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Abstract

In this article, an efficient hybrid optimization algorithm based on invasive weed optimization algorithm and shuffled frog-leaping 

algorithm is utilized for optimum design of skeletal frame structures. The shuffled frog-leaping algorithm is a population-based 

cooperative search metaphor inspired by natural memetic, and the invasive weed optimization algorithm is an optimization method 

based on dynamic growth of weeds colony. In the proposed algorithm, shuffled frog-leaping algorithm works to find optimal solution 

region rapidly, and invasive weed optimization performs the global search. Different benchmark frame structures are optimized using 

the new hybrid algorithm. Three design examples are tested using the new method. This algorithm converges to better or at least the 

same solutions compared the utilized methods with a smaller number of analyses. The outcomes are compared to those obtained 

previously using other recently developed meta-heuristic optimization methods.
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1 Introduction
Structural optimization is the act of design and develop-
ing structures to provide the maximum profit of available 
resources. This topic has attracted a great deal of interest 
amongst scholars and has become a challenging and criti-
cal research subject in the last 30 years. 

The optimization of frames is a challenging problem 
in engineering design that has been studied for the past 
decades, with different strategies and algorithms being tai-
lored and used [1, 2]. The intention of frame design optimi-
zation is to minimize the weight and cost of frames by means 
of selecting the suitable sections satisfying the strength and 
drift constraints of the utilized building code as well as 
other practical constraints  such as constructability.

Meta-heuristic algorithms which can be used for discrete 
variable spaces, utilize randomness and memory to look 
for a large number of discrete variable spaces if one wants 
to locate the most appropriate solution. There have been an 
increasing tendency towards application of meta-heuristic 
search techniques [3], including genetic algorithms [4], har-
mony search method [5], particle swarm optimization [6], 
ant colony optimization [7], charged system search [8], 

ray optimization [9], big bang – big crunch [10], and water 
evaporation optimization [11] in tackling real-global struc-
tural optimization times. Generally, the primary inten-
tion in meta-heuristic based optimization techniques is to 
locate optimum solutions via investigating a portion of the 
solution space in an achievable computational time.

For frame structures the big bang–big crunch (BB–
BC) optimization algorithm was applied to optimum lay-
out optimization of skeletal structures, Camp [12]. Kaveh 
and Abbasgholiha [13] utilized the BB–BC algorithm for 
optimal design of planar steel sway frames. For develop-
ing new efficient algorithms, many researchers tried to 
reduce searching time and enhanced the quality of the 
final optimal solution. They combine the strengths of dif-
ferent standard optimization algorithms in order to pro-
duce hybrid algorithms which are capable of searching for 
better solutions. For example, Kaveh and Talatahari [14] 
suggested hybrid versions of the BB–BC algorithm for 
design optimization of various classes of skeletal struc-
tures. Some efficient metaheuristics are applied to 
frame optimization in [15, 16]. Recently, Kazemzadeh 
Azad et al. [17, 18] studied the performance of the BB–BC 
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algorithm for solving engineering optimization problems. 
Kaveh and Malakoutirad [19] proposed a hybrid algo-
rithm that combined the genetic algorithm with particle 
swarm optimization. Juang [20] suggested a hybridized 
GA and PSO, which together mimic social behaviors of 
animals, breeding, and survival of the fittest. Kaveh and 
Talatahari [21] proposed hybrid PSO-based methods com-
bining particle swarm algorithm with concepts from ant 
colony optimization algorithm, PSACO and HPSACO. 
This method utilizes a particle swarm optimization with 
a passive congregation algorithm as a global search, and 
the idea of ant colony approach worked as a local search. 
The harmony search-based mechanism is used to handle 
the variable constraints. 

Shuffled frog-leaping algorithm (SFLA) was devel-
oped by Eusuff et al. [22]. The algorithm contains ele-
ments of local search and global information exchange. 
The SFLA consists of a set of interacting virtual pop-
ulation of frogs partitioned into different memeplexes.  
To ensure global exploration, the virtual frogs are peri-
odically shuffled and reorganized into new memplexes 
in a method similar to that used in the shuffled complex 
evolution algorithm. Additionally, to provide the chance 
for random generation of improved information, random 
virtual frogs are generated and entered into the popula-
tion. Invasive weed optimization (IWO) was developed by 
Mehrabian and Lucas [23]. IWO is a nature inspired algo-
rithm which has obtained more attention because it shows 
efficient exploration and dissimilarity properties and takes 
an exceptional place for solving continuous optimiza-
tion problems. In standard IWO, the seeds are uniformly 
spread on the search space, Mehrabian and Lucas [23]. 
Hybrid algorithms have been developed by combining 
two or more algorithms to improve or enhance the over-
all search efficiency. An efficient hybrid optimization 
algorithm based on invasive weed optimization algorithm 
and shuffled frog-leaping algorithm is recently developed 
for optimum design of trusses. The shuffled frog-leaping 
algorithm is a population-based cooperative search meta-
phor inspired by natural memetic, and the invasive weed 
optimization algorithm is an optimization method based  
on dynamic growth of weeds colony, Kaveh et al. [24].

In the present work, the above-mentioned hybrid algo-
rithm is utilized for optimal design of several frame struc-
tures with continues variables and the results are com-
pared to those obtained by some other meta-heuristic 
algorithms.

The remainder of this paper is prepared as follows: 
Section 2 describes the optimum design problem of steel 
frames based on AISC provisions [25]. The SFLA-IWO 
algorithm is introduced in Section 3. Section 4 consists of 
three steel frames structures. The final section concludes 
the paper.

2 Optimal layout of steel frames using AISC-LRFD
In practical applications, frame members are chosen from 
set of existing steel sections which yields a discrete sizing 
optimization problem. In this research, the optimal design 
of frame structures are formulated as 

find X x x x

to Minimize fit X W X f X
n

penalty

=

= ×

[ , ,..., ]

( ) ( ) ( ),
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where X is the vector of design variables containing the 
cross-sectional areas of W sections; n is the number of 
design variables or the number of member groups; fit(X) 
is the fitness function; W(X) is the cost function which 
is usually taken as the weight or volume of the structure; 
fpenalty(X) is the penalty function which results from \vio-
lations of the constraints corresponding to the response of 
the structure. The cost function in the form of the weight 
of frame structure is expressed as
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where ρi is the unit weight of the steel section, Ai and Li 
are the cross and the length of the steel section. Here, the 
objective of finding the minimum cost of structure is sub-
jected to several design constraints, including strength 
and serviceability requirements. According to AISC [25] 
for design, the following design constraints (CI
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In Eqs. (3–5), IEL = 1, 2, …, NEL is the element num-
ber, NEL is the number of elements j = 1, 2, …, N is the 
load combination number and N is the number of layout 
load combinations. Puj is the required axial (tensile or 
compressive) strength, under jth layout load combina-
tion. Muxj and Muyj are the required flexural strengths for 
bending about x and y, under the jth layout load combina-
tion, respectively; where subscripts x and y are the relating 
symbols for strong and weak axes bending, respectively. 
Then again, Pn, Mnx and Mny are the nominal axial (tensile 
or compressive) and flexural (for bending about x and y 
axes) strengths of the IELth member under evaluation (for 
two-dimensional structures Mny = 0). ϕ, is the resistance 
factor for axial strength, which is 0.9 for compression and 
0.85 for tension (based on yielding in the gross section) 
and ϕb is the resistance factor for flexure, which is equal to. 
Here, Eq. (5) is used for checking members' shear capacity 
wherein Vuj is the required shear strength under jth load 
combination and Vn is the nominal shear strength of the 
IELth member under evaluation. In order to calculate the 
design shear strength, the nominal shear strength is multi-
plied by a resistance factor ϕb of 0.9.

Further to the strength necessities, the serviceabil-
ity constraints should be evaluated in the design process. 
The serviceability criteria (CD

t and CF
d ) considered in this 

research are formulated as follows:

CD
t

MaxJ Max
a= ∆ −∆ ≤ 0,  (6)

CF
d

J F
a

F
= [ ] −   ≤δ δ 0.  (7)

Eq. (6) compares the maximum lateral displacement of 
the structure in the Dth direction (D = 1, …, ND) under jth 
load combination ∆MaxJ with the maximum allowable lat-
eral displacement ∆a

Max. Likewise, Eq. (7) checks the inter-
story drift of the fifth story (F = 1, 2, …, NF) under the jth 
load combination [δJ]s against the associated authorized 
value [δa]s; here NF is the number of stories.

The penalty function is defined as [26]:
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i
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where NG = NEL + NF + 1 represents the number of eval-
uated constraints for each individual design. Here, NEL is 
the number of elements to control the interaction formula 
constraints (Eqs. (5) and (6)), NF is the number of stories 
to check the inter-story drift constraint (Eq. (4)) and one 
is because of checking the total lateral displacement con-
straint. ε1 is set to 1, ε2 is selected in a manner to decrease 

the penalties and reduce the cross-sectional areas. Thus, in 
the first steps of the search process, ε2 is set to 1.5 and it is 
ultimately increased to 3. 

2.1 Effective length factor K
In order to compute the nominal compressive strength, 
the effective length factor K must be determined for every 
member. This factor can be calculated using the frame 
buckling monograph introduced by Jackson and Moreland 
(see McGuire [27]). For sway frames, the effective length 
factor for columns is calculated as follows:
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where α = π/K, i and j subscripts correspond to end–i and 
end–j of the compression member, and subscripts c and b, 
in building structures, refer to columns and beams con-
necting to the joint under consideration, respectively. 
Parameters I and l in the above equations, represent the 
moment of inertia and unbraced length of the member, 
respectively. Here, K factor for beam, bracings and non-
sway column elements is taken as.

3 Hybrid SFLA-IWO algorithm
In order to make the paper self-explanatory, before intro-
ducing the SFLA-IWO algorithm for frame design optimi-
zation, the features of the SFLA and the IWO are briefly 
presented in the following two subsections. Then, the uti-
lized hybrid method is presented [24].

3.1 Shuffled Frog-Leaping Algorithm
This algorithm is a meta-heuristic optimization technique  
which mimics the memetic evolution of a group of frogs 
when trying to find the location that has the maximum 
amount of available food. This algorithm involves ele-
ments of local search and global information exchange. 
The SFLA contains a population of possible solutions 
defined by a group of virtual frogs that are divided into 
subsets referred to as memeplexes. Within each memeplex, 
the individual frog holds ideas which get influenced by the 
ideas of other frogs, and therefore the concepts get evolved 
through a process of memetic evolution. The SFLA per-
forms simultaneously an independent local search in each 
memeplex employing a particle swarm optimization-like 
method. In order to grantee the global exploration, after 
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a defined number of memeplex evolution steps (i.e. local 
search iterations), the virtual frogs are shuffled and reor-
ganized into new memeplexes in a method similar to 
that used in the shuffled complex evolution algorithm. In 
addition, to provide the chance for random generation of 
improved information, random virtual frogs are generated 
and substituted in the population if the local search cannot 
find better solutions. The local searches and the shuffling 
processes continue until the defined convergence criteria 
are satisfied, Nguyen [28]. The flowchart of the SFLA is 
shown in Fig. 1.

Fig. 1 Flowchart of the SFLA

The idea for updating frog leaping rule is expressed as:

D r c X Xb w= −. ( ),  (11)

X new X Dw w( ) ,= +  (12)

where, Xb and Xw are identified as the frogs with the best 
fitness and the worst fitness, respectively; r is a random 
number between 0 and 1; c, is a constant chosen in the 
range between 1 and 2, Huynh [29].

3.2 Invasive weed optimization algorithm
IWO algorithm is a bio-inspired numerical optimization  
algorithm which simply simulates natural behavior of 
weeds in colonizing and finding appropriate place for 
growth and reproduction, Mehrabian and Lucas [23].  
A number of the distinct properties of IWO as compared 
with other evolutionary algorithms are the way of repro-
duction, spatial dispersal, and competitive exclusion. In 
the IWO algorithm, a population of initial solutions is ran-
domly generated over the problem space. Then, members 
of the population produce seeds depending on their relative 
fitness. The number of seeds for each member is starting 
with the value of Smin for the worst member and increases 
linearly to Smax for the best member. For the third step, 
these seeds are randomly scattered over the search space 
by normally distributed random numbers with mean equal 
to zero and an adaptive standard deviation. For determin-
ing the standard deviation in each generation, the following 
equation is used (Eq. (13)):

σ σ σ σiter

n

n initial final final
iter iter
iter

=
−

− +
( )

( )
( ) ,max

max
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where itermax is the maximum number of iterations, σiter is 
the standard deviation at the current iteration and n is the 
nonlinear modulation index. The produced seeds, accom-
panied by their parents are considered as the potential 
solutions for the next generation. Finally, a competitive 
exclusion is conducted in the algorithm, i.e., after a num-
ber of iterations, the population reaches its maximum and 
an elimination mechanism has to be used. To this end, the 
seeds and their parents are ranked together and those with 
better fitness survive and become reproductive. The flow-
chart for this algorithm is provided in Fig. 2.

3.3 The hybrid SFLA and IWo algorithms (sfla-iwo)
From the two previous sub-sections, it can be observed 
that SFLA and IWO use two different approaches for opti-
mization. The SFLA-IWO algorithm utilizes the shuffled 
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Fig. 2 Flowchart of the IWO

SFLA for finding optimal solution region rapidly and the 
IWO is used to exploit global solutions. Based on analyses 
of the strengths of SFLA and IWO, in the hybrid SFLA-
IWO algorithm [24] every memeplex evolves severally to 
locally search at totally different regions of the solution 
area within the SFLA. Then, the memeplexes are shuf-
fled and re-divided into new memeplexes so as to globally 
seek through trading the data with one another. According 
to Eqs. (11, 12), when difference in position between xw 
and xb become small, the modification in the position of 
the frog xw (new) becomes small making the algorithm to 
be trapped in local optimum resulting in premature con-
vergence. Moreover, information from the best frog is 
used only once in each update. For IWO algorithm, data 
from good seeds are utilized many times, remaining seeds 
in population are changed by random seeds. Thus, IWO 
tries to exploit around position of good seeds many times 
compared to SFLA. This enables the IWO to gain solu-
tion with better quality with seeking time being longer. 
While SFLA is capable of gaining solution quickly due 
to combining local and global seeking processes. After 

completing a generation of SFLA, the IWO is used with 
some changes. IWO updates their new agents around m 
selected best seeds and m worst seeds being replaced by 
random seeds. (m: number of memeplexes in SFLA). 

In this section, these algorithms are combined and a 
hybrid SFLA-IWO algorithm is presented. This algorithm 
is executed in the following steps:

First, the initial population is created, and then, each 
memeplex is allocated a random position and the cost 
(light intensity) for that position is computed. 

The next stage is to execute the SFL algorithm. During 
this step, based on the magnitude of the cost (light inten-
sity) in each memeplex, if the pre-conditions of moving to 
another memeplex are not satisfied, then, it will be used to 
perform the process of updating in memeplex algorithm 
and population ought to be sorted.

Then, one has tendency to go to the subsequent step 
that performs the process of the IWO algorithm. In IWO 
algorithm phase, the generated weeds are randomly dis-
tributed over the search area by normally distributed ran-
dom numbers with a mean equal to zero. Once all seeds 
have found their positions in the search space, they are 
ranked along with their parents (as a colony of weeds).

Next, weeds with lower fitness are eliminated to reach 
the maximum allowable population in a colony. In this 
way, weeds and seeds are ranked together and the ones 
with better fitness survive and are allowed to replicate. 

The new memeplex that has been produced by the IWO 
is compared with the previous one. If the cost (light-inten-
sity) for the newly-produced memeplex is better than the 
previous one, then it is swapped with the previous ones.

Then, the global best is also swapped with the new 
memeplex.

Finally, within the last step, if the termination criterion 
is satisfied, the ultimate best memeplex is considered as 
the output. Otherwise, the subsequent iterations should be 
started from memeplex algorithm once more [24]. 

3.4 Sensitivity analysis for the hybrid of SFLA and 
IWO algorithm
The 1-bay 8-story benchmark frame optimization prob-
lem is solved in order to find the parameter efficiency of 
the SFLA-IWO algorithm in this research. Fig. 3 shows 
the configuration of the 1-bay 8-story frame structure and 
applied loads. The assumed material density is 76.8 kN/m3 
(7831.43 kg/m3) and the modulus of elasticity is 200 GPa. 
This frame optimization problem has 8 design variables. 
Effect of each input parameter on the results is evaluated 
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Fig. 3 The 1-bay 8-story frame and the loading

to find the optimum values through sensitivity analysis. 
SFLA-IWO includes six important parameters. These 
six parameters are exponent, memeplex size, number of 
memeplexes, number of off-springs, maximum number 
of iterations and step size. Analysis of the 1-bay 8-story 
with SFLA-IWO algorithm is started by the base param-
eters, then the program is run with 6 different parameters 
and 10 times for each parameter (900 000 runs). In each 
phase, the best result of 10 runs are evaluated, reported 
and stored for each parameter. Finally, the best values of 
the parameters with the lowest standard deviation and iter-
ation are recorded. Likewise, the sensitivity of results to 
input parameters is discussed herein. At the end, the best 
values of input parameters with their standard deviation 
are presented in Fig. 4. The effect of parameters on the 
results of the SFLA-IWO algorithm is analyzed. Table 1 
presents the best values of each parameter with the mini-
mum value of standard deviation.

Table 1 Parameters of SFLA-IWO
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Exponent [1     ~     5] 1 2 0.2657 31.1912

nMemeplex [1     ~   10] 2 5 0.1154 31.3332

nPopMemeplex [10   ~   50] 10 10 0.1843 31.0984

Sigma [1     ~     5] 1 4 0.2013  31.2621

Alpha [1     ~     5] 1 5 0.2856 31.0884

Beta [1     ~     5] 1 5 0.2998 31.2458
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4 Numerical examples
This section presents the numerical examples of three 
frames benchmark optimization to evaluate the poten-
tiality of the utilized algorithm in determining the opti-
mal design of frame structures. These problems include: 
A 1–bay 8-story frame, A 3-bay 15-story frame, A 3-bay 
24-story frame for investigating the performance of the 
SFLA-IWO and the final results are compared to the solu-
tions of some other hybrid algorithms to show the effi-
ciency of the present approach. It should be noted that 
the purpose of optimal solution is to find the best answer 
among answers for each algorithm.

In this paper, a population of 50 individuals is used 
for the SFLA-IWO algorithm and two hundred iterations 
are performed as the maximum number of iterations. 
For more precise study, each problem is solved 40 times 
independently. The utilized algorithm is coded in Matlab 
and structures are analyzed using the direct stiffness 
method. The steel members used for the design consist 
of W-shaped sections from the AISC database. The pres-
ent work is performed on the computer with following 

features: CPU 3.3 GHZ (an Intel Core i7 computer plat-
form), Ram 16 GB and Matlab 2018 running on computer 
with Macintosh (macOS Mojave) and for CPU with lim-
ited resource, higher values of control parameters may 
cause CPU to freeze and RAM to overflow. 

4.1 Example one: The 1-Bay 8- Story Frame 
The 1-Bay 8-story steel frame with applied loads depicted 
in Fig. 1 is studied as the first example. The material prop-
erties of steel are: modulus of elasticity (E) = 200 GPa 
and unit weight of the steel (q) = 76.8 kN/m3. The lat-
eral drift at the top of the structure is the only perfor-
mance constraint (limited to 5.08 cm). Members of the 
mentioned frame are categorized into 8 groups selected 
from a list of AISC database. The optimum design of the 
frame obtained by using SFLA-IWO has the minimum 
weight of 31.08 kN. Table 2 compares the results obtained 
by the SFLA-IWO with the standard IWO and SFLA. It 
can be observed that the design obtained by the SFLA-
IWO method is much better than the results obtained 
the SFLA or IWO. Several researchers have developed 

Fig. 4 The sensitivity analysis of parameters of SFLA-IWO

(e)

(f)
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design procedures for this frame. The optimum designs 
for the PSOPC (Kaveh and Talatahari [30]), HGAPSO 
(Kaveh and Malakoutirad [19]) and PSACO (Kaveh and 
Talatahari [30]) had the weight of 34.21 kN, 31.24 kN and 
32.29 kN, respectively. Table 3 lists the optimal values of 
the eight design variables obtained by this research, and 
compares with other results. Fig. 5 provides the conver-
gence histories for this example obtained by the SFLA-
IWO in comparison with others. This figure shows that 
in initial iterations, the SFLA-IWO can find some good 
results very soon, and it does not need high number of 
iterations. It is observed that the standard deviation of the 
SFLA-IWO is less than those of the standard basic algo-
rithms, showing lower scattering of the SFLA-IWO solu-
tion and it can be seen that the SFLA-IWO can find the 
better design and its CPU time is quite comparable with 
those of the other optimization algorithms.

4.2 Example two: The 3-Bay 15-Story Frame
The configuration and applied loads of a 3-bay 15-story 
steel frame structure is illustrated in Fig. 6. The material 
properties of steel are: modulus of elasticity (E) = 200 GPa, 
yield stress (Fy ) = 248.2 MPa, and unit weight of the steel 
(q) = 7.85 Ton/m3.

The effective length factors of the members are calcu-
lated as  for a sway-permitted frame and the out-of-plane 
effective length factor is specified as. Each column is con-
sidered as non-braced along its length, and the unbraced 
length for each beam member is specified as one-fifth of 
the span length. 

Table 2 Comparison of the optimization result obtained in  
1-bay 8-story problem with SFLA and IWO algorithms

Element Group IWO SFLA Present Work
SFLA-IWO

1 W21 × 50 W24 × 62 W18 × 40

2 W16 × 26 W16 × 26 W18 × 35

3 W14 × 26 W14 × 34 W14 × 22

4 W12 × 16 W12 × 14 W12 × 14

5 W21 × 48 W12 × 14 W18 × 35

6 W16 × 31 W21 × 50 W18 × 35

7 W16 × 31 W18 × 35 W18 × 35

8 W14 × 22 W14 × 26 W14 × 22

Weight (kN) 32.75 35.38 31.08

Number of Analyses 10000 10000 10000

Table 3 Comparison of optimized 1-bay 8-story frame obtained 
through SFLA-IWO with other hybrid algorithms
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1 W18 × 35 W18 × 35 W18 × 35 W18 × 40

2 W16 × 31 W18 × 35 W14 × 26 W18 × 35

3 W14 × 22 W14 × 22 W16 × 26 W14 × 22

4 W12 × 16 W12 × 16 W14 × 26 W12 × 14

5 W21 × 48 W16 × 31 W24 × 62 W18 × 35

6 W18 × 40 W21 × 44 W18 × 35 W18 × 35

7 W16 × 31 W18 × 35 W16 × 31 W18 × 35

8 W16 × 36 W16 × 26 W12 × 30 W14 × 22

Weight (kN) 32.29 31.243 34.21 31.08

Fig. 5 Convergence of the 1- bay 8-story
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Fig. 6 The 3-bay 15-story frame and the loading

This example is also is solved by the standard SFLA 
and IWO algorithms in addition to the SFLA-IWO and the 
results of optimization are reported in Table 4. Again, the 
table shows that the hybrid algorithm has better perfor-
mance. The optimum design of the frame has the mini-
mum weight of 379.21 kN. The optimum designs for 
PSOPC (Kaveh and Talatahari [30]), HPSACO (Kaveh 
and Talatahari [21]), HBB-BC (Kaveh and Talatahari [14]), 
GSU-PSO (Khajeh et al. [32]) and CBO-MDM 
(Kaveh et al. [33]) had the weight of 452.34 kN, 426.36 kN, 
434.54 kN, 396.74 kN and 387.45 kN, respectively. Results 
of the present study and those of reported in (Kaveh and 
Talatahari [14], Khajeh et al. [32], Kaveh et al. [33]) are 
compared in Table 5. In Fig. 7, the convergence curves of 
some hybrid algorithms are presented. Fig. 8 shows the 
ratio of the inter-story drift to the allowable inter-story 
drift in the optimum frame design. It is noted that the opti-
mum design of the frame was obtained after 10000 anal-
yses (100 iterations) by using SFLA-IWO and the best 
weight belongs to SFLA-IWO. This is 19.28 % lighter than 
the design obtained by the PSOPC, 12.43 % lighter than 
the result of the HPSACO, 14.59 % lighter than that of the 
HBB-BC, 4.62 % lighter than that of the GSU-PSO and 
2.17 % lighter than the design obtained by CBO-MDM. 
Element stress ratios evaluated at the best design opti-
mized by SFLA-IWO are illustrated in Fig. 9.

Table 4 Comparison of the optimization result obtained in  
3 -bay 15-story problem with SFLA and IWO algorithms 

Element Group IWO SFLA Present 
Work

SFLA-IWO

1 W18 × 106 W18 × 106 W14 × 90

2 W33 × 152 W24 × 146 W26 × 146

3 W26 × 84 W12 × 79 W18 × 76

4 W24 × 104 W26 × 114 W24 × 104

5 W12 × 87 W14 × 74 W12 × 72

6 W14 × 90 W18 × 86 W18 × 86

7 W18 × 71 W18 × 65 W12 × 58

8 W18 × 60 W18 × 60 W14 × 61

9 W10 × 33 W6 × 20 W6 × 25

10 W10 × 33 W14 × 38 W16 × 36

11 W21 × 44 W21 × 44 W21 × 44

Weight (kN) × 399.78 389.77 379.21

Number of Analyses 10000 10000 10000
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Fig. 7 Convergence of the 3-bay 15-story

Table 5 Comparison of optimized 3-bay 15-story frame obtained through SFLA-IWO with other hybrid algorithms

Element Group HPSACO
[21]

HBB-BC
[14]

PSOPC
[30]

GSU-PSO
[32]

CBO-MDM
[32]

Present Work
SFLA-IWO

1 W21 × 111 W24 × 117 W26 × 129 W21 × 44 W14 × 99 W14 × 90

2 W18 × 158 W21 × 132 W24 × 131 W12 × 106 W27 × 161 W26 × 146

3 W10 × 88 W12 × 95 W24 × 103 W27 × 161 W14 × 82 W18 × 76

4 W30 × 116 W18 × 119 W33 × 141 W27 × 84 W24 × 104 W24 × 104

5 W21 × 83 W21 × 93 W24 × 104 W27 × 114 W16 × 67 W12 × 72

6 W24 × 103 W18 × 97 W10 × 88 W16 × 67 W18 × 86 W18 × 86

7 W21 × 55 W18 × 76 W14 × 74 W18 × 86 W21 × 48 W12 × 58

8 W26 × 114 W18 × 65 W26 × 94 W24 × 55 W14 × 61 W14 × 61

9 W10 × 33 W18 × 60 W21 × 57 W16 × 67 W8 × 28 W6 × 25

10 W18 × 46 W10 × 39 W18 × 71 W8 × 24 W10 × 39 W16 × 36

11 W21 × 44 W21 × 48 W21 × 44 W16 × 45 W21 × 44 W21 × 44

Weight (kN) 426.36 434.54 452.34 396.74 387.45 379.21

Fig. 8 The ratio of the inter-story drift to the allowable inter-story drift in the optimum frame design for the 3-bay 15-story
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4.3 Example three: The 3-Bay 24- Story Frame
The schematic of the 3-bay 24-story frame consisting of 
100 joints and 168 members and the loads applied to the 
structure are illustrated in Fig. 10. All members are cre-
ated of steel: the material density and modulus of elastic-
ity are 0.283 lb/in3 (7933.41 kg/m3) and 30 Msi (205 GPa) 
and yield stress (Fy) = 230.3 MPa, respectively. The effec-
tive length factors of the members are calculated as Kx ≥ 0 
for a sway-permitted frame and the out-of-plane effective 
length factor is specified as Ky = 1. Each column is con-
sidered as non-braced along its length, and the unbraced 
length for each beam member is specified as one-fifth of 
the span length. Fabrication conditions are imposed on 
the construction of the 168-element frame requiring that 
the same beam section be used in the first and third bay 
on all floors except the roof beams, resulting in four beam 
groups. Beginning at the foundation, the exterior columns 
are combined into one group and the interior columns are 
combined together in another group over three consecu-
tive stories. The grouping results in 16 column sections 
and 4 beam sections for a total of 20 design variables. 
In this example, each of the four beam element groups is 
chosen from all 267 W-shapes, while the 16 column ele-
ment groups are limited to W14 sections (37 W-shapes). 
Several researchers have implemented design procedures 
for this frame; Kaveh et al. [33] implemented heuristic 
Big Bang–Big Crunch Particle Swarm algorithm, Kaveh 
and Talatahari [14] applied a hybrid Big Bang–Big Crunch 
optimization and Khajeh et al. [32] hybridized the parti-
cle swarm optimization, grid search method and univariate 
method and used to solve this problem. 

The 3-bay 24-story frame are optimized by SFLA and 
IWO algorithms in order to compare with utilized hybrid 
method, and the results are reported in Table 6. For these 
algorithms, convergence curves are shown in Fig. 11. It is Fig. 10 The 3-bay 24-story frame and the loading

Fig. 9 The element stress ratio in the optimum frame design for the 3-bay 15-story
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Table 6 Comparison of the optimization result obtained in  
3-bay 24-story problem with SFLA and IWO algorithms

Element Group IWO SFLA Present Work
SFLA-IWO

1 W30 × 90 W30 × 90 W30 × 90

2 W21 × 48 W21 × 48 W21 × 48

3 W21 × 44 W24 × 62 W21 × 48

4 W18 × 46 W12 × 19 W12 × 19

5 W14 × 311 W14 × 132 W14 × 176

6 W14 × 132 W14 × 109 W14 × 109

7 W14 × 90 W14 × 99 W14 × 109

8 W14 × 159 W14 × 68 W14 × 90

9 W14 × 48 W14 × 90 W14 × 90

10 W14 × 43 W14 × 159 W14 × 48

11 W14 × 30 W14 × 30 W14 × 30

12 W14 × 26 W14 × 30 W14 × 34

13 W14 × 68 W14 × 99 W14 × 90

14 W14 × 120 W14 × 109 W14 × 120

15 W14 × 193 W14 × 99 W14 × 99

16 W14 × 53 W14 × 120 W14 × 90

17 W14 × 82 W14 × 90 W14 × 61

18 W14 × 61 W14 × 38 W14 × 53

19 W14 × 38 W14 × 43 W14 × 34

20 W14 × 43 W14 × 34 W14 × 22

Weight (kN) 985.75 959.16 911.78

Number of Analyses 20000 20000 16000

clear that more than  analyses are needed for SFLA and 
IWO to converge while 16000 (under 200 iterations) is 
sufficient for the hybrid method. The minimum weight 
obtained by SFLA-IWO is compared to those of some other 
studies as well. Fig. 12 depicts the element stress ratio of 

the inter-story drift to the allowable inter-story drift in 
the optimum frame design. The SFLA-IWO algorithm 
found better solution vector compared to other considered 
hybrid algorithms. It should be noted that the best design 
found by hybrid method are 3.63 %, 3.21 %, 5.38 % lighter 
than those of ES-DE (Talatahari et al. [33]), HBBPSO 
(Kaveh et al. [34]), HBB-BC (Kaveh and Talatahari [14]), 
respectively. Table 7 compares the optimal results of the 
SFLA-IWO with those of other hybrid algorithms. The 
ratios of the inter-story drift to the allowable inter-story 
drift evaluated at the best design optimized by SFLA-IWO 
algorithm are illustrated in Fig. 13. 

4.4 Discussion on the efficiency of the SFLA-IWO
Solution of above examples shows that the performance 

of SFLA-IWO is better than the other algorithms. It is 
interesting to notice that although SFLA-IWO algorithm 
has excellent optimization performance, its CPU time is 
quite comparable with that of the other optimization algo-
rithms. The key reasons for the enhancements gained by 
the hybridization can be summarized as follows:

a) Increasing the exploitation ability: In frame struc-
ture optimization, usually there are some local opti-
mums in the neighborhood of a desirable solution. Thus, 
the probability of finding a desirable optimum increase 
with additional searches around the local optimums. 
This method does extra search (exploitation) around the 
local optimums and therefore gains the desirable solution 
with higher probability in a smaller number of iterations. 
Increasing the exploitation ability by hybridization, not 
only can enhance the results, but also reduces the standard 
deviation considerably.

Fig. 11 Convergence of the 3-bay 24-story
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b) Improving the exploration ability: In the metaheu- 
ristic algorithms two factors are utilized consisting of the 
random seek factor and the data collection from the search 
throughout optimization process. In early iterations, the 
random seek factor has more power than the collective 
data factor, but the increase in the number of iterations step 
by step abates the power of the random search factor and 
increases the power of the collective data factor. In SFLA-
IWO, SFLA stage plays an auxiliary role in increasing 
the collective data factor; consequently, the convergence 
rate increases faster. SFLA-IWO needed 39 iterations 
to reach the best solution in 1-bay 8-story frame, while 
SFLA and IWO could not reach to a best solution until 
the maximum number of iterations has been achieved,  
i.e. 100 iterations [24]. 

5 Conclusions 
In this study, a recently developed optimization method is 
utilized to find the optimal design of frame structures. The 
optimization algorithm, called the SFLA-IWO, has capa-
bility of finding global optima using smaller number of 
structural analyses. In this method, SFLA helps IWO pro-
cess not only to perform the global exploration for rapidly 
attaining the feasible solution space but also effectively 
helps to reach optimal or near optimal solutions. In order to 
assess the robustness and effectiveness of the SFLA-IWO 
algorithm, some structural optimization problems are 
performed. It is visible that the standard deviation of the 
SFLA-IWO is less than that of its basic algorithms, which 
proves lower scattering of the SFLA-IWO solutions. Three 
test problems are optimized using the SFLA-IWO and its 
improved variants to evaluate the effectiveness, efficiency 

and robustness of the algorithm. The comparison of the 
results of this hybrid algorithm with those of other meth-
ods shows that the SFLA-IWO algorithm provides results 
better than other algorithms.

Table 7 Comparison of optimized 3-bay 24-story frame obtained 
through SFLA-IWO with other hybrid algorithms
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 1
4]

H
BB

PS
O

[3
4]
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-D

E
[3

3]

Pr
es

en
t 

W
or

k
SF

LA
-I

W
O

1 W30 × 90 W30 × 90 W30 × 90 W30 × 90

2 W21 × 48 W21 × 55 W21 × 55 W21 × 48

3 W18 × 46 W21 × 48 W21 × 48 W21 × 48

4 W8 × 21 W8 × 24 W10 × 45 W12 × 19

5 W14 × 176 W14 × 176 W14 × 145 W14 × 176

6 W14 × 159 W14 × 90 W14 × 109 W14 × 109

7 W14 × 109 W14 × 99 W14 × 99 W14 × 109

8 W14 × 90 W14 × 99 W14 × 145 W14 × 90

9 W14 × 82 W14 × 74 W14 × 109 W14 × 90

10 W14 × 74 W14 × 74 W14 × 48 W14 × 48

11 W14 × 38 W14 × 38 W14 × 38 W14 × 30

12 W14 × 30 W14 × 34 W14 × 30 W14 × 34

13 W14 × 159 W14 × 145 W14 × 99 W14 × 90

14 W14 × 132 W14 × 132 W14 × 132 W14 × 120

15 W14 × 109 W14 × 109 W14 × 109 W14 × 99

16 W14 × 82 W14 × 90 W14 × 68 W14 × 90

17 W14 × 68 W14 × 74 W14 × 68 W14 × 61

18 W14 × 48 W14 × 48 W14 × 68 W14 × 53

19 W14 × 34 W14 × 38 W14 × 61 W14 × 34

20 W14 × 26 W14 × 22 W14 × 22 W14 × 22

Weight (kN) 960.90 941.55 944.94 911.78

Fig. 12 The element stress ratio in the optimum frame design for the 3-bay 24-story
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 Fig. 13 The ratio of the inter-story drift to the allowable inter-story drift in the optimum frame design for the 3-bay 24-story
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