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Abstract

This study was organized to derive simplified expressions to estimate the effective flange width for T-shaped shear walls at different 

loading stages. For that purpose, the variation in the effective flange width was explored by introducing dimensionless effective flange 

width coefficient. According to the principle of minimum potential energy, the theoretical expression of the effective flange width 

coefficient in the elastic stage was obtained. Furthermore, a parametric study considering the axial load ratio, height-width ratio of 

flange and width-thickness ratio of the flange, as well as the section aspect ratio was conducted to determine the effective flange width 

using verified nonlinear finite-element models. In light of the parametric analysis results, a formula model was proposed depending 

on the axial load ratio and height-width ratio of flange. Finally, the predictions of the proposed simplified formulas were verified with 

the theoretical solutions or finite element (FE) results, which indicated that the proposed formulas can accurately capture the effective 

flange width at the elastic, yield and limit state.
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1 Introduction
In elementary beam theory, the plane sections are assumed 
to remain planar after bending. Because of shear deforma-
tion caused by the shear flow, this assumption is errone-
ous for the special-section members. This phenomenon, 
which is referred to shear lag effect, has been investigated 
in beams [1], bridge decks [2, 3], etc.

The reinforced concrete shear walls are frequently used 
as the primary component of the lateral load-resisting sys-
tem in high rise buildings [4]. However, the shear lag effect 
in shear walls significantly reduces their lateral strength and 
stiffness and enhances the normal stress at the web-flange 
junction, which is harmful for the seismic behavior of 
walls [5]. Multiple research investigations have been con-
ducted to explore the effect of the shear lag on shear walls. 
Using the finite-element method, Kwan [6] carried out a 
parametric study to investigate the shear lag effect in wall 
structures with the shear lag in the webs of core walls into 
account. On the basis of analysis results, empirical formulas 
to estimate the shear lag effects were produced for practi-
cal applications. Luo and Li [7] studied the shear lag effect 

in the special-shaped short-leg shear wall under transverse 
force based on the calculation results of the spatial shell 
element structure model. Li et al. [8] verified that the flat-
shell element, which is composed of a plane stress element 
and a thin-plate bending element, could effectively analyze 
the shear lag effect of the short-pier shear wall in the elastic 
stage by the low cyclic loading test. Moreover, the analysis 
results indicated that the maximum normal stress position 
was changed with the loading cycle because of the stress 
redistribution in the plastic stage. Chaouch et al. [9] con-
ducted a numerical study on RC wall with L-shaped section 
and the stress concentration in corner location, intersection 
between the two RC walls, was observed for all models.

Hassan and El-Tawil [10] investigated the effect of the 
variables that were not addressed in the ACI expression on 
the tension flange effective width adopting a detailed finite 
element model. Many suitable provisions for the imple-
mentation of performance-based design criteria were sug-
gested. Zhang and Li [11] proposed a new method to cal-
culate the influence of the shear lag effect in the flange of 
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RC walls developed from the truss analogy for the cracked 
flange segment in tension. Compared with the test data, 
the fresh method has greater accuracy than the effective 
flange width method.

According to the variation principle, Li et al. [12] derived 
the governing equation and boundary condition by intro-
ducing a new displacement model considering the effect 
of the shear lag and shear deformation. Zhang et  al.  [13] 
deduced equations about the shear-lag coefficient and 
deformation of T-shaped short-leg shear wall and dis-
cussed the effects of different geometric parameters and 
load forms on the shear lag deformation. Ni and Cao [14] 
obtained the formulas of normal stress and deflection of 
T-shaped short-leg shear walls taking the additional deflec-
tion caused by the shear lag effect into account. Then, they 
established a calculation method of cracking load depend-
ing on the effective flange width.

Shear lag results in a nonlinear stress distribution of 
the flange, which complicates the analysis and design. To 
simplify the model, the normal stress is assumed to be uni-
formly distributed in the effective range beff of the flange. 
The definition is also presented in Fig. 1, where the curve 
is the normal stress distribution of flange, and σmax is the 
maximum (max) normal stress of flange. The normaliza-
tion of the effective flange width is helpful to identify the 
rule of shear lag in the flange. Defining η as the effective 
flange width coefficient, the effective width of the flange, 
beff, can be expressed as follows:

b b

dA

dyeff f
A

max
h

f

f

= =
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∫
η

σ

σ
	 (1)

In the existing research of shear walls, the expression 
for calculating the effective flange width in the elastic stage 
is mostly obtained by the principle of minimum potential 
energy and verified by numerical analysis or experimental 
results [15–18]. For the nonlinear analysis of the effective 
flange width in the plastic stage, the finite element model-
ing tool is used to evaluate the shear lag effect [19].

Although the results of the previous studies satisfy the 
accuracy requirements, the expressions are too complex 
to be suitable for engineering application. For simplifica-
tion, Shi and Wang [20] derived the semi-theoretical and 
semi-empirical formulas for the effective flange width at 
different loading stages without the influence of the axial 
pressure on the shear lag effect.

Considering the coupling effect of the axial load and 
horizontal force in this paper, the simplified formulas 
of the effective flange width of T-shaped shear walls are 
derived at different loading stages. The longitudinal dis-
placement function is built to propose a theoretical expres-
sion of the effective flange width in elastic stage, and the 
curve of the warping displacement function is determined 
by the theoretical analysis. The governing differential 
equation and corresponding boundary condition are con-
structed by applying the principle of minimum potential 
energy. However, there are no available experiments to 
verify the phenomenon, since the researchers focus on the 
capacity of shear walls instead of the stress distribution 
of the section. Lacking of accurate test data, a well-cali-
brated finite-element modeling tool was used to investigate 
the characteristic of the effective flange width at different 
stages. Key parameters that significantly affect the effec-
tive flange width are selected depending on the coefficient 
of determination (R2) between the effective flange width 
coefficient (η) with the axial load ratio (n), the height-width 
ratio of flange, the width-thickness ratio of flange and the 
section aspect ratio, respectively. The simplified formulas, 
which are composed of key parameters, are proposed to 
calculate the effective flange width coefficient of the shear 
lag effect in RC structural walls with a T-shaped section.

2 Theoretical solution
2.1 Displacement function for shear lag warping
Because of shear deformation, the longitudinal displace-
ment of the cross section no longer satisfies the Bernoulli-
Euler assumption, and additional deflection induced by 
the shear lag effect is viewed as the generalized displace-
ment. As in Fig. 2, the coordinate origin is taken to coin-
cide with the center of the cross section. Fig. 1 Effective width of flange
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Based on the deformation characteristics of the struc-
tural member with flange [14, 16, 21], the longitudinal dis-
placement at any point of the cross section of the T-shaped 
shear walls consists of the section bending displacement, 
warping displacement and axial compression displace-
ment, which can be expressed as

u x y z y z z f x y z q
E
ze a a( , , ) ( )( ( ) ( )) ( , ) ( ) ,= − ′ + ′ + ′ −ω ω ζ ω 	 (2)

where ωe is the deflection of the elementary beam, ωa is 
the additional deflection caused by the shear lag effect, ζ is 
a self-equilibrium correction factor for warping stresses, 
and f(x, y) is the warping displacement function for the 
shear lag. By setting g(x, y) = ξf(x, y) – y, the Eq. (2) can 
be written as

u x y z y z g x y z q
E
ze a( , , ) ( ) ( ) ( , ) ( )= − ′ + ′ −ω ω .	 (3)

In essence, the shear lag effect is the phenomenon that 
the distribution of normal stress is non-uniform along 
the width of flange caused by the in-plane shear defor-
mation  [21]. Therefore, the warping displacement func-
tion for shear lag can be derived from shear deformation. 
Under a horizontal force, the shear stress at any point of 
the flange can be expressed as follows

τ = = −
VS
I h

Vh
I

a xx

x f

c

x

( ) .	 (4)

According to the theory of elasticity, the shear strain in 
flange is expressed as

γ
τ
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x

v
z

u
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=
∂
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∂
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Where u and v are the displacement of z and x direc-
tions respectively. Assuming the effect of transverse dis-
placement on shear deformation is negligible, 

∂
∂
ν
z  could be 

ignored [21, 22]. Substituting Eq. (4) into Eq. (5) and inte-
grating Eq. (5) with respect to x give

u
Vh
I G

a x uc

x

= − − +( )2 0 ,	 (6)

where u0 is the longitudinal displacement at the end of the 
flange(x = a), G is the shear modulus, and hc is the distance 
from the flange axis to the coordinate origin.

From Eq. (6), it is theoretically proven that the longi-
tudinal displacement of the flange is distributed as a qua-
dratic parabola along the width of the flange, so the warp-
ing displacement function for the shear lag of T-shaped 
shear walls is assumed as

f x y y a x
a

s x a flange

s web
( , ) (

( )
) [ , ]= −

−
+ ∈







1 0
2

2 .	 (7)

Constant s is added to the entire cross section. The nor-
mal stress at any point on the cross section of the shear 
wall can be obtained by Eq. (8).

σ ω ω=
∂
∂

= − ′′ + ′′ −E u
z

Ey z E x y z qe a( ) ( , ) ( )g 	 (8)

The warping normal stress caused by shear lag effect 
should conform to the equilibrium conditions without 
additional axial force and bending moment, thus

σ ωa adA E z x y dA∫∫ ∫∫= ′′ ⋅ =( ) ( , )g 0 ,	 (9)

σ ωa aydA E z x y ydA∫∫ ∫∫= ′′ ⋅ =( ) ( , )g 0 .	 (10)

(a)

(b)
Fig. 2 The details of T-shaped shear wall: (a) cross section and 

coordinate system, (b) Force diagram
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Substituting Eq. (7) into Eq. (9), we obtain

s
A h
A
f c=

2

3
,	 (11)

where Af is the flange area, and A is the whole section area. 
Substituting Eq. (7) into Eq. (10), we obtain the self-equi-
librium correction coefficient ζ 

ζ
ξ

= = ∫∫
∫∫

I
I

y dA

f x y ydA
x

x

2

( , )
,	 (12)

where Ix is the moment of inertia of the cross section, Iζx is 
the product of inertia of the cross section that corresponds 
to shear lag warping.

2.2 Governing differential equation and its solution
It is simplified that only the normal strain εz and shear 
strain γxz are considered 

ε ω ωz e a
u x y z
z

y z g x y z q
E

=
∂

∂
= − ′′ + ′′ −

( , , )
( ) ( , ) ( ) 	 (13)

γ ωxz x a
u x y z
x

g x y z=
∂

∂
= ′( , , )

( , ) ( ) 	 (14)

From Eq. (9) and Eq. (10), yg x y dA( , )∫∫ = 0 and 
g x y dA( , )∫∫ = 0, ydA∫∫ = 0 .Thus, the strain energy of the 

shear wall can be written in the following form 
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Where A g x y dA I g x y dAg x g= =∫∫ ∫∫2 2( , ) ( , ) .
The potential energy of the load system can be expressed 

as follows 

V M z dz qu dAe a

l

z l
= ′′+ ′′ −∫ ∫∫ =

( )( )ω ω
0

.	 (16)

By synthesizing the above equations, the total potential 
energy of T-shaped shear walls can be given easily as

Π = − = ′′ + ′′ + ′ +

− ′
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E
A dz

M z

x e g a

l

g a
1

2

2 2

0

2
2

[ ( ) ( ) ( ) ]

( )(

ω ω ω

′′+ ′′ +∫ ∫∫ =
ω ωe a

l

z l
dz qu dA) .

0

	 (17)

According to the principle of minimum potential 
energy, δ∏ = 0 The first-order variation for the total poten-
tial energy can be described by 

δ δω ω δω ω ω

δ

Π = ′′ ′′− − ′ ′′′− − ′

+

∫ ∫e x e

l

a g a g a

l
EI M z dz EI F GA dz[ ( )] [ ]

0 0

′′ ′′ −ω ωa g a
lEI M z[ ( )] .0

	 (18)

From Eq. (18), the governing differential equations 
and natural boundary condition can be easily derived as 
follows

EI M zx e′′− =ω ( ) 0 ,	 (19)

′′′− ′ =ω ωa a
g

K F
EI

2 ,	 (20)

δω ω′ ′′ − =a g a
lEI M z[ ( )]0 0 ,	 (21)

where K GA
EI

g

g
=  is Reissner's parameter. M(z) is the 

bending moment at any cross section, i.e., M(z) = F(l – z).
For a fixed end, ω ωe z e z= =

= ′ =
0 0
0 0,  and ωe can be 

solved as

ωe
x

z F
EI

lz z( ) ( )= −
6

3 2 3 .	 (22)

As for Eq. (20), we can express the general solution as 
follow 

ωa
g

c Kz c Kz c Fz
K EI

= + + −1 2 3 2
sinh cosh .	 (23)

Noting that ω ωa z a z= =
= ′ =

0 0
0 0, ,and from Eq. (21),  

′′ =
=

ωa z l 0 can be derived. Then Eq. (23) can be solved as 
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Substituting Eq. (22) and Eq. (24) into Eq. (8), the theo-
retical formula of normal stress can be expressed easily as 

σ

ζ

f
x

g

x y z F l z
I

y q

F y a x
a

s y

KI
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( , , )
( )

[ [ (
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(tanh cos

=
−

−

+
−

−
+ −1

2

2

hh sinh ).Kz Kz−

	 (25)

Letting x = 0 in Eq. (25), we can establish the peak stress 
on the symmetry axis of the flange in relation to y and z

σ

ζ

f
x

g

y z F l z
I

y q

F s y
KI

Kl Kz Kz

max ( , )
( )

[ ]
(tanh cosh sinh ),

=
−

−

+
−

−

	 (26)
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where the positive directions of the symbols in the expres-
sion are shown in Fig. 2. Substituting Eq. (25) and Eq. (26) 
into Eq. (1), we obtain the effective flange width as follows

(27)

b

F l z
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h A F Kz Kl Kz
KI

h A sA
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c f f

=

−
−

−
−

− +
( ) (sinh tanh cosh )

(
2

3
ζ ζ ++ −

−
−

−
−

+

h A qA

F l z
I

h h F Kz Kl Kz
KI

sh h

c f f

x
c f

g
f c

)

( ) (sinh tanh cosh )
(ζ hh qh

a

h
KI

Kz Kl Kz

l z
I
h s h

KI

f f

c

g

x
c

c

)

(

(sinh tanh cosh )

−

= −

−

−
+

+
2 1

2

3

ζ

ζ

gg

Kz Kl Kz q
F

a
(sinh tanh cosh )

)

− +
= 2 η

	

The effective width beff can be non-dimensionalized as 
the effective flange width coefficient η:

η
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3 Finite element model and verification
3.1 Finite element model
For the analysis of shear lag effect of the shear wall, a 3D 
nonlinear finite element model of the T-shaped shear wall 
with an axial load and a horizontal force applied at the top is 
created using the analysis program ANSYS 14.0 [23]. The 
stress of the steel bar plays an important role in defining the 
loading stage. Thus, the volumes are accurately divided by 
the command VSBW to build the steel bar model. SOLID 65 
and LINK 8 are used for the concrete and steel bar respec-
tively, as shown in Fig. 3, and the ideal bonding behavior 
between concrete and reinforcing steel is assumed.

3.1.1 Material models
Concrete, which is a quasi-brittle material that accounts 
for both cracking and crushing failure modes, behaves 
significantly different under tension and compression. The 
computer program implementation of the concrete mate-
rial model employs SOLID 65 following the five-parame-
ter Willam-Warnke failure criterion [24].

The uniaxial compressive behavior of concrete is mod-
eled based on the nonlinear stress–strain relation, in this 
research, which is given by Chinese code for design of 
concrete structures GB50010-2010 [25]. The multilinear 
curve of the stress–strain relation for concrete is shown in 
Fig. 4(a). fc is the compressive strength of concrete, εcu is 
the ultimate compressive strain of the concrete, and ε0 is 
the compressive strain corresponding to the compressive 
strength. According to GB50010, we can obtain ε0 = 0.002 
and εcu = 0.0033. Multilinear Isotropic Hardening (MISO) 

is used for the concrete constitutive [24]. It should be noted 
that the slope of the first segment of the curve is deter-
mined by the elastic modulus of concrete, and the other 
segment slopes should be smaller than that of the first seg-
ment, but all segments slope are greater than zero.

The stress-strain relation of concrete in tension is 
assumed to be isotropic and linearly elastic up to the tensile 
strength ( ft), as displayed in Fig. 4(b). The tensile property 
of concrete is significantly weaker than the compressive 
property, so the concrete easily cracks. In ANSYS [23], a 
plane of weakness normal to the crack face is introduced to 
represent the existence of a crack. Upon cracking, the prin-
cipal tensile stress gradually reduces to zero, which is iden-
tical to the elastic modulus of the concrete element in this 
direction, as shown in Fig. 4(b). Furthermore, considering 
the shear strength loss caused by cracking, a shear transfer 

Fig. 4 Stress–strain relation of: (a) concrete under compression, 
(b)concrete under tension, (c) steel bar

(a)			   (b)
Fig. 3 Stress–strain relation of: (a) concrete under compression,  

(b) concrete under tension
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coefficient βt is used to reduce the shear strength. When 
the crack is closed, the loss of stress transmitted across the 
crack is determined by the shear transfer coefficient βc. In 
Fig. 4(b), Ec is the elastic modulus of concrete; Tc is a multi-
plier for the amount of tensile stress relaxation and defaults 
to 0.6. Considering the tensile stress relaxation after crack-
ing, i.e., KEYOPT (7) = 1, the secant slope Rt adaptively 
decreases and reduces to zero when the solution converges. 
In this research, the shear transfer coefficient is βt = 0.125 
for an open crack and βc = 0.95 for a closed crack [24]. 
Other material parameters of concrete are consistent with 
the results of the material test [26].

The behavior of the steel bar is assumed to be elastic-per-
fectly plastic and the same in tension and compression, as 
shown in Fig. 4(c). Therefore, the stress-strain relation can 
be modeled by bilinear isotropic hardening (BISO) using 
von Mises yield criterion. The slope of the first segment of 
the curve is the elastic modulus of steel bar Es. The Poisson 
ratio (υ) and yield stress ( fy) are also required to specify the 
behavior. In this research, the Poisson ratio is taken as 0.3, 
and the other parameters are consistent with the tests.

3.1.2 Meshing and boundary conditions
For the verification of model, three tested T-shaped RC 
shear walls [26] are modeled with same material properties 
and details. The mesh density also plays an important role 
in the analysis. The sparser the mesh is, the lower the com-
puting precision is. On the other hand, the denser the mesh 
is, the longer the computing time is. After lots of prelimi-
nary analyses, the optimal element size is set to 100 mm. 
The wall model and steel bar model are displayed in Fig. 3.

To ensure that the model acts the same way as the 
experimental wall, the boundary conditions are applied 
accurately. For the simulation of the axial compression, 
an axial constant uniform load is applied at the top of the 
wall. The nodes at the bottom of the wall are fixed in all 
directions. The degrees of freedom of all nodes on the hor-
izontal loading plane are coupled in the loading direction. 
A monotonic load is applied on the plane using the dis-
placement control method. The gravity of the shear walls 
is also taken into account.

3.2 Model verification
Only when the numerical results agree with experiment 
data, the FE model can be used for further research. For 
that purpose, the T-shaped shear wall specimen (SDT650) 
tested by Li [26] is molded. A satisfying result is obtained 
by setting the properties of the model, as shown in Fig. 5. In 

order to verify that the modeling method can sever for the 
parameter study, two more shear wall specimens (SDT800, 
SDT500) are analyzed, which are only adjusted in term of 
the details of steel bar and dimension of the walls. The val-
idation of the nonlinear finite-element analysis procedure 
is presented in Fig. 5. It can be easily seen from Fig. 5 that 
the calculated load-displacement curves of the three mod-
els are both agree quite well with the experimental skeleton 
curves. Thus, the modeling method is validated and suitable 
for further research.

The normal stress contour of the T-shaped shear wall is 
shown in Fig. 6. As shown in the figure, the normal stress 
of the flange remote from the web-flange junction lags 
behind that at the junction, that is, a significant shear lag 
effect occurs in the flange. The calculated results present 
the stress distribution of the flange section reliably. Thus, 
there is no doubt that the effective flange width can be ana-
lyzed by this molding method.

4 Discussion of the results
4.1 Modeling parameters
In order to easily obtain the trait of the effective flange 
width of the T-shaped shear wall, the effective flange width 
coefficient is first studied in this paper. Eq. (28) shows that 
the effective flange width coefficient is related to the size 
of the specimen and axial load. According to the test spec-
imens, the sizes of the finite element models are defined 
as follows: the wall heights are 800, 1400 and 2000 mm. 
The wall thickness is 100 mm; the flange and web width 
have three dimensions of 500, 650 and 800 mm. A limited 
axial load ratio of the shear walls is 0.5 as specified in the 
GB50010. Thus, the axial load ratios (n) are 0.1, 0.2, 0.3, 
0.4, and 0.5. In total, 135 FEM combinations are modeled 
by combining these parameters with each other.

Fig. 5 Comparison between the experimental and analytical Load-
displacement curves
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To coincide with the test specimens, the axial compres-
sive strength of concrete is taken as 30.8 MPa, while the 
yield stresses of the longitudinal steel bars are 295 MPa 
and 345 MPa for # 8 and # 12, respectively, and the yield 
stress of stirrup # 4 is 730 MPa.

The effective width coefficient of flange η is displayed 
against different parameters in Fig. 7. Among five axial 
load ratios, the coefficient increases with the augment of 
the axial load ratio, as shown in Fig. 7(a). The enhancement 
of the section normal stress mainly relies on axial load, 
which weakens the effect of the shear deformation, and 
leads to the trend. Owing to the cross section of the flange 
can be fully developed, a more uniform stress distribution 
of the section corresponds to a weaker the shear lag effect. 
The formula in Fig. 7(a) is obtained by the regression of the 
numerical results.

The effect of the height-width ratio of the flange on the 
effective flange width coefficient is prominent, as plot-
ted in Fig. 7(b). If the width of the flange is constant, the 

(a)

(b)
Fig. 6 normal stress contour of wall: (a) the section, (b) the bottom

Fig. 7 The effective flange width coefficients with respect to 
parameters: (a) axial load ratio, (b) height-width of flange, 
(c) width-thickness ratio of flange, (d) section aspect ratio
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increase in wall height results in the bending deformation 
becoming the main deformation, whereas the shear defor-
mation decreases. Thus, the lag phenomenon of normal 
stress in the transfer process is mitigated. On the contrary, 
the wider the flange is, the longer the normal stress transfer 
path of the section is, so the attenuation of normal stress 
is aggravated. Hence the effective flange width coefficient 
increases with the expansion of the height-width ratio of 
the flange. A power formula perfectly matches the rela-
tion between aspect ratio and effective flange, as shown 
in Fig. 7(b).

From Figs. 7(c)–(d), the trend can be discovered that 
the effective flange width coefficient decreases as the 
width-thickness ratio of the flange and the section aspect 
ratio increases, but this trend is so slight that it is negli-
gible. The with-thickness ratio has a slight effect on the 
effective flange width coefficient, although it significantly 
impact on capacity of shear walls. In view of the above 
discussion, the axial load ratio and height-width ratio of 
the flange are the key parameters on the influence of the 
effective width coefficient of the flange. Thus, the follow-
ing function model is constructed where α1, α2, m and C 
are determined by the data fitting.

η α α= + +1 2( )( )
N
Af

l
b

C
c f

m 	 (29)

4.2 Simplified expressions for the effective flange width
The shear lag effect is most obvious at the bottom of the 
wall limb and gradually attenuates along the height of the 
wall, as shown in Fig. 6 (b). Thus, the stress of the sec-
tion at the bottom of the flange as the object is extracted 
to obtain the effective flange width based on the previous 
definition. The effective flange width coefficients of 135 
models at different loading stages are used to derive the 
following simplified formulas.

4.2.1 Simplified expressions in elastic stage
As stated previously, the theoretical solution of the effec-
tive flange width coefficient is too complex to apply to 
engineering. For the simplification in the elastic stage, 
the third sub-step results of all finite element models are 
obtained, then, the nonlinear fitting of Eq. (29) is con-
ducted using the Levenberg-Marquardt algorithm (1Stopt 
user manual) [27]. After α1, α2, m and C are determined, 
a simplified formula for the effective flange width coeffi-
cient in the elastic stage is proposed as follows:

η = − +−0 2 0 9 1 010 82. ( . )( ) ..N
Af

l
bc f

	 (30)

However, the first part of the Eq. (30) is negative in the 
engineering range of the axial load ratio, which makes the 
first part decrease with the increase in the height-width 
ratio of flange, namely the increase of the height-width 
ratio of the flange enlarges the effective flange width coef-
ficient. The effective flange width coefficient predictions 
using Eq. (30) are compared with the finite element anal-
ysis results in Fig.  8(a). From this figure, it can be seen 
directly that the fitting is perfect with the coefficient of 
determination (R2) of 0.90. Consequently, Eq.  (30) can 
replace the FEM to achieve a reasonable estimate of the 
effective flange width in the elastic stage.

Obtaining the horizontal force is crucial to the theo-
retical solution of the effective flange width coefficient. 
The third sub-step horizontal loads are extracted by 
time-history post-processing and substituted into Eq. (28). 
Fig.  8(b) compares the theoretical solutions obtained by 
Eq. (28) with the FEM results. The deviation indicates 
that the theoretical solutions underestimate the true val-
ues and are less than the simplified predictions, which can 

Fig. 8 Comparison of η obtained from FEM analysis results with (a) 
simplified predictions by Eq. (30), (b) theoretical solutions in elastic stage



Lu and Li
Period. Polytech. Civ. Eng., 64(1), pp. 253–264, 2020|261

be attributed to the assumption of the theoretical analysis 
that neglects the shear deformation in the web as well as 
the lateral and out-plane deformation of the flange. It can 
be concluded that the simplified predictions replacing 
the FEM results are more in accord with the actual con-
dition of walls than the theoretical solutions. Moreover, 
the analysis shows that the difference between them is 
small. Limited by the space, 6  models corresponding to 
the experiment  [26] from 135  combinations are selected 
for the error analysis. The parameters, simplified predic-
tions, theoretical solutions and error values of the 6 mod-
els are listed in Table 1. The error values in Table 1 are 
within 5.21 %, and even the maximum error of all models 
is just 7.73 %. Therefore, the difference can be tolerated 
and the application of the simplified expression is feasible 
and accurate.

4.2.2 Simplified expressions at yield
To extract the normal stress on the cross section of flange 
at yield, the yield of the wall is defined as the steel bar 
at the base of the wall yield by tensile. According to the 
stress equivalent principle as Eq. (1), the effective flange 
width coefficient is obtained. Following the same method 
as in the elastic stage, the simplified formula of the effec-
tive flange width coefficient at yield is

η = − +−( . )( ) ..N
Af

l
bc f

0 54 0 981 64 .	 (31)

The FEM results and simplified prediction are com-
pared in Fig. 9(a), and the coefficient of determination (R2) 
is 0.91. At this stage, the effect of the height-width ratio of 
flange on the prediction is more prominent.

4.2.3 Simplified expressions in the limit state
In the whole process, the sub-step that corresponds to 
the ultimate bearing capacity of each member is taken 
as the limit state. In the limit state, the axial load ratio is 
the major determinant of the compression zone depth and 

no longer conforms to the linear relationship with η. The 
analysis of normal stress shows that a power formula bet-
ter matches than the linear one for the relation between the 
axial load ratio and the effective flange width coefficient. 
Eq. (29) is modified to derive the simplified formula of the 
effective flange width coefficient in the limit state, which 
is expressed as follows

η = − − −1 14 0 13 0 8 0 39. . ( ) ( ). .N
Af

l
bc f

.	 (32)

The simplified predictions are compared with the FEM 
results, as shown in Fig. 9(b), and the coefficient of deter-
mination (R2) is 0.89. Fig. 9(b) shows that the simplified 
prediction in the limit state is discrete because of the com-
pression zone depth of the section with a low axial load 
ratio is less than half of the thickness of the flange, and 
even the tensile stress appears at the two ends of the flange. 
We can easily calculate the effective flange width by Eq. (1) 
after the simplified formulas of the effective flange width 
coefficients at different loading stages were obtained.

Table 1 Comparison of the theoretical results and prediction results

Specimen n l/bf
simplified 

prediction [1]
theoretical 
solution [2] ([1]-[2])/[1]

SDT500-01 0.2 2.8 0.9493 0.9427 0.70 %

SDT500-02 0.3 2.8 0.9580 0.9506 0.78 %

SDT650-03 0.2 2.15 0.9346 0.9073 2.92 %

SDT650-04 0.1 2.15 0.9237 0.8892 3.74 %

SDT800-05 0.2 1.75 0.9207 0.8828 4.11 %

SDT800-06 0.1 1.75 0.9078 0.8605 5.21 %

Fig. 9 Comparison of η obtained from FEM analysis results  
with simplified prediction by (a) Eq. (31) at yield, (b) Eq. (32) in the 

limit state
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4.3 Verification of the proposed formula
Because of the shear lag effect, the stress on the flange 
of T-shaped shear wall is not uniformly distributed in the 
compressed flange. If the stress distribution is arbitrarily 
considered to be uniform, the calculation of the depth of 
the compression zone x is smaller than actuality. In the 
limit state, x even less than 2as' means that the steel com-
pression are not yielding, which is obviously inconsis-
tent with the actual force of the shear wall. Therefore, 
introducing the effective flange width (beff) into the bear-
ing capacity calculation can make a more accurate judg-
ment of the position of the compression zone. According 
to Chinese technical specification for concrete structures 
of tall building JGJ3-2010 [28], calculation diagram of the 
T-shaped shear wall with the flange under compression is 
shown in Fig. 10.

From the force and moment equilibrium ΣN  =  0, 
ΣM = 0, it can be obtained that

N A f A N Ns y s s sw c= − − +' ' σ ,	 (33)

M A f h a M M N h h
h

s y w s sw c w c
f= − − + − − −' ' '( ) ( )0 0
2

.	 (34)

Where h h a A b xw w s s s eff0 = − ′ = ′, ρ . According to the depth  
of the compression zone, T section can be classified into 
two types, shown in Fig. 11. thus, Nc and Mc have two cases.

For x ≤ hf

N f b xc effc =α1 	 (35)

M f b x h x
c eff wc = −α1 0

2
( ) 	 (36)

For x > hf

N f b x f b b hc w c eff w fc = + −α α1 1 ( ) 	 (37)

M f b x h x f b b h h
h

c w w c eff w f w
f

c = − + − −α α1 0 1 0
2 2

( ) ( ) ( ) 	 (38)

According to the plane section assumption, when the 
concrete with the strength grade of no more than C50, the 
actual depth of the compression zone xn  =  x/β1  =  1.25x. 
That is, the steel with a range of 0.25x each in the ten-
sion area and the compression zone has not yielding. For 
simplicity, the contribution of the concrete in the tension 
zone is neglected, and all steels in the tension area, beyond  
hw0–1.5x, are yielding . 

When x hb w≤ ξ 0 , we can obtain σs, Nsw, Msw and 
expressed as 

σ s yf= ,	 (39)

N h x b fsw w w yw w= −( . )0 1 5 ρ ,	 (40)

M h x b fsw w w yw w= −
1

2
1 50

2( . ) ρ .	 (41)

While x hb w> ξ 0 , all steels in the tension area are not 
yielding, so Nsw = 0, Msw = 0 .

Substituting x obtained from Eq. (33) into Eq. (34), we 
have the bearing capacity F = M/L. In order to verify the 
accuracy of the simplified formula, the calculated bearing 
capacity of 8 specimen and the shear wall test results [26] 
are tabulated in the in Table 2.

It can be seen from Table 2 that the bearing capacity 
calculations of the T-shaped shear wall using beff are close 
to test data, therefore, the application of the simplified for-
mula proposed in this study on the effective flange width 
prediction is feasible and accurate.

5 Conclusions
An analytical study on the effective flange width for 
T-shaped shear walls has been carried out under axial load 
and horizontal force in this paper. The following conclu-
sions are drawn from the analysis:

1.	 A quadratic parabola was proven to be reasonable 
as the shear lag warping displacement function in 
the shear lag effect analysis of T-shaped shear walls 
depends on the shear deformation. Furthermore, para- 

Fig. 10 Calculation diagram of a T section with the flange under 
compression

(a)			         (b)
Fig. 11 Stress distributions in the compressed flange of a T section
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meter s was introduced into the warping function for 
the equilibrium conditions of the bending moment 
and axial force considering the shear lag effect.

2.	The dimensionless effective flange width coefficient 
was used to assess the degree of shear lag effect on 
the effective flange width and was obtained by the 
theoretical formula derived from the principle of 
minimum potential energy.

3.	 The FE models were validated by comparison with 
the experiment results, which can be used to simu-
late the normal stress distribution of the section with 
good accuracy. The parametric study conducted by 
the FE models demonstrates that the axial load ratio 
and height-width ratio of flange are the main deter-
minants of the effective flange width coefficient.

4.	 Based on the finite element results, a simplified 
formula of the effective flange width coefficient in 
the elastic stage was obtained by the nonlinear fit-
ting of the function model, which was proposed by 
the parametric study. The comparison between the 

predictions of the formula and the theoretical solu-
tions shows that the simplified formula can perfectly 
predict the results. Then, the simplified formulas of 
the effective flange width coefficient at the yield and 
limit states were fitted by the same method. However, 
the axial load ratio determines the compression zone 
depth in the limit state, which forms a power formula 
instead of the linear relationship between the axial 
load ratio and the effective flange width coefficient. 
It was shown that these simplified formulas are both 
in a good agreement with the FE results, thus they 
are capable of predicting the effective flange width 
of T-shaped shear walls.
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Table 2 Comparison between the calculated values and the experiment values

NO. Specimen n l/bf Calculation(kN) [1] Experiment(kN) [2] ([2]-[1])/[2](%)

1 SDT500-01 0.2 2.8 113.8 117.5 3.18 %

2 SDT500-02 0.4 2.8 152.7 165.0 7.47 %

3 SDT650-03 0.2 2.15 186.0 210.0 11.42 %

4 SDT650-04 0.1 2.15 145.1 161.0 9.90 %

5 SDT800-05 0.2 1.75 269.5 319.0 15.52 %

6 SDT800-06 0.1 1.75 206.3 230.0 10.29 %

7 SDT900-07 0.2 1.56 337.2 352.3 4.30 %

8 SDT900-08 0.1 1.56 256.4 296.8 13.60 %
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