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Abstract

Large number of active vibration control systems existing in the literature has brought lot of confusion for engineers and junior 

researchers. This study deals with the comparison of different active control systems of a 20-storey building under seismic excitation 

for three control devices: Active Mass Damper (AMD), Active Bracing System (ABS) and Connected Building Control (CBC). Two different 

control configurations are considered to add active damping to the building. The first one employs force actuator and displacement 

sensor and is examined with first and second order Positive Position Feedback, Lead compensators and Direct Velocity Feedback.  

The second configuration employs a displacement actuator collocated with a force sensor and an Integral Force Feedback control law.  

A total number of 15 control cases are compared from the point of view of stability, robustness, performance and control effort.
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1 Introduction
In the past decades, significant development has been 
made in the field of vibration control strategies for civil 
engineering structures in order to mitigate earthquake 
hazard. Vibrations may be reduced by passive method 
[1, 2], active method [3, 4], hybrid method [5] or semi-ac-
tive method [6]. These control strategies have been applied 
to different control designs: using base isolation system, 
a bracing system, an auxiliary mass damper or an aux-
iliary structure (CBC: Connected Buildings Control). 
Active control was developed by Yao [7] to withstand tall 
structures against storms and became the subject of inten-
sive research subsequently. Active Mass Damper (AMD) 
was developed as a means to extend passive Tuned Mass 
Damper (TMD) in order to control the vibrations of tall 
buildings. Significant researches have been published to 
validate the effectiveness of TMDs on high-rise and slender  
structures [8–13].

Abdel-Rahman [14] presented a rule to design active 
TMD in order to control a tall building subjected to sta-
tionary random wind forces. Samali et al. [15] studied the 
active vibration control of a 40-story building under strong 

wind excitations using an AMD and compared the results 
to the case of a classical TMD. Wang and Lin [16] used two 
controllers, the fuzzy sliding mode control and variable 
structure control, for seismic protected buildings equipped 
with AMD control systems. Guclu and Yazici [17] com-
pared the effectiveness of Fuzzy Logic and PD controllers 
to control a 15-story frame equipped with AMDs on the 
first and 15th floors. Zhang et al. [18] studied experimen-
tally the Fuzzy Control of seismic structure with an AMD. 
Tu et al. [19] tested numerically and experimentally the 
AMD control system based on Model Reference Adaptive 
Control algorithm.

Vibration of buildings may be also mitigated by Active 
Bracing Systems which consist in adding active elements 
between the ground and the first floor or between two suc-
cessive floors. Based on the LQR theory, Chung et al. [20] 
developed a system to control a single-degree-of-freedom 
(SDOF) and 3DOFs structures by making use of tendons 
connected to a servo hydraulic actuator. Loh et al. [21] 
examined the effectiveness of control algorithms which 
are employed on a full-scale 3-storey steel structure with 
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Active Bracing System installed at the first floor. The 
experimental verification includes three different con-
trol algorithms: modal control with direct output feed-
back, static-output-feedback LQR control, and static-out-
put-feedback with variable gain. Lu [22] proposed a 
discrete-time modal control strategy which is very useful 
method to control the seismic response of building struc-
tures equipped with ABS. Preumont et al. [23] investigated 
the active bracing control of a seven story building using 
Positive Position Feedback (PPF) and Direct Velocity feed-
back (DVF) and Integral Force Feedback (IFF). Achour-
Olivier and Arfa [24] studied the vibration control of a 
SDOF building based on Lyapunov method. Blachowski 
and Pnevmatikos [25] presented a neural network based 
vibration control method to reduce the vibrations of a 3D 
multi-storey building subjected to earthquakes and com-
pared it to the classical linear quadratic regulator (LQR) in 
terms of displacement responses and control forces.

The active control of coupled adjacent tall structures 
under seismic excitation has been investigated by Seto 
et al. [26], Yamada et al. [27] and Christenson et al. [28]. 
The linear quadratic control method was applied to deter-
mine the control forces of coupled structures in those 
studies. The nonlinear optimal control method has been 
also used to reduce the seismic response of coupled build-
ings [29]. Based on the stochastic dynamical programming 
principle and stochastic averaging method, the stochastic 
optimal coupling control of adjacent building structures is 
studied by Ying et al. [30]. The papers reported by Housner 
et al. [31], Datta [32], Spencer and Nagarajaiah [33], Fisco 
and Adeli [34–35], Korkmaz [36] and Ghaedi et al. [37] 
provide a detailed review of earlier and recent studies on 
structural control as well as real applications.

By examining the huge amount of literature on active 
vibration control, the comparison between various con-
trol techniques is less investigated. This has brought a 
lot of confusion amongst the less experienced research-
ers and engineers. Preumont et al. [23] compared between 
the Integral Force Feedback (IFF), Positive Position 
Feedback (PPF) and Direct Velocity feedback (DVF) for 
the case of active bracing control of a 7 storey building. 
This work had motivated the authors to compare not only 
the control laws but also the control systems: AMD, ABS 
and CBC. Two different control configurations are con-
sidered to add active damping to the 20 storey building. 
The first one uses a force actuator combined with a dis-
placement sensor and is examined with DVF, first-order 
PPF1, second-order PPF2 and Lead compensators. The 

second configuration employs a displacement actuator 
combined with a collocated force sensor and an Integral 
Force Feedback control law. A total number of 15 control 
cases will be compared from the point of view of stability, 
performance and control effort.

2 Modeling of the active control systems
The governing equations of motion of the building, mod-
eled as a shear frame and equipped with an active strut 
between two successive floors (shear control) or an active 
mass damper or connected to another building with an 
active strut are expressed as Eq. (1):

[ ] [ ] [ ] [ ] ,M x C x K x B f M x  { }+ { }+ { } = { } − { }1 0  (1)

where M, C and K are respectively the mass, damping and 
the stiffness of the building and depends on the active con-
trol systems. ẍ, ẋ and x are respectively the acceleration, 
velocity and displacement vectors. B is the influence vec-
tor indicating the location of the active strut which creates 
two opposing forces on the connected points; f is the con-
trol force which depends on the control law; Eq. (1) is a 
unit vector and x0 is the ground acceleration. 

2.1 Active Bracing System (ABS)
In case of shear control shown in Fig. 1, the mass matrix 
takes the following form:
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The damping matrix is as follows:
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In general, the influence vector B indicating the location 
of the ABS, which creates two opposing forces between the 
connected degrees of freedom, can be given by: 

B n

T= … − … …{ } ×
0 0 1 0 0 1 0 0 1, , , , , , , , , , .  (5)

If the ABS is impemented between the ground and the first 
floor, the influence vector can be simply written as follows:

B n

T= …{ } ×
1 0 0 1, , , .  (6)

2.2 Active Mass Damping (AMD)
In the case of the AMD shown in Fig. 2, the matrices M, 
C and K are of dimension n + 1 and the displacement vec-
tor{x} has n + 1 entry. If the AMD is added to the last floor, 
the mass matrix becomes:
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The damping matrix is:
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The stiffness matrix is:
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Where ma, ca and ka are respectively the mass, the damp-
ing and the stiffness of the AMD.

The influence vector B indicating the location of the 
active element between the top floor and the inertial mass 
can be written as follows: 

B n

T= … −{ } × +( )0 0 1 1 1 1, , , , .  (10)

2.3 Connected Building Control (CBC)
Consider two linear adjacent buildings with different num-
bers of stories subjected to a unidirectional seismic exci-
tation. Buildings 1 has (m + n) stories whereas Building 2 
has only (n) stories but both have the same constant height 
of floors (see Fig. 3). The buildings are modeled as shear 
frames and they are connected using an active strut located 
on the ith floor.

Fig. 1 n-storey shear frame equipped with an ABS between the ground 
and the first floor

Fig. 2 n-storey shear frame equipped with an AMD attached to the top floor Fig. 3 Model of two adjacent buildings connected with an active strut
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The matrices M, K and C for the combined system are 
explicitly defined as follow
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where, [M1], [C1]and [K1] are respectively the individ-
ual mass, damping and stiffness matrices of Building 1. 
Similarly, [M2], [C2] and [K2] are the individual mass, 
damping and stiffness matrices of Building 2. [O1] and 
[O2] are null matrices.

The influence vector B indicating the location of the con-
trol device which creates two opposing forces between Buil- 
dings 1 and 2 at the selected degrees of freedom, is given by: 

B n m

T= … − … …{ } × +( )0 0 1 0 0 1 0 0 1, , , , , , , , , , .  (14)

2.4 Control laws
Two different control configurations are considered to add 
active damping to the multistory building [23]:

2.4.1 Using a force actuator combined with a 
displacement sensor
Four control laws are adopted for this case:

• The control force of the Lead:

f g s p
s z

y= −
+
+1( ) ,  (15)

where g1 is the controller gain; s is the Laplace variable, a 
is a design parameter, y = (xi – xi–1) is the relative displace-
ment between the connected successive floors for the case 
of ABS control, y = xi is the absolute displacement of the ith 
floor equipped with an inertial mass for the case of AMD 
and y = (xi,1 – xi,2) is the relative displacement between the 
building 1 and 2 at ith floor level for the CBC case.

• The control force of the DVF, which is a particular 
case of the Lead, is:

f g sy= − 2 ,  (16)
where g2 is the controller gain. 

• The control force of the first order PPF1 is:

f
g
s
y=

+
3

1 τ
,  (17)

where g3 is the PPF1 controller gain and τ is a design parame-
ter which decides the damping ratio, defines the position of the 
pole of the PPF1 on the real axis and fixes the stability margin.

• The control force of the second order PPF2 is:

f g
s s

y
f f f

=
+ +

4

2 2
2ξ ω ω

,  (18)

where g4 is the PPF2 controller gain.

2.4.2 Using a collocated displacement actuator-force 
sensor
The control law adopted in this case is the IFF: 

u
g
s
f
Ka

= 5 .  (19)

Where Ka is the stiffness of the strut and u is its active 
displacement and g5 is the controller gain.

The control force in the active strut measures:

f K B x x ua
T

i j= − −( ( ) ).  (20)

Where (xi – xj) is the relative displacement between the 
extremities of the active strut.

The difference between the two configurations stems 
from the fact that the force actuator brings no stiffness in 
open-loop while the displacement actuator brings an extra 
stiffness Ka to the structure.

The RMS control effort u, which eventually fixes the 
size of the actuator, can be assessed from:

σ ω
ω

u uxT d= 



∫ 
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1 2/

,  (21)

where Tuẍ0 is the transmissibility between the ground 
acceleration and the control input.

The mean square power of the control requirement of 
the DVF and IFF can be expressed as follows [23]:
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Where T∆ẍ0 is the transmissibility between the ground 
acceleration and the displacement sensor ∆ and TFẍ0 is the 
transmissibility between the ground acceleration and the 
force sensor f.
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3 Numerical example and discussions
Consider a building of twenty stories subjected to unidi-
rectional seismic excitation. The same mass and stiffness 
are adopted for all floors and they are respectively equal 
to 6 × 105 kg and 4.5 × 108 N/m. A uniform modal damp-
ing of 1 % is assumed for both buildings. Active damp-
ing is combined with the structure using first or second 
order PPF, DVF, Lead or IFF. A comparison of these con-
trol techniques will be carried out to highlight their most 
salient features and to allow a more objective evaluation.

3.1 Stability 
The stability of the control systems is studied using the 
root locus technique as shown in Fig. 4. For the case of 
CBC and ABS control the IFF, DVF and lead are uncon-
ditionally stable since all poles are on the left part of the 
imaginary axis where us the first and second order PPF 
are conditionally stable. For the AMD case, all the con-
trol laws are conditionally stable except the IFF. Normally, 
the DVF and the Lead are unconditionally stable, but in 
the case of the AMD, they become conditionally stable 
because the control system is not collocated [23]. In fact, 
the sensor measures the absolute displacement of the 
top floor whereas the actuator creates a pair of opposing 
forces acting on the top floor and on the inertial mass. The 
non-collocation of the system comes from the fact that 
the absolute displacement sensor (on the top floor) is not 
exactly located at the same place as the second force of the 
actuator (which is applied on the inertial mass).

3.2 Maximum damping
The maximum damping of the first two modes is plotted in 
Fig. 5 for all control systems (ABS, AMD, CBC) and dif-
ferent control laws (IFF, DVF, Lead, PPF1, PPF2). For the 
cases of IFF and PPF2, the CBC control is the best solu-
tion. For the case of DVF and Lead, the AMD is the best 
control method. For the case of PPF1, the ABS control is 
the best solution. A critical damping can be reached for the 
first mode for the following configurations: AMD + DVF 
or Lead, ABS + PPF1, CBC + PPF1 and CBC + PPF2. The 
AMD + DVF or Lead is the best configuration providing 
the building with large damping for first two modes.

3.3 Frequency function response 
For all control systems and laws with respect to a maximum 
damping on the first mode, the transmissibility between the 
ground motion and the top floor acceleration, and between 
the ground motion and the shear force at the base are plotted 

in Fig. 6. The PPF1 has the best performances when an ABS 
control system is used and acts on all modes as shown in 
Fig. 6(a) but suffers from the negative stiffness problem 
which causes a large shear force at the base as illustrated 
in Fig. 6(b). When an AMD is added to the top floor, the 
DVF has the best performances and also acts on all modes 
and doesn't have a negative stiffness problem. For the CBC 
case the PPF1 has the best performances on the first mode 
but doesn't act efficiently on the other modes and also suffer 
from the negative stiffness problem.

3.4 Control effort
For equal performances (3 % on first mode), the control 
efforts are compared and plotted in Fig. 7 for all the con-
trol systems and laws. The AMD is the best solution in 
term of energy requirements. The CBC needs a moderate 
energy whereas the ABS control needs a very large amount 
of energy. The Lead and DVF has almost the same control 
effort for AMD control and the DVF needs less of energy 
than the Lead for CBC and Shear Control cases. The sec-
ond order PPF is the most expensive control law for the 
CBC and AMD cases. The DVF is the best solution in term 
of minimum control effort. Fig. 8(a) compares the power 
requirements of the DVF and the IFF.

The power requirement of the IFF is smaller than the one 
of the DVF for the three control systems. The time response 
of the top floor displacement of the 20-storey building sub-
jected to El Centro earthquake is plotted in Fig. 8(b) for the 
ABS, AMD and CBC control systems using different con-
trol laws with respect to maximum damping.

3.5 Time response to seismic excitation
The time response of the top floor displacement of the 
20-story building subjected to El-Centro earthquake is plot-
ted in Fig. 8(b) for the ABS, AMD and CBC control sys-
tems using different control laws with respect to maximum 
damping. The first order PPF has the best performances in 
term of top floor displacement for the ABS and CBC con-
trol systems. For the case AMD control, the DVF shows 
the best capabilities in reducing the top floor displacement.

4 Conclusions
The active control of a 20-storey building under seismic 
excitation is investigated for three control systems: AMD, 
ABS and CBC and five control laws. A total number of 
15 control cases are compared from the point of view of 
robustness, performance and control effort. It has been 
concluded that:
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Fig. 4 Root-locus of the different control laws for ABS, AMD and CBC control systems
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Fig. 5 Comparison of the different control systems and laws: (a) maximum damping of mode 1 (b) maximum damping of mode 2

Fig. 6 Transmissibility between the ground acceleration and: ((a), (c), (e)) the acceleration of the top floor ((b), (d), (f)) shear force at the base, for the 
ABS, AMD and CBC control and for the different control laws; with respect to the maximum damping on the first mode
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• The first order PPF has the best performances in 
term of top floor displacement and acceleration for 
the ABS and CBC control systems but suffer from 
the negative stiffness problem which may produce 
large shear force at the building base.

• For the case AMD control, the DVF has the best 
performances in term of top floor displacement and 
acceleration without any negative stiffness problem.

• The IFF has the minimum of power requirements 
when compared with the other control laws for the 
ABS, AMD, and CBC systems but it is less efficient 
in term of maximum damping of the first mode.

• The AMD needs less of energy than the ABS and 
CBC control for all control laws.

• The AMD equipped with a DVF seems the opti-
mal solution with respect to the acceleration and 
displacement performances, stability and power 
requirements.
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Fig. 7 Comparison of the different control systems and laws: ((a), (c), (e)) Transmissibility; the gains have been selected to achieve similar 
performances for the first mode, ((b), (d), (f)) RMS control effort u
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Fig. 8 (a) Cumulative MS of the power requirements of the IFF and the DVF (b) Time response of the top floor displacement of a 20-storey building 
subjected to El-Centro earthquake for different control systems and laws
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