.org/10.1016/j.jpdc.2017.05.001
[12] Aydin, M. E., Öztemel, E. "Dynamic job-shop scheduling using

reinforcement learning agents", Robotics and Autonomous Systems,
33(2–3), pp. 169‒178, 2000.

 https://doi.org/10.1016/S0921-8890(00)00087-7
[13] Stefán, P. "Flow-shop scheduling based on reinforcement learning

algorithm", Production Systems and Information Engineering, 1,
pp. 83‒90, 2003. [online] Available at: http://www.ait.iit.uni-mis-
kolc.hu/files/2003/07-PSAIE2003-Stefan-83-90.pdf [Accessed: 10
August 2019]

[14] Stefán, P. "Combined Use of Reinforcement Learning And Simulated
Annealing: Algorithms and Applications", PhD Thesis, University
of Miskolc, 2003. [online] Available at: http://midra.uni-miskolc.
hu:80/?docId=5607 [Accessed: 10 August 2019]

[15] Gabel, T., Riedmiller, M. "Adaptive reactive job-shop scheduling with
reinforcement learning agents", International Journal of Information
Technology and Intelligent Computing, 24(4), pp. 14‒18, 2008.
Available at: http://tgabel.de/cms/fileadmin/user_upload/documents/
Gabel_Riedml_ITIC-07.pdf [Accessed: 10 August 2019]

https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1137/0117039
https://doi.org/10.1007/BF01585745
https://doi.org/10.1016/j.orl.2004.05.004
https://doi.org/10.1016/S0377-2217(96)00247-0
http://www.jsoftware.us/vol6/jsw0606-25.pdf
http://matcos16.iam.upr.si/en/resources/files//published-material/is2016volumeh---matcos.pdf
http://matcos16.iam.upr.si/en/resources/files//published-material/is2016volumeh---matcos.pdf
https://doi.org/10.1016/j.dam.2016.01.035
https://doi.org/10.1016/j.tcs.2018.08.016
https://doi.org/10.1016/j.jpdc.2017.05.001
https://doi.org/10.1016/S0921-8890(00)00087-7
http://www.ait.iit.uni-miskolc.hu/files/2003/07-PSAIE2003-Stefan-83-90.pdf
http://www.ait.iit.uni-miskolc.hu/files/2003/07-PSAIE2003-Stefan-83-90.pdf
http://midra.uni-miskolc.hu:80/?docId=5607
http://midra.uni-miskolc.hu:80/?docId=5607
http://tgabel.de/cms/fileadmin/user_upload/documents/Gabel_Riedml_ITIC-07.pdf
http://tgabel.de/cms/fileadmin/user_upload/documents/Gabel_Riedml_ITIC-07.pdf

970|Ábrahám et al.
Period. Polytech. Civ. Eng., 63(4), pp. 961–970, 2019

[16] Shahrabi, J., Adibi, M. A., Mahootchi, M. "A reinforcement learning
approach to parameter estimation in dynamic job shop scheduling",
Computers & Industrial Engineering, 110, pp. 75‒82, 2017.

 https://doi.org/10.1016/j.cie.2017.05.026
[17] Zhang, W., Dietterich, T. G. "A reinforcement learning approach to

job-shop scheduling", In: Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, Montreal, QC, Canada,
1995, pp. 1114‒1120. [online] Available at: https://www.ijcai.org/
Proceedings/95-2/Papers/013.pdf [Accessed: 10 August 2019]

[18] Zweben, M., Davis, E., Daun, B., Deale, M. J. "Scheduling and
rescheduling with iterative repair", IEEE Transactions on Systems,
Man and Cybernetics, 23(6), pp. 1588‒1596, 1993.

 https://doi.org/10.1109/21.257756
[19] Huang, Z., van der Aalst, W. M. P., Lu, X., Duan, H. "Reinforcement

learning based resource allocation in business process manage-
ment", Data & Knowledge Engineering, 70(1), pp. 127‒145, 2011.

 https://doi.org/10.1016/j.datak.2010.09.002

[20] Ye, Y., Ren, X., Wang, J., Xu, L., Guo, W., Huang, W., Tian, W. "A
New Approach for Resource Scheduling with Deep Reinforcement
Learning", Cornell University, Ithaca, NY, USA, 2018. [pdf]
Available at: https://arxiv.org/abs/1806.08122v1 [Accessed: 10
August 2019]

[21] Sutton, R. S., Barto, A. G. "Reinforcement learning, An introduc-
tion", 2nd ed., The MIT Press, Massachusetts, USA, 2018.

[22] Watkins, C. J. C. H., Dayan, P. "Q-learning", Machine Learning,
8(3–4), pp. 279‒292, 1992.

 https://doi.org/10.1007/BF00992698
[23] Wisconsin Institutes for Discovery "NEOS Server" [online]

Available at: https://neos-server.org [Accessed: 10 August 2019]
[24] Wikipedia "CPLEX" [online] Available at: https://en.wikipedia.org/

wiki/CPLEX [Accessed: 10 August 2019]
[25] Gurobi Optimization, LLC "Gurobi Optimizer" [online] Available

at: https://www.gurobi.com/ [Accessed: 10 August 2019]

https://doi.org/10.1016/j.cie.2017.05.026
https://www.ijcai.org/Proceedings/95-2/Papers/013.pdf
https://www.ijcai.org/Proceedings/95-2/Papers/013.pdf
https://doi.org/10.1109/21.257756
https://doi.org/10.1016/j.datak.2010.09.002
https://arxiv.org/abs/1806.08122v1
https://doi.org/10.1007/BF00992698
 https://neos-server.org
https://en.wikipedia.org/wiki/CPLEX
https://en.wikipedia.org/wiki/CPLEX
https://www.gurobi.com/

	1 Introduction
	1.1 Scheduling
	1.1.1 Scheduling unrelated machines with precedence constraints
	1.1.2 Related work using reinforcement learning for scheduling problems

	2 Reinforcement learning
	2.1 Q-learning
	2.2 Boltzmann exploration
	2.3 Episodic Q-learning

	3 The considered problem
	4 The proposed method
	4.1 Generating a task sequence from the Q-values
	4.2 Calculating the Q-values
	4.3 A toy example
	4.4 Some notes

	5 Computational experiments
	5.1 Evaluations of the results
	5.2 More detailed investigations

	6 Conclusions
	Acknowledgement

