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Abstract

Adaptive dimensional search (ADS) algorithm is a recently proposed metaheuristic optimization technique for discrete structural 

optimization problems. In this study, discrete sizing optimization problem of steel frames is tackled using the ADS algorithm. An 

important feature of the algorithm is that it does not use any metaphor as an underlying principle for its implementation. Instead, 

the algorithm employs an efficient performance-oriented methodology at each iteration for convergence to the optimum or a near 

optimum solution. The performance of the ADS is investigated through optimum design of five real-size steel frame structures and the 

results are compared versus several contemporary metaheuristic techniques. The comparison of the obtained numerical results with 

those of available designs in the literature reveals the reliability and efficiency of the ADS in optimum design of steel frames.
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1 Introduction
In the last few decades, optimum design of engineering 
systems received considerable attention in the research 
community due to the globally increasing economic and 
environmental concerns. On the one hand, optimization 
provides the industry with an opportunity to produce more 
economical designs, and on the other hand, by reducing 
the material consumption as well as labor hours, alleviates 
the environmental problems such as carbon footprint of 
production and construction procedures. In general, opti-
mum design of structural systems requires decision mak-
ing on a set of design variables with respect to the strength 
and serviceability requirements imposed by a standard 
design code. Due to the wide range of applications of steel 
frames in the construction industry, many research stud-
ies addressed methodologies to enhance the design opti-
mization procedure of steel frames so far [1]. Typically, in 
practical applications the frame members are selected from 
an available list of steel profiles. Therefore, commonly an 
optimization problem with discrete design variables is be 
solved in order to achieve an optimum or a near optimum 
final design. Indeed, development of numerous discrete 
optimization methodologies is basically due to the fact that 

the current computational technologies are not capable of 
performing an exhaustive search in the solution space by 
evaluation of all candidate solutions in a timely manner.

In the past decades, various research studies have been 
conducted on developing efficient design optimization 
techniques for structural engineering applications  [2–9]. 
In fact, most of the recently proposed optimization algo-
rithms for discrete sizing of steel frames belong to the 
class of stochastic search techniques or the so-called meta-
heuristics [2, 10, 11]. In general, metaheuristic techniques, 
such as genetic algorithms  [12], particle swarm optimi-
zation [13], ant colony optimization [14, 15], etc., borrow 
their working principles from natural phenomena [16]; and 
follow non-deterministic search strategies for locating an 
optimum or a near optimum solution. The common meth-
odology for development of metaheuristic based structural 
optimization techniques is to consider the neighborhood 
of promising candidate solutions found in each iteration to 
predict the search direction of the next iteration. Usually, 
a metaheuristic technique performs a global search in 
the early stages of the optimization, by exploring a wide 
area of the solution space, and gradually turns into a local 
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search process in the last iterations to enhance the qual-
ity of the final solution. The popularity of metaheuristics 
structural optimization techniques can be attributed to 
their promising solutions, robust performances, indepen-
dency to gradient information, and capability of handling 
both discrete and continuous design variables. The meta-
heuristic methods of structural optimization as well as 
their practical applications have been generally surveyed 
by Lamberti and Pappalettere [17].

For a more efficient search in the design space, adaptive  
metaheuristics refine their search strategies during the opti-
mization process  [18–20]. Recently, an adaptive dimensi- 
onal search (ADS) technique was proposed by Hasançebi 
and Kazemzadeh Azad [21] for discrete sizing optimization 
of truss structures. In the ADS, the search dimensionality 
ratio (SDR) is adaptively updated, during the optimization 
process, to control the convergence rate of the algorithm. 
It was attempted to provide a balance between the explo-
ration and exploitation characteristics of the ADS during 
its search in the design space based on the performance of 
the technique at each iteration. The efficiency of the ADS, 
in discrete truss optimization problems, is demonstrated in 
Hasançebi and Kazemzadeh Azad [21] compared to several 
contemporary metaheuristic algorithms. In addition to the 
efficiency of the ADS in discrete sizing optimization prob-
lems, another important feature of the algorithm is that it 
does not use any metaphor as an underlying principle for its 
implementation. Instead, the algorithm employs a simple, 
yet efficient performance-oriented methodology based on 
the update of the SDR parameter at each iteration for conver-
gence to the optimum or a near optimum solution. This per-
formance-oriented feature of the ADS makes it much eas-
ier for structural engineers to better understand the working 
principles of the technique for coding and implementation.

Considering the promising performance of the ADS in 
optimum design of truss structures, in the present study, 
the algorithm is reformulated for tackling discrete sizing 
optimization problems of real-size steel frames. The per-
formance of the ADS is investigated through optimum 
design of five real-size steel frame structures, namely a 
132-member unbraced space steel frame, a 325-member 
braced space steel frame, a 568-member unbraced space 
steel frame, a 744-member unbraced steel frame, and a 
1860-member braced steel frame. The results obtained 
by the ADS demonstrate that the algorithm is capable of 
locating promising solutions with an acceptable level of 
conformity to those of other contemporary discrete sizing 
optimization techniques.

The remaining parts of the study are organized as fol-
lows. Section 2 describes the discrete sizing optimization 
problem of steel frames according to AISC-ASD [22]. In 
Section 3 provides a detailed description of computational 
steps involved in the ADS algorithm are overviewed. 
Section 4 presents the performance evaluation of the ADS 
algorithm using real-size steel frame instances. Section 5 
provides a brief conclusion of the study.

2 Practical design optimization of steel frames
In real-world applications the steel frame members are 
usually selected from a set of available steel sections, 
which yields a discrete optimization problem. For a steel 
frame consisting of Nm members that are collected in Nd 

member groups, the design optimization problem accord-
ing to AISC-ASD [22] can be formulated as follows.

The optimization objective is to find a vector of integer 
values  I (Eq.  (1)) representing the sequence numbers of 
steel sections assigned to Nd member groups,
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where Ai and ρi are the length and unit weight of the steel 
section adopted for member group i, respectively, Nt is the 
total number of members in group i, and Lj is the length of 
the member j which belongs to group i.

The frame members subjected to a combination of axial 
compression and flexural stress should be sized to satisfy 
the following stress constraints (Eqs. (3)–(5)):
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If the flexural member is under tension, then the for-
mula given in Eq. (6) is used instead:
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In Eqs. (3)–(6), Fy is the material yield stress, and 
fa = (P / A) represents the calculated axial stress, where A 
is the cross-sectional area of the member. The calculated 
flexural stresses due to bending of the member about its 
major (x) and minor (y) principal axes are denoted by fbx 
and fby , respectively. F'ex and F'ey denote the Euler stresses 
about principal axes of the member that are divided by a 
factory of safety of 23/12. Fa stands for the allowable axial 
stress under axial compression force alone, and is cal-
culated depending on elastic or inelastic bucking failure 
mode of the member using Formulas 1.5-1 and 1.5-2 given 
in AISC-ASD  [22]. The allowable bending compressive 
stresses about major and minor axes are designated by Fbx 
and Fby, which are computed using the Formulas 1.5-6a or 
1.5-6b and 1.5-7 given in AISC-ASD [22]. It is important 
to note that while calculating allowable bending stresses, 
a newer formulation (Eq. (7)) of moment gradient coeffi-
cient cb given in ANSI/AISC 360-05 [23] is employed in 
the study to account for the effect of moment gradient on 
lateral torsional buckling resistance of the elements,
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where Mmax, MA, MB and MC are the absolute values of 
maximum, quarter-point, midpoint, and three-quarter 
point moments along the unbraced length of the mem-
ber, respectively, and Rm is a coefficient which is equal 
to 1.0 for doubly symmetric sections. Cmx and Cmy are the 
reduction factors, introduced to counterbalance over-
estimation of the second-order moments by the amplifi-
cation factor (1 –  fa  / F'e). For unbraced frame members, 
they are taken as 0.85. For braced frame members with-
out transverse loading between their ends, they are com-
puted from Cm = 0.6 – 0.4(M1 / M2), where M1 / M2 is the 
ratio of smaller end moment to the larger end moment. 
For braced frame members having transverse loading 
between their ends, they are determined from the formula 
Cm = 1 + ψ( fa / F'e) based on a rational approximate anal-
ysis outlined in AISC-ASD [22] Commentary-H1, where 
ψ is a parameter that considers maximum deflection and 
maximum moment in the member.

For the computation of allowable compression and Euler 
stresses, the effective length factors (K) are required. For 
beam and bracing members, K is taken equal to unity. For 
column members, alignment charts furnished in AISC-
ASD  [22] can be utilized. In the present work, however, 
the effective length factors of columns in braced and 
unbraced steel frames are computed from the approximate 

formulas (Eqs. (8), (9)) developed by Dumonteil [24], which 
are accurate to within about –1.0 and +2.0 % of the exact 
results [25]:
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where GA and GB refer to stiffness ratio or relative stiffness 
of a column at its two ends.

It is also required that the computed shear stresses ( fv) 
in members are smaller than the allowable shear stresses 
(Fv), as formulated in Eq. (10).

f F C Fv v v y≤ = 0 40. 	 (10)

In Eq. (10), Cv is referred to as web shear coefficient. 
It is taken equal to Cv  =  1.0 for rolled W-shaped mem-
bers with h / tw ≤ 2.24 E / Fy, where h is the clear distance 
between flanges, E is the elasticity modulus and tw is the 
thickness of web. For all other symmetric shapes, Cv is 
calculated from Formulas G2-3, G2-4 and G2-5 in ANSI/
AISC 360-05 [23].

Apart from stress constraints, slenderness limitations are 
also imposed on all members such that maximum slender-
ness ratio (λ = KL / r) is limited to 300 and 200 for tension 
and compression members, respectively. The displacement 
constraints are imposed such that the maximum lateral dis-
placements are restricted to be less than H/400, and upper 
limit of story drift is set to be h/400, where H is the total 
height of the frame building and h is the height of a story.

Finally, we consider geometric constraints between 
beams and columns framing into each other at a common 
joint for practicality of an optimum solution generated. 
For the two beams B1 and B2 and the column shown in 
Fig. 1, one can write the following geometric constraints:

b
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where bfb, b'fb and bfc are the flange width of the beam 
B1, the beam B2 and the column, respectively, dc is the 
depth of the column, and tf is the flange width of the col-
umn. Eq.  (11) ensures that the flange width of the beam 
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B1 remains smaller than that of the column. On the other 
hand, Eq.  (12) enables that flange width of the beam B2 
remains smaller than clear distance between the flanges of 
the column (dc – 2tf).

3 Adaptive Dimensional Search (ADS) technique
The adaptive dimensional search (ADS) [21] is a recently 
proposed population-based metaheuristic optimiza-
tion algorithm where only the best solution of the previ-
ous population is used to generate µ number of candidate 
solutions in the current population. This type of selection 
scheme is commonly referred to as (1 + µ)-type selection 
in the literature and has been formerly employed by some 
variants of evolution strategies [26] as well as big bang-big 
crunch method [27].

The robustness of the ADS method lies in the idea 
of updating search dimensional rate (SDR) parameter 
online during the search to achieve a satisfactory tradeoff 
between exploration and exploitation features of the search 
process. In general, SDR can be defined as the percentage 
of the design variables that are perturbed probabilistically 
while generating a candidate solution from the current 
(best) design, Eq. (13)

SDR =
N
N
p

d

,	 (13)

where Np is the number of design variables perturbed to 
generate a new solution and Nd is the total number of design 
variables. The need for changing not all, but a percent-
age of design variables in discrete structural optimization 

problems stems from the sensitivity of structural response 
to sizing variables in such problems. That is to say, even 
small changes in a few variables may yield a candidate solu-
tion that will have a completely different structural behav-
ior than the design from which it is originated. The role 
of SDR parameter is to adjust explorative and exploitative 
search features of the ADS algorithm, which is explained 
in detail in the following. The steps in the implementation 
of the ADS can now be outlined as follows.
Step 1. Initial population: An initial population consisting 
of a predefined number of candidate solutions is generated 
randomly. This step is performed once.
Step 2. Evaluation: The population is evaluated, where 
structural analyses of all candidate solutions are performed 
with the set of steel sections selected for design variables, 
and force and deformation responses are obtained under 
the loads. The objective function values of the feasible 
solutions that satisfy all problem constraints are directly 
calculated from Eq. (2). However, infeasible solutions that 
violate some of the problem constraints are penalized using 
an external penalty function approach, and their objective 
function values are calculated according to Eq. (14).
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In Eq. (14), φ is the constrained objective function value, 
ci is the i-th problem constraint and p is the penalty coeffi-
cient used to tune the intensity of penalization as a whole.
Step 3. Setting ADS parameter: For the initial population, 
the SDR parameter is set to its initial value SDR(0), which 
is taken as 0.25 for all the numerical examples discussed 
here. For other populations it is generated in the course 
of optimization using Eq.  (15) depending on whether or 
not the best solution has been improved in the previous 
iteration (t – 1) of the algorithm.
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According to Eq. (15) if the best solution found so far 
is improved in the previous iteration t – 1, then the value 
of SDR is increased in the current iteration t by dividing 
its value by a factor λ < 1.0, otherwise SDR is decreased 
by multiplying its value by λ. The factor λ is referred to 
as search dimensional adaptation parameter (taken as 
0.98 in this study), and determines the rate of adaptation 
towards the new value of SDR parameter. The high values 
of SDR motivate a more explorative search by enabling 

Fig. 1 Beam-column geometric constraints
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moves in the search space through the change of many 
design variables at a time, resulting in large, yet relatively 
unfettered step sizes. On the other hand, the low values 
of SDR lead to a more explorative search by facilitating 
small, yet more conservative moves in the design space. 
The rationale behind Eq. (15) is to promote a more explor-
ative search, if any of the moves in the previous iteration 
leads to an improved solution. This way the search dimen-
sion is increased, and the algorithm is encouraged to dis-
cover new solutions in an extended region of the search 
space. On the other hand, if the previous iteration leads 
to no improvement, diverse search is somewhat limited, 
and the algorithm is biased towards sampling by small and 
judicious moves around the current design. This way the 
SDR parameter is updated at each iteration to benefit from 
a more explorative or exploitative search alternately for 
the most efficient optimization process. It is recommended 
to define an upper and a lower bound for the variation of 
SDR, which are set to 0.5 and 1/Nd, respectively where Nd 
refers to the total number of design variables of the opti-
mization problem.

Step 4. New population: A new population is formed 
where candidate solutions are generated from the best 
design obtained so far using Eq. (16).

I
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In Eq. (16) Ii
c is the value of i-th design variable in the 

best design obtained so far, Ii
new is the value of the cor-

responding design variable in a candidate solution, and 
ri is a uniform random number sampled between 0 and 1 
for i-th design variable. Accordingly, while generating a 
candidate solution, a random number ri is sampled anew 
for each design variable i. If it is greater than SDR, then 
the value of the i-th design variable in a candidate solu-
tion is directly copied from the best design, i.e., Ii

new = Ii
c. 

Otherwise (ri ≤ SDR); a new value is assigned to the can-
didate solution for the respective design variable between 
its lower (Ii

min) and upper (Ii
max) bounds using the lower 

expression in Eq. (16). In this expression Ni(0,1) is a ran-
dom number generated anew for each i-th design variable 
according to a standard normal distribution with mean 
zero and standard deviation one, t is the current iteration 
number, and max_t is the maximum number of iterations 
to be performed during the course of optimization. In case 
a selected design variable is not changed, a perturbation of 
+1 or –1 is implemented (with equal probability) to ensure 

a minimum change in the considered variable. It should 
be noted that Eq.  (16) enables a change of different set 
of design variables for each candidate solution under the 
same SDR value.

Step 5. Elitism: The best solution found so far is kept in 
a separate place and involved in the population if any of 
the candidate solutions in the current population does not 
outperform it. It should be noted that the best design refers 
to either a feasible or infeasible solution with the mini-
mum objective function value obtained so far in accor-
dance with Eq. (2) or (14). In fact, this is the design which 
is used to originate candidate solutions using Eq.  (16). 
Apart from the best design, the algorithm also stores the 
feasible best design, which corresponds to the best design 
achieved by the algorithm with strictly no constraint vio-
lation during the optimization process.

Step 6. Stagnation-control: The algorithm is checked 
against stagnation. Three alternative stagnation-control 
strategies were proposed in Hasançebi and Kazemzadeh 
Azad  [21] for the ADS algorithm to protect it against 
entrapment in local optima, and thus to perform a more 
efficient search in the solution space. The details of differ-
ent stagnation-control strategies can be found in Hasançebi 
and Kazemzadeh Azad [21] and are not repeated here.

Step 7. Termination: The algorithm proceeds back to 
Step 2 until a stopping criterion is met. This can be con-
sidered as a maximum number of iterations or no improve-
ment of the best solution found over a certain number of 
iterations.

4 Design examples
In Section 4, performance evaluation of the ADS algorithm 
is carried out using a test set of five practical frame opti-
mization problems. The objective in these test instances is 
to evaluate the performance of the ADS algorithm against 
several robust contemporary metaheuristics. The param-
eters of ADS algorithm are selected as follows. The ini-
tial value of penalty coefficient p is set to 1.0, and a pop-
ulation size of 50 is employed for all the examples. The 
annealing strategy [21] is employed for stagnation-control 
of the ADS algorithm, for which a limited non-improving 
move is permitted when a stagnation state is detected in 
the course of optimization.

4.1 Example 1: 132-member unbraced steel frame
The first test example shown in Fig. 2 is an unbraced 
space steel frame composed of 70 joints and 132 members 
which are grouped into 30 independent sizing variables 
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(Fig.  2(b)) to satisfy practical fabrication requirements. 
This design optimization example has been already stud-
ied by Hasançebi et  al.  [28] as well as Hasançebi and 
Kazemzadeh Azad  [29] using different optimization 

algorithms. Here, the columns are chosen from the com-
plete W-shape profile list of 297 ready sections, whereas 
a discrete set of 171 economical sections, selected from 
W-shape profile list based on cross sectional area and 
moment of inertia properties, is used to size the beam 
members. Moreover, both gravity and lateral loads are con-
sidered for designing the structure. Gravity loads (G) con-
sisting dead, live and snow loads are computed according 
to ASCE 7-05 [30] based on the following design values: a 
design dead load of 60.13 lb/ft2 (2.88 kN/m2), a design live 
load of 50 lb/ft2 (2.39 kN/m2), and a ground snow load of 
25  lb/ft2 (1.20 kN/m2). This yields the uniformly distrib-
uted loads on the outer and inner beams of the roof and 
floors given in Table 1. As for the lateral forces, earthquake 
loads (E) are considered. These loads are calculated using 
the equivalent lateral force procedure outlined in ASCE 
7-05 [30], resulting in the values given in Table 1 that are 
applied at the center of gravity of each story as joint loads. 
Gravity (G) and earthquake (E) loads are combined under 
two loading conditions for the frame: (i) 1.0 G + 1.0 E (in 
x-direction), and (ii) 1.0  G  +  1.0  E (in y-direction). The 
combined stress, stability and geometric constraints are 
imposed as already explained. The joint displacements in 
x and y directions are limited to 1.53 in (3.59 cm) which is 
obtained as height of frame/400. Furthermore, story drift 
constraints are applied to each story of the steel frame 
which is equal to height of each story/400.

Discrete sizing of the 132-member steel frame is per-
formed using the ADS algorithm and the results obtained 
are compared to the previously reported designs using dif-
ferent metaheuristic techniques in Hasançebi et al.  [28], 
and Hasançebi and Kazemzadeh Azad  [29]; namely 
improved simulated annealing (ISA), tabu search (TS), 
harmony search (HS), big bang-big crunch (BB-BC),  
exponential BB–BC (EBB–BC), and modified BB–BC 
(MBB–BC) algorithms. As presented in Table 2 the ADS  
algorithm produces a design weight of 125240.17  lb 
(56807.99 kg) for the 132-member steel frame which is the 
best solution of this problem reported so far. Relatively 
higher design weights have been obtained for the frame 
with other metaheuristic algorithms; namely 138874.67 lb 
(62993.55  kg) by ISA, 142710.96  lb (64733.69  kg) by 
TS, 143135.29  lb (64926.17  kg) by HS, 192834.39  lb 
(87468.21 kg) by BB-BC, 134050.55 lb (60804.31 kg) by 
EBB-BC, and 139016.28  lb (63056.72  kg) by MBB-BC. 
The convergence history for the best feasible design found 
in the course of optimization using the ADS algorithm  
is depicted Fig. 3.

Fig. 2 132-member steel frame: (a) 3D view, (b) front view, (c) top view
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Table 1 The gravity and lateral loading on 132-member steel frame

Gravity Loads

Beam Type Uniformly Distributed Load 

Outer Span Beams Inner Span Beams

(lb/ft) (kN/m) (lb/ft) (kN/m)

Roof beams (Dead + Snow Loads) 1011.74 14.77 1193.84 17.42

Floor beams (Dead + Live Loads) 1468.40 21.49 1732.70 25.29

Lateral Loads

Floor Number Earthquake Design Load

(kips) (kN)

1 6.57 29.23

2 12.43 55.28

3 18.52 82.35

4 24.76 110.15

Table 2 Comparison of results for 132-member steel frame

Member Group ISA TS HS BB-BC EBB-BC MBB-BC ADS

1 W8X35 W8X31 W14X53 W24X176 W10X33 W12X58 W8X31

2 W18X86 W12X65 W12X120 W21X132 W12X79 W14X109 W21X101

3 W12X79 W27X129 W30X48 W27X336 W40X167 W10X100 W24X104

4 W18X65 W8X58 W16X77 W24X279 W12X65 W10X54 W12X65

5 W12X65 W12X79 W18X119 W14X193 W14X120 W12X96 W24X104

6 W27X161 W12X106 W24X104 W14X109 W14X109 W14X90 W21X101

7 W24X117 W18X97 W30X148 W12X87 W14X99 W36X182 W21X101

8 W10X54 W8X58 W10X68 W27X94 W14X90 W12X65 W21X68

9 W18X86 W12X72 W18X158 W30X292 W10X100 W18X130 W12X72

10 W12X96 W14X90 W12X120 W18X283 W12X106 W14X90 W33X130

11 W10X60 W36X135 W36X150 W10X49 W33X152 W12X58 W21X68

12 W10X49 W10X49 W16X67 W21X62 W12X53 W30X99 W10X49

13 W12X87 W12X96 W10X112 W18X311 W14X90 W44X224 W14X90 

14 W12X50 W10X49 W24X117 W33X141 W36X160 W40X192 W24X68

15 W24X55 W24X55 W18X40 W18X40 W18X40 W16X40 W21X44 

16 W24X55 W10X33 W14X61 W12X210 W12X53 W8X35 W8X24

17 W12X58 W18X76 W12X65 W16X67 W21X111 W12X65 W14X109

18 W12X67 W21X83 W18X119 W12X65 W12X65 W12X96 W12X65

19 W12X40 W8X40 W14X82 W14X211 W14X43 W12X65 W14X43

20 W10X49 W14X61 W18X86 W14X211 W10X60 W12X65 W16X67

21 W12X72 W18X76 W14X90 W40X277 W12X106 W12X72 W10X77

22 W12X79 W12X72 W18X97 W33X141 W10X88 W12X72 W12X72

23 W8X48 W12X40 W21X73 W12X65 W8X48 W14X43 W10X49

24 W24X68 W24X76 W12X87 W30X326 W27X84 W18X119 W12X79

25 W14X61 W10X77 W18X71 W12X72 W14X61 W12X152 W10X54

26 W21X50 W16X50 W27X102 W8X28 W10X39 W12X53 W12X58

27 W8X40 W10X49 W8X48 W30X124 W12X40 W12X45 W10X39

28 W8X67 W14X61 W24X117 W24X94 W18X76 W12X72 W24X117

29 W10X39 W18X97 W18X97 W16X89 W24X68 W12X58 W12X65

30 W21X44 W16X45 W16X40 W21X44 W18X40 W16X40 W18X35

Weight, lb (kg) 138874.67 
(62993.55)

142710.96 
(64733.69)

143135.29 
(64926.17)

192834.39
(87468.21)

134050.55
(60804.31)

139016.28
(63056.72)

125240.17
(56807.99)



Hasançebi and Kazemzadeh Azad
Period. Polytech. Civ. Eng., 63(4), pp. 1062–1079, 2019|1069

4.2 Example 2: 325-member braced steel frame
The space steel frame depicted in Fig. 4 is selected as the 
second design example for performance evaluation of the 
ADS algorithm. This instance has been formerly investi-
gated in Hasançebi et  al.  [31]. The frame is braced with 
K-type bracing in the first and last bays along the x-direc-
tion and with X-type bracing system along y-direction. 
The 325 members of the frame are collected in 20 member 

groups as shown in Fig. 4(e). For this test example, grav-
ity loads on the beams of roof and floors are tabulated in 
Table 3. As for lateral forces, earthquake loads (E) are com-
puted based on the equivalent lateral force procedure out-
lined in ASCE 7-05 [30], resulting in point loads applied 
at the center of gravity of each respective story, as follows: 
4.72 kips (20.99 kN) at the 1st story, 8.96 kips (39.87 kN) at 
the 2nd story, 13.49 kips (59.99 kN) at the 3rd story, 18.22 
kips (81.04 kN) at the 4th story, and 23.11 kips (102.81 kN) 
at the 5th story. The gravity and lateral loads are combined 
under two loading conditions for the frame: (i) 1.0G + 1.0E 
(in  x-direction), and (ii) 1.0G  +  1.0E (in  y-direction).  
As already explained, the combined stress, stability, displa- 
cement and geometric constraints are imposed according 
to the provisions of AISC-ASD [22].

Optimization of the 325-member braced steel frame is 
performed using the ADS algorithm and the results obtained 
as well as sectional designations for member groups are 
presented and compared to the results of other metaheuris-
tics reported in Hasançebi et al. [31]. As can be seen from 
Table 4 the ADS algorithm locates the minimum weight as 
128320.45 lb (58205.177 kg), which is the lightest of all the 
final designs. For this test example, relatively higher design

Fig. 3 Optimization history for 132-member steel frame using ADS

(a) (b) (c)

(d)

(e)

Fig. 4 325-member braced steel frame: (a) 3D view, (b) front view, (c) side view, (d) plan view, (e) member grouping
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Table 4 Comparison of results for 325-member braced steel frame

Member Group ES SA TS ACO PSO HS SGA ADS

1 W8X40 W18X40 W12X35 W16X57 W18X55 W18X60 W12X30 W16X45

2 W8X24 W8X24 W8X24 W6X25 W16X40 W12X50 W18X40 W16X40

3 W21X62 W18X60 W12X53 W21X68 W14X61 W14X61 W24X68 W10X26

4 W6X15 W6X15 W6X20 W6X15 W6X15 W8X18 W5X19 W18X60

5 W18X50 W16X45 W18X50 W8X40 W12X40 W16X45 W14X43 W12X14

6 W12X14 W12X14 W10X17 W12X14 W12X16 W10X15 W10X19 W18X40 

7 W18X40 W18X40 W18X40 W21X44 W21X44 W18X40 W18X46 W6X15

8 W8X18 W8X24 W8X21 W8X24 W8X18 W16X31 W10X26 W21X44

9 W8X18 W14X22 W6X15 W8X21 W10X22 W14X30 W14X22 W8X21

10 W12X50 W12X50 W14X53 W14X48 W16X50 W12X53 W12X50 W10X19

11 W6X15 W6X15 W6X15 W6X15 W6X15 W6X15 W6X20 W12X50

12 W21X44 W21X44 W18X46 W16X50 W8X48 W12X50 W18X46 W12X14

13 W12X14 W12X14 W12X16 W12X14 W12X44 W12X16 W12X19 W18X40

14 W18X40 W18X40 W18X40 W18X40 W21X44 W18X40 W18X40 W6X15

15 W8X13 W8X13 W8X15 W8X15 W8X18 W8X15 W12X19 W14X34

16 W12X14 W12X14 W12X14 W12X19 W12X14 W12X16 W8X24 W8X13

17 W14X34 W14X34 W16X36 W14X34 W16X36 W10X33 W12X35 W8X13

18 W6X15 W6X15 W5X16 W6X15 W6X15 W6X15 W6X20 W14X34

19 W14X34 W14X34 W14X34 W14X34 W16X36 W12X45 W14X30 W12X14

20 W12X14 W12X14 W12X14 W12X16 W12X14 W12X14 W12X16 W18X40

21 W18X40 W18X40 W18X40 W18X40 W18X40 W18X40 W21X44 W6X15 

Weight, lb (kg) 128637.77
(58349.11)

128788.82
(58417.63)

131782.50
(59775.54)

133330.09
(60477.51)

135185.87
(61319.28)

138830.09
(62972.27)

141846.24
(64340.37)

128320.45
(58205.177)

Table 3 Gravity loading on the beams of 325-member braced steel frame

Story Beams
Uniformly Distributed Load 

(lb/ft) (kN/m)

Beams along 
y-axis

Roof

A1-B1, A6-B6 521.67 7.61

A2-B2, A3-B3, 
A4-B4, A5-B5 1043.34 15.23

B1-C1, B6-C6 437.36 6.38

B2-C2, B3-C3, 
B4-C4, B5-C5 874.72 12.77

Floor

A1-B1, A6-B6 757.14 11.05

A2-B2, A3-B3, 
A4-B4, A5-B5 1514.28 22.10

B1-C1, B6-C6 634.99 9.27

B2-C2, B3-C3, 
B4-C4, B5-C5 1269.98 18.53

Beams along 
x-axis

Roof
A1-A6, C1-C6 379.40 5.54

B1-B6 758.80 11.07

Floor
A1-A6, C1-C6 550.00 8.03

B1-B6 1101.30 16.07

weights have been found with other metaheuristic algorithms; 
namely 128637.77  lb (58349.11  kg) by ES, 128788.82  lb 
(58417.63  kg) by SA, 131782.50  lb (59775.54  kg) by 
TS, 133330.09  lb (60477.51  kg) by ACO, 135185.87  lb 
(61319.28 kg) by PSO, 138830.09 lb (62972.27 kg) by HS, 
and 141846.24 lb (64340.37 kg) by SGA. The convergence 
curve for the best feasible design obtained in the course of 
optimization using the ADS algorithm is plotted in Fig. 5.

Fig. 5 Optimization history for 325-member braced steel frame using ADS
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4.3 Example 3: 568-member unbraced steel frame
The third design instance is an unbraced space steel frame 
(Fig. 6) composed of 256 joints and 568 members which 
are collected in 25 member groups. This optimization 
example has been already studied in Hasançebi et al. [31] 
using various metaheuristics. The frame is subjected to 
two loading conditions of combined gravity and wind 
forces. The wind forces are calculated based on a basic 
wind speed of 105 mph (46.94 m/s). The resulting grav-
ity loading on the beams of roof and floors is tabulated 
in Table  5 and the wind loading is given in Table  6. In 
the first loading condition, gravity loading is applied with 
wind loading acting along x-axis, whereas in the second 
one wind loading is acted along y-axis.

Table 5 Gravity loading on the beams of 568-member unbraced steel 
frame

Beam Type Uniformly Distributed Load 

Outer Beams Inner Beams

(lb/ft) (kN/m) (lb/ft) (kN/m)

Roof beams 505.88 7.38 1011.74 14.77

Floor beams 734.20 10.72 1468.40 21.44

Optimization of the 568-member unbraced steel frame 
is carried out using the ADS algorithm and the results achi-
eved as well as sectional designations for member groups 
are presented and compared to the results of other meta-
heuristics reported in Hasançebi et al. [31]. As can be seen 
from Table 7 the ADS algorithm finds a promising solution

Fig. 6 568-member unbraced steel frame: (a) 3D view, (b) elevation view, (c) plan view, (d) member grouping
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Table 6 Wind loading on 568-member unbraced steel frame

Floor No Windward Leeward

(lb/ft) (kN/m) (lb/ft) (kN/m)

1 112.51 1.64 127.38 1.86

2 128.68 1.88 127.38 1.86

3 144.68 2.10 127.38 1.86

4 156.86 2.29 127.38 1.86

5 167.19 2.44 127.38 1.86

6 176.13 2.57 127.38 1.86

7 184.06 2.69 127.38 1.86

8 191.21 2.79 127.38 1.86

9 197.76 2.89 127.38 1.86

10 101.90 1.49 63.90 1.86

with a design weight of 505781.22  lb (229418.50  kg) 
which is slightly heavier than the best solution found by 
ES, i.e. 503953.63  lb (228588.33  kg). Here, relatively 
higher design weights have been obtained using other meta-
heuristic algorithms; namely 526370.76 lb (238756.51 kg) 
by SA, 518458.35 lb (235167.52 kg) by TS, 532353.70 lb 

(241470.31 kg) by ACO, 558346.15 lb (253260.23 kg) by 
PSO, 571159.66 lb (259072.31 kg) by HS, and 541380.54 lb 
(245564.80  kg) by SGA. The convergence curve for the 
best feasible design obtained in the course of optimization 
using the ADS algorithm is depicted in Fig. 7.

Fig. 7 Optimization history for 568-member unbraced steel frame using ADS

Table 7 Comparison of results for 568-member unbraced steel frame

Member Group ES TS SA ACO SGA PSO HS ADS

1 W14X193 W14X193 W14X193 W14X193 W14X193 W14X159 W14X176 W14X193

2 W8X48 W8X48 W8X48 W8X48 W8X48 W24X76 W12X53 W10X45

3 W10X39 W8X40 W8X40 W10X45 W10X39 W10X39 W8X40 W8X48

4 W10X22 W10X22 W10X22 W10X22 W10X26 W10X22 W10X22 W10X22

5 W21X50 W21X50 W21X44 W21X50 W21X50 W24X55 W24X55 W21X50

6 W10X54 W10X54 W12X65 W14X61 W18X76 W12X72 W24X117 W12X58

7 W14X109 W14X120 W14X145 W14X120 W14X109 W27X146 W24X146 W14X109 

8 W14X176 W14X159 W14X145 W40X192 W40X192 W27X217 W40X199 W14X159

9 W18X40 W21X44 W24X68 W18X35 W18X40 W18X40 W21X44 W18X35

10 W18X40 W18X40 W24X55 W18X40 W21X50 W18X40 W18X40 W21X50

11 W10X49 W10X45 W10X49 W12X58 W12X65 W18X71 W27X94 W10X49

12 W14X90 W14X90 W14X90 W12X96 W21X111 W21X101 W14X120 W14X90

13 W14X109 W12X120 W14X120 W12X136 W12X152 W14X176 W14X120 W14X120

14 W14X30 W21X44 W16X36 W12X30 W12X30 W14X34 W12X30 W14X30

15 W16X36 W16X36 W16X40 W21X44 W16X40 W21X44 W18X40 W16X36

16 W12X45 W10X33 W12X40 W8X58 W14X68 W12X65 W27X94 W8X48

17 W12X65 W12X65 W12X65 W18X76 W18X76 W10X68 W18X97 W12X65

18 W10X22 W14X34 W12X26 W12X35 W8X28 W12X35 W12X30 W10X22

19 W12X79 W12X79 W12X72 W10X88 W10X88 W12X79 W10X88 W12X79

20 W14X30 W14X30 W16X36 W14X30 W16X36 W14X38 W18X35 W14X30

21 W8X35 W10X39 W8X24 W8X58 W8X48 W10X39 W12X72 W8X35

22 W10X39 W12X45 W10X49 W8X40 W14X34 W8X31 W10X45 W16X40

23 W8X31 W12X35 W8X24 W8X31 W12X30 W12X96 W14X132 W10X49

24 W8X18 W6X20 W12X26 W8X24 W8X21 W12X26 W18X35 W8X18

25 W14X30 W12X26 W12X26 W16X45 W18X35 W12X26 W16X36 W12X26

Weight, lb (kg) 503953.63
(228588.33)

518458.35
(235167.52)

526370.76
(238756.51)

532353.70
(241470.31)

541380.54
(245564.80)

558346.15
(253260.23)

571159.66
(259072.31)

505781.22
(229418.50)
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4.4 Example 4: 744-member unbraced steel frame
The fourth design optimization instance is an unbraced 
space steel frame composed of 315 joints and 744 struc-
tural members which are collected in 16 different mem-
ber groups. Fig. 8 depicts the side, plan, and 3D views of 
the frame as well as the corresponding member grouping 
details. This test example has been formerly investigated in 
Hasançebi et al. [32]. The frame is subjected to two load-
ing conditions of combined gravity and wind forces as fol-
lows. The uniformly distributed gravity loads of 379.4 lb/ft 
(5.54 kN/m) and 758.8 lb/ft (11.08 kN/m) are applied on the 
exterior and interior top story beams, respectively, whereas 
exterior and interior beams of the other floors are sub-
jected to uniformly distributed gravity loads of 550.65 lb/ft 
(8.04  kN/m) and 1101.3  lb/ft (16.08  kN/m), respectively. 

Here, the design wind speed is taken as 121 mph (54.09 m/s) 
and the corresponding lateral (wind) loads acting at each 
floor level on windward and leeward faces of the frame are 
presented in Table 8. In the first loading case, the gravity 
loads are applied together with the wind loads acting along 
the x-axis, whereas in the second case they are applied 
together with the wind loads acting along the y-axis. The 
combined stress, stability, displacement and geometric 
constraints are imposed according to the provisions of 
AISC-ASD [22], as given in Section 2.

Discrete sizing optimization of the 744-member steel 
frame is performed using the ADS algorithm and the 
obtained results are compared to the previously reported 
designs in Hasançebi et al. [32] using different metaheuris-
tic techniques, namely standard harmony search (HS), 

Fig. 8 744-member unbraced steel frame: (a) side view (x-z plane), (b) side view (y-z plane), (c) 3D view, (d) plan view
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Table 8 Wind forces on 744-member unbraced steel frame

Floor No Windward Leeward

(lb/ft) (kN/m) (lb/ft) (kN/m)

1 140.64 0.63 159.22 0.71

2 171.44 0.76 159.22 0.71

3 192.49 0.86 159.22 0.71

4 208.98 0.93 159.22 0.71

5 222.74 0.99 159.22 0.71

6 234.65 1.04 159.22 0.71

7 245.22 1.09 159.22 0.71

8 127.38 0.57 79.61 0.36

adaptive harmony search (AHS), tabu search (TS), ant 
colony optimization (ACO), particle swarm optimization 
(PSO), and simple genetic algorithm (SGA). As tabulated 
in Table 9, the ADS algorithm produces a design weight 
of 399650.79  lb (181281.56  kg) which is slightly heavier 
than the best solution found by AHS, i.e. 395708.03  lb 
(179493.16  kg). For this test example, relatively higher 
design weights have been achieved using other meta-
heuristic techniques; namely 420177.57 lb (190592.55 kg) 
by HS, 401647.84  lb (182136.90 kg) by TS, 405441.65  lb 
(183908.33 kg) by ACO, 412200.98  lb (186974.36 kg) by 
PSO, and 424076.52 lb (192361.11 kg) by SGA.

4.5 Example 5: 1860-member braced steel frame
The last design example investigated in the present study is 
a 36-story braced steel frame composed of 814 joints and 
1860 structural members. This design optimization instance 
has been formerly studied in Hasançebi and Kazemzadeh 
Azad [33] as well as Saka and Hasançebi [34] using meta-
heuristic techniques. The side, top and 3D views of the 
frame as well as member grouping details are shown in 
Fig. 9. An economical and effective stiffening of the frame 
against lateral forces is achieved through exterior diagonal 
bracing members located on the perimeter of the building, 
which also participate in transmitting the gravity forces.

The wide-flange (W) profile list consisting of 297 ready 
sections is used to size the column members, while beams 
and diagonals are taken from discrete sets of 171 and 147 
economical sections selected from wide-flange profile 
list based on cross sectional area and moment of inertia 
properties in the former, and on area and radius of gyra-
tion properties in the latter. The 1860 frame members 
are collected in 72 different member groups, considering 
the symmetry of the structure and practical fabrication 
requirements. That is, the columns in a story are collected 
in three member groups as corner columns, inner columns 
and outer columns, whereas beams are divided into two 

Table 9 Comparison of results for 744-member unbraced steel frame

Member Group AHS HS TS ACO PSO SGA ADS

1 W12X87 W12X79 W8X35 W12X72 W14X99 W24X68 W12X79

2 W14X109 W14X132 W14X145 W14X109 W14X99 W14X120 W14X109

3 W10X22 W14X22 W16X26 W14X22 W8X18 W8X21 W14X22

4 W18X35 W16X36 W18X35 W18X40 W21X44 W21X44 W18X40

5 W12X65 W12X72 W8X24 W10X49 W14X48 W12X65 W10X54

6 W12X79 W12X87 W14X90 W12X87 W14X90 W12X79 W12X79

7 W10X22 W14X22 W14X22 W12X26 W16X31 W14X26 W14X22

8 W16X26 W16X26 W18X35 W16X26 W14X26 W16X26 W16X31

9 W8X31 W16X40 W10X54 W12X35 W8X31 W8X35 W14X43

10 W12X65 W12X65 W12X53 W12X72 W14X90 W12X72 W12X72

11 W14X22 W14X22 W6X20 W14X22 W8X18 W14X26 W8X18

12 W14X22 W16X26 W16X26 W16X26 W16X26 W14X22 W14X22

13 W6X20 W16X36 W8X24 W10X39 W8X31 W8X35 W12X26

14 W12X58 W8X35 W8X40 W8X35 W8X31 W8X35 W10X45

15 W8X18 W10X22 W8X18 W8X21 W8X18 W8X21 W8X18

16 W14X22 W14X22 W14X26 W10X22 W14X22 W18X35 W14X22

Weight, lb 
(kg)

395708.03
(179493.16)

420177.57 
(190592.55) 

401647.84 
(182136.90)

405441.65 
(183908.33)

412200.98 
(186974.36)

424076.52 
(192361.11)

399650.79 
(181281.56)
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groups as inner beams and outer beams. The corner col-
umns are grouped together as having the same section 
over three adjacent stories, as are inner columns, outer 
columns, inner beams and outer beams. Bracing members 
on each facade are designed as three-story deep members, 
and two bracing groups are specified at every six stories.

The 1860-member braced space steel frame is subjected 
to two loading conditions of combined gravity and wind 
forces. These forces are computed as per ASCE 7-05 [30] 
based on the following design values: a design dead load of 
2.88 kN/m2 (60.13 lb/ft2), a design live load of 2.39 kN/m2  
(50  lb/ft2), a ground snow load of 1.20  kN/m2 (25  lb/ft2) 
and a basic wind speed of 55.21 m/s (123.5 mph). Lateral 
(wind) loads acting at each floor level on windward and 
leeward faces of the frame are tabulated in Table 10 and 
the gravity loading on the beams of roof and floors is given 
in Table  11. In the first loading condition, gravity loads 
are applied together with wind loads acting along x-axis 
(1.0 GL + 1.0 WL-x), whereas in the second loading con-
dition they are applied with wind loads acting along y-axis 
(1.0  GL  +  1.0vWL-y). The joint displacements in x and 
y-directions are restricted to 32.0 cm (12.6 in) which cor-
responds to 1/400 of the frame height. Moreover, story 
drift constraints are imposed at each story of the frame 
which is equal to 1/400 of story height.

Optimal sizing of the 1860-member braced steel frame 
is carried out using the ADS algorithm and the results are 
compared to the previously reported designs in the literature 
using the bat-Inspired (BI)  [33] and AHS [34] algorithms. 
As given in Table 12, the ADS algorithm obtains a prom-
ising design weight of 4858.33 kips (2203.7  tons) which 

is slightly heavier than the best solution found by BI algo-
rithm, i.e. 4822.6 kips (2187.5 tons). For this design optimi-
zation example, a relatively higher design weight of 5254.9 
kips (2383.6 tons) has been achieved using AHS algorithm.

It is worth mentioning that, although in this study the 
application of the ADS algorithm is limited to single-objec-
tive optimization problems, it is possible to reformulate the 
algorithm to handle multi-objective optimization instances 
as well. Moreover, akin to other metaheuristics, the ADS 
algorithm does not guarantee the convergence to a global 
optimum. However, as shown in the present study, compar-
ison of the performance of the ADS versus other contem-
porary metaheuristics clearly indicates the efficiency of 
this technique in optimum design of real size steel frames. 
Finally, it should be noted that the conclusions drawn in 
this study are valid for the investigated test examples only 
and may not be valid for the cases not investigated here.

5 Conclusions
In this study, a recently developed metaheuristic optimiza-
tion algorithm, namely adaptive dimensional search tech-
nique, is applied to discrete sizing optimization of real-
size steel frames. Beside the simple algorithmic structure 
and efficiency of the algorithm, an important feature of 
the ADS is that its working principles are not based on 
any metaphor. Instead, the algorithm uses an efficient per-
formance-oriented methodology for searching the opti-
mum in the design space. The performance of the ADS is 
investigated using five practical instances of steel frames 
and the obtained results are compared to those of sev-
eral metaheuristic techniques available in the literature.  

Fig. 9 Schematic of the spatial 1860-member braced, (a) 3-D view, (b) front view and member grouping, (c) side view, (d) top view
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Table 10 Wind loads acting on the spatial 1860-member braced steel frame

Floor Windward kN/m (lb/ft) LeewardkN/m (lb/ft)

1 2.05 (140.64) 3.57 (244.70)

2 2.50 (171.44) 3.57 (244.70)

3 2.81 (192.49) 3.57 (244.70)

4 3.05 (208.98) 3.57 (244.70)

5 3.25 (222.74) 3.57 (244.70)

6 3.42 (234.65) 3.57 (244.70)

7 3.58 (245.22) 3.57 (244.70)

8 3.72 (254.75) 3.57 (244.70)

9 3.85 (263.47) 3.57 (244.70)

10 3.96 (271.52) 3.57 (244.70)

11 4.07 (279.02) 3.57 (244.70)

12 4.18 (286.04) 3.57 (244.70)

13 4.27 (292.66) 3.57 (244.70)

14 4.36 (298.92) 3.57 (244.70)

15 4.45 (304.87) 3.57 (244.70)

16 4.53 (310.55) 3.57 (244.70)

17 4.61 (315.97) 3.57 (244.70)

18 4.69 (321.18) 3.57 (244.70)

19 4.76 (326.18) 3.57 (244.70)

20 4.83 (330.99) 3.57 (244.70)

21 4.90 (335.64) 3.57 (244.70)

22 4.97 (340.13) 3.57 (244.70)

23 5.03 (344.48) 3.57 (244.70)

24 5.09 (348.69) 3.57 (244.70)

25 5.15 (352.78) 3.57 (244.70)

26 5.21 (356.76) 3.57 (244.70)

27 5.27 (360.62) 3.57 (244.70)

28 5.32 (364.39) 3.57 (244.70)

29 5.37 (368.06) 3.57 (244.70)

30 5.43 (371.65) 3.57 (244.70)

31 5.48 (375.14) 3.57 (244.70)

32 5.53 (378.56) 3.57 (244.70)

33 5.58 (381.90) 3.57 (244.70)

34 5.62 (385.18) 3.57 (244.70)

35 5.67 (388.38) 3.57 (244.70)

36 2.86 (195.76) 1.79 (122.35)

Table 11 Gravity loads acting on the spatial 1860-member braced steel frame

Beam Type
Uniformly Distributed Load, kN/m (lb/ft)

Dead Load Live Load Snow Load

Roof beams 22.44 (1536.66) N.A 5.88 (402.50)

Floor beams 22.44 (1536.66) 18.66 (1277.78) N.A

The comparison of the numerical results indicates that the 
ADS algorithm can be efficiently employed for sizing opti-
mization of steel frames under realistic design constraints. 
There is scope for further research to reformulate the ADS 

algorithm for handling multi-objective optimization prob-
lems as well as other engineering design instances such 
as optimum design of reinforced concrete frames or other 
composite structural systems.
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Table 12 Comparison of results for 1860-member braced steel frame

Member 
Group

AHS
Member 
Group

BI
Member 
Group

ADS

Section Member 
Group Section Section Member 

Group Section Section Member 
Group Section

1 W24X370 37 W12X14 1 W14X398 37 W12X16 1 W14X398 37 W12X16

2 W12X336 38 W16X26 2 W40X531 38 W12X19 2 W40X531 38 W12X19

3 W12X305 39 W14X22 3 W24X306 39 W10X22 3 W24X306 39 W12X26

4 W12X190 40 W14X26 4 W18X258 40 W8X24 4 W40X244 40 W8X24

5 W14X193 41 W27X102 5 W14X109 41 W12X26 5 W14X109 41 W12X30

6 W24X117 42 W16X31 6 W27X114 42 W14X38 6 W14X145 42 W12X35

7 W12X79 43 W18X35 7 W33X152 43 W12X26 7 W33X152 43 W12X26

8 W12X79 44 W18X35 8 W24X192 44 W44X198 8 W24X192 44 W44X198

9 W40X244 45 W40X167 9 W30X116 45 W14X26 9 W30X116 45 W14X26

10 W18X86 46 W14X22 10 W24X146 46 W14X26 10 W24X146 46 W14X26

11 W12X96 47 W24X68 11 W16X40 47 W14X30 11 W16X40 47 W16X36

12 W8X28 48 W16X26 12 W12X136 48 W24X68 12 W21X122 48 W24X68

13 W33X424 49 W24X62 13 W27X448 49 W21X62 13 W27X448 49 W21X62

14 W40X436 50 W27X94 14 W24X370 50 W24X68 14 W24X370 50 W24X68

15 W40X324 51 W24X68 15 W40X324 51 W21X68 15 W40X324 51 W21X68

16 W36X280 52 W24X76 16 W27X281 52 W21X83 16 W27X307 52 W21X83

17 W33X318 53 W24X76 17 W14X233 53 W24X76 17 W40X244 53 W24X76

18 W33X291 54 W30X116 18 W33X241 54 W21X83 18 W33X241 54 W21X83

19 W40X277 55 W27X94 19 W27X235 55 W33X118 19 W27X235 55 W33X118

20 W24X250 56 W21X83 20 W36X300 56 W24X84 20 W36X300 56 W24X84

21 W36X260 57 W30X90 21 W40X244 57 W27X94 21 W27X258 57 W27X94

22 W33X291 58 W44X198 22 W14X211 58 W30X90 22 W14X211 58 W30X90

23 W27X235 59 W44X285 23 W14X159 59 W21X83 23 W14X159 59 W21X83

24 W12X170 60 W24X68 24 W14X159 60 W21X83 24 W14X159 60 W21X83 

25 W14X665 61 W14X455 25 W36X848 61 W14X370 25 W36X848 61 W14X370

26 W36X798 62 W14X398 26 W36X848 62 W14X398 26 W36X848 62 W14X398

27 W36X720 63 W40X328 27 W36X848 63 W14X370 27 W36X848 63 W14X370

28 W33X619 64 W14X233 28 W36X848 64 W14X193 28 W36X848 64 W14X193

29 W40X531 65 W14X109 29 W36X848 65 W14X132 29 W36X848 65 W14X132

30 W36X439 66 W12X72 30 W36X848 66 W14X90 30 W36X848 66 W14X90

31 W27X494 67 W40X328 31 W40X655 67 W40X244 31 W40X655 67 W40X244

32 W33X619 68 W14X283 32 W27X407 68 W14X233 32 W27X407 68 W14X233

33 W21X364 69 W14X233 33 W27X368 69 W14X233 33 W36X359 69 W14X233

34 W40X297 70 W40X192 34 W30X357 70 W33X221 34 W36X328 70 W33X221

35 W36X245 71 W40X192 35 W36X232 71 W14X99 35 W36X232 71 W14X99

36 W14X283 72 W14X132 36 W27X129 72 W14X90 36 W27X129 72 W14X90

Weight, 
kips (tons)

5254.9 
(2383.6)

4822.6 
(2187.5)

4858.33
(2203.7)
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