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Abstract

This paper presents the new type of Preisach model that describes the elastoplastic behavior of structural mild steel under axial 

monotonic tension load with damage. Newly developed model takes into account elastic region, horizontal yield plateau, plastic 

hardening region, and softening region due to material damage under tension. In order to study the monotonic behavior of structural 

mild steel and find suitable material properties for the model, monotonic axial tensile tests up to the failure are carried out. Tests are 

conducted on specimens of the three most common types of European structural steel S235, S275, and S355. The basis of the model 

represents a mathematical description of material single crystal monotonic axial behavior. In the multilinear mechanical model, a 

drop in stress, after achieving ultimate stress under tension is achieved by a negative stiffness element. The good agreement with 

experimental results is accomplished by parallel connection of infinitely many single crystal elements, forming the polycrystalline 

model. The model represents a good solution for common engineering practice due to its geometrical representation in form of 

Preisach triangle.
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1 Introduction
Depending on the shape of the material stress-strain dia-
gram, the behavior of the material can be classified into 
several groups. Apart from brittle materials, in which there 
is almost no elastic response, a large number of materials 
have a considerable elastic region in which the relation-
ship between stress and strain is proportional to the elas-
ticity modulus E, which is a material constant. The linear 
relation σ-ε of the diagram is valid until the stress reaches 
the flow limit σT. Depending on their behavior after reach-
ing the flow limit, elastic materials can be classified as 
ideal elastoplastic material and ideally elastoplastic mate-
rial with hardening. Most type of steel can be classified in 
these two material groups. However, the behavior of low – 
carbon steel, mild steel, some alloys of steel (Al-Mg), and 
some non-ferrous metals is characterized by an unstable 
elasto-plastic transition that deteriorates the formability 
and ductility of such materials. This phenomenon is the 

result of the separation of free atoms (usually carbon or 
nickel) and their pining at the existing and newly formed 
dislocations within the iron atoms matrix [1].

The behavior of these materials represents a combina-
tion of ideally elastoplastic material without hardening 
and ideally elastoplastic behavior with hardening and they 
are classified as Type 4 behavior [2]. The initial part of the 
stress-strain diagram is linear and proportional to the elas-
ticity modulus E, up to reaching the stress value, called the 
upper yield point σuy, which corresponds to the unpinning 
of pinned dislocations in a crystal lattice. Achieving the 
σuy is followed by a sudden drop in stress to the lower yield 
point σly, after which local deformation band is formed. 
The formation of a horizontal plateau, an approximate size 
of 1 %–3 % of the total strain, represents a material insta-
bility from elastic to plastic deformations, called Lüders 
band phenomenon.
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Type 4 behavior of structural mild steel is caused by 
their microstructure and atomic lattice. Free carbon and 
nitrogen atoms surrounding dislocation are causing a high 
level of stress required to initiate dislocation propagation 
inside the crystal lattice. After the initiation of dislocation, 
its movement is relatively easy to proceed, forming a yield 
plateau, until a new realignment of the atoms within the 
crystal lattice occurs.

The upper and lower yield points, as well as the length 
of Lüders band (Lüders strain), depend on a large number 
of parameters, such as the size of the steel grain [3], the 
strain rate and the carbon content [4] Increasing the load-
ing and strain rate increases the length of the plateau.

The value of the upper yield point σuy, is very sensitive 
to minor stress concentrations, alignment of the sample 
inside the jaw, and other test parameters, causing signif-
icant dispersal of test results. For that reason, the upper 
yield point is ignored, and the value of the lower yield 
point σly is taken for the stress at which the transition from 
elastic to the plastic region occurs.

Stress-strain response of structural mild steel up to 
ultimate stress σu is characterized by a positive stiffness, 
where an increase in strain results in a corresponding 
increase in stress. After reaching maximum stress value σu 
under tension, softening phenomena occurs, causing sam-
ple necking due to damage propagation. The post-peak 
softening stage exhibits negative stiffness. There are many 
examples of systems with a negative stiffness. However, 
the definition of these phenomena, by using elements with 
negative stiffness, is contemporary approach. Up to now, 
phenomena is modeled with system of springs [5], inclined 
rods [6], the effect of pre-buckled columns [7], the mag-
net [8], and the electromagnet [9]. The analysis of the sys-
tems with elements of negative stiffness is most often car-
ried out using the standard methods with the change of the 
stiffness sign of the observed element [10].

In this paper, for modeling the axial response of mono-
tonic loaded structural mild steel, Preisach model is used. 
Originally developed for defining hysteretic phenomena in 
magnetism [11], the model quickly found application in other 
fields of physics. The first implementation of this model in 
continuum mechanics describes the behavior of ductile mate-
rials under cyclic loading [12, 13]. Generally, the Preisach 
model is hysteretic operator used for defining cyclic behavior 
of ductile materials. It is pure mathematical operator [14], 
which maps input function u(t) into output function f(t) by:

 (1)

where Gα,β is an elementary hysteresis operator given in 
Fig. 1. Parameters α and β are up and down switching val-
ues of the input, while µ(α,β) is Preisach (weight) function.

In addition to the primary characteristic of a model to 
describe the cyclic behavior of materials, it is able to accu-
rately describe the monotonic behavior of the material. Due 
to the complex behavior of the structural mild steel under 
cyclic loads, which is the result of the cyclic hardening and 
the Lüders band phenomenon, the monotonic and cyclic 
behavior of the considered steel must be observed sepa-
rately. Existing models, except [15] are unable to define the 
effect of softening in a material that occurs as a result of 
tensile damage. 

The Preisach model requires a uniquely defined rela-
tionship between the input and the output data, and due to 
the existence of a horizontal yield plateau, the deformation 
is imposed as the input of a newly defined model.

Existing models, mapping strain ε(t) as input into stress 
σ(t) as output, are based on bilinear working diagrams 
(Fig. 2). They are used for modeling cyclic and monotonic 
behavior of ideally elastoplastic materials and ideally elas-
toplastic materials with linear hardening and represent the 
basis for a new model.

The first part of the paper represents an introduction 
to the analyzed problem. In the Section 2 of this paper, 
basic expressions and considerations of the single crys-
tal Preisach model under monotonic axial load are given. 
In the Section 3, the polycrystalline model is introduced 
and finally, model verification is shown in Section 4. The 
application of the proposed model is verified by compar-
ison with experimental data obtained by testing cylindri-
cal samples made of three types commonly used European 
structural steel S235, S275, and S355.

Fig. 1 Elementary hysteresis operatorf t u t G u t d d( ) = ( ) = ( ) ( )∫∫Γ α β
α β

µ α β α β, , ,
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2 Single crystal Preisach model and monotonic axial 
response of structural mild steel with damage
The behavior of structural mild steel under monotone and 
cyclic load are quite different. Monotonic loading is char-
acterized by horizontal yield plateau which is vanishing 
under cyclic loading, due to phenomena of cyclic harden-
ing. It must be noticed that structural mild steel behavior is 
different under compression and tension. Only under ten-
sion, damage occurs, causing the formation of the soften-
ing region after reaching ultimate stress σu.

A new mechanical model with the mentioned properties 
is presented in Fig. 3. Model is compiled of four Hook's 
spring elements, three Saint-Venant's slip elements, and 
two delay elements.

The first delay element allows the hardening delay by 
providing an empty shift of ±εL, after reaching yield stress 
Y1. Last spring element has negative stiffness h3, causing 
a drop in stress after reaching maximum stress σu under 
tension. This phenomenon is allowed by the last delay ele-
ment which is limited only in a region of tension, forming 
second yield plateau with length εd.

The appropriate stress-strain diagram displayed in 
Fig. 4 presents different behavior of single crystal model 
under compression and tension, where the softening region 
due to damage befalls only under tension.

The material properties of the mechanical model achie-
ved by a parallel or regular connection of the spring ele-
ments are defined by Eq. (2).
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The stress-strain diagram for the single crystal mate-
rial model shown in Fig. 3 and material characteristics, 
given by Eq. (2) is represented in Fig. 4, showing different 
behavior of structural mild steel under tension and com-
pression monotonic axial load.

From the monotonic stress-strain curve, output func-
tion f(t) is defined by Eq. (3):
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Fig. 2 Working diagrams and mechanical models for: a) ideally 
elastoplastic material; b) ideally elastoplastic material with hardening

Fig. 3 Mechanical single crystal model
Fig. 4 The stress-strain diagram of structural mild steel single crystal 

under tension and compression
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According to [14], the Preisach function as the tangent 
slope of the first order transitional curve fα,β, is determined:
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where H stands for Heaviside step function and δ for Dirac 
delta function.

This Preisach function is defined only along the lines 
α – β = 0, α – β – 2ε1 = 0, α – β – 2ε2 = 0, α – β – 2ε3 = 0, and 
α – β – 2ε4 = 0.

The input under tension is denoted by α and under com-
pression as β.

Including the Preisach function μ(α, β), defined by the 
Eq. (5), into the Eq. (1), the expression for the stress σ(t), 
as the output f(t), due to the deformation ε(t) as the input 
u(t), is defined:
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Geometric interpretation of Eq. (6) is given in the form 
of the Preisach triangle, which represents a part of half-
plane α – β (Fig. 5). The hypotenuse of right Preisach trian-
gle is a part of the line α = β and the vertex of its right angle 
has coordinates α = εD and β = -εD. The Preisach function is 
only supported along parallel lines α – β = 0, α – β – 2ε1 = 0, 
α – β – 2ε2 = 0, α – β2ε3 = 0, α – β2ε4 = 0, and α – β2ε5 = 0, 
and is zero in every other point of limiting triangle.

The elimination of the parameter β from the Eq. (6) and 
the transition to a single integral is possible, since in the 
first part of that expression β = α, in the second β = α–2ε1, 

in the third β = α–2ε2, in the fourth β = α–2ε3, in the fifth 
β = α–2ε4, and in the last β = α–2ε5, which gives the Eq. (7).
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where last part of Eq. (7) exists only for α ≥ 0.

3 Polycrystalline Preisach model and monotonic axial 
response of structural mild steel with damage
The existence of crystals with different properties is a 
condition for the material anisotropy. Adopting that mate-
rial crystals are oriented in the same direction, it is possi-
ble to speak of the quasi-isotropy of material.

Parallel connection of infinitely many mechanical mod-
els, shown in Fig. 6, provides the polycrystalline material 
model according to Iwan [16], where a parallel connec-
tion is the consequence of a strain as an input. Adopting 
unequal material characteristics for each element, real 
material behavior was obtained.

For a system of infinitely many parallel-connected 
units, with different yield limits Yi

min ≤ Yi ≤ Yi
max and dif-

ferent characteristics of delay elements εd
init ≤ εd ≤ εd

full 
expression for the total stress is:
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Fig. 5 Single crystal Preisach triangle
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where σ(Yi, t) is stress corresponding to the individual unit 
of the yield limit Yi, p(Yi) is the distribution function of the 
yield limit, σ(εd, t) is stress corresponding to the unit with 
strain delay εd, while p(εd) is its distribution function.

The material model, composed of units with the same 
Young's modulus E, the length of yield plateau εL, and the 
hardening modulus Ea and Eh, but different yield limits 
Yi, is defined. The accurate description of the monotonic 
response of the structural mild steel under axial load is 
granted by assuming that the yield limits Y1 = Y2 are same 
in all parallel-connected individual units.

Defining that the distribution functions of other Yi val-
ues are uniform, as in papers [12, 13], and [17]:

p Y
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max min
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1

, (9)

as well distribution function of delay strain εd:
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the total stress, due to strain as an input, becomes:
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The first addend of the Eq. (11) does not depend on Yi 

and based on other addends, following equalities hold 
respectively: α – β = 2ε1, α – β = 2ε2, α – β = 2ε3, α – β = 2ε4, 
and α – β = 2ε5.

Finally, parameter β can be introduced into the expres-
sion again, with the changes –dβ  ∙ (Ea/2) = dY3 and  
–dβ  ∙ (Eh/2) = dY4, where the negative sign of the change  
is lost to the shift of the integration boundaries:
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The first part of the Eq. (12) is the elastic stress, which 
can be calculated as:

E G t d E E
d

d

2 2
α α

ε

ε

ε α ε ε ε, ( )
−
∫ = − −( )( ) = . (13)

The integration domains in the Eq. (12) represent the 
surface of the band between the corresponding lines 
in the restricted triangle. Domain A represents the sur-
face between the lines α – β = 2ε3

init and α – β = 2ε3
full, 

while domain B represents the surface between the lines 
α – β = 2ε4

init and α – β = 2ε4
full. Both domains represent 

the plastic region with nonlinear hardening. The softening 
region, the result of damage under tension is represented 
with domain C. Integration domain C represents the sur-
face of the region between lines α – β = 2ε5

init, α – β = 2ε5
full, 

and α + β = 0. Geometrical interpretation of Eq. (12) in the 
form of the Preisach triangle is given in Fig. 7.

Preisach function outside of domains A, B, and C, and 
lines α – β– = 0, and α – β – 2ε1 = 0 is equal to zero.

4 Experimental results and model verification
The experiments presented in the paper are conducted as 
part of structural mild steel cyclic behavior study. For the 
purpose of determining material characteristics, test cou-
pons are subjected to axial monotonic tension up to fail-
ure at room temperature. The cylindrical specimens with 
dimensions shown in Fig. 8, are adopted according to [18]. 
To minimize surface roughness effects, finely polished 
surfaces have been used.

Fig. 6 Parallel connection of infinitely many unit models with 
different yield limits Yi

min ≤ Yi ≤ Yi
max
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The following three steel grades have been considered 
for the study: S235, S275, and S355, all showing prominent 
yield plateau and characterized by Lüders band phenome-
non. Two tests were performed for each steel grade, show-
ing a suitable agreement. The test coupons meet European 
structural steel standard EN 10025: 2004 [19, 20].

The loading device is SHIMADZU ServoPulser which is 
universal tension and compression fatigue testing machine, 
providing stocky configuration, fine alignment, and restraint 
of lateral movement of cross-heads. A strain is measured 

by tension extensometer SHIMADZU SG 50–100, whose 
gauge length is 25 mm (Fig. 9). All tests are conducted with 
constant displacement velocity of 2 mm/min.

Experimental tests conducted under tension up to fail-
ure displayed similar behavior of the test specimens of the 
same steel grade, therefore just one test of the same steel 
grade is presented in Fig. 10.

Formation of the Lüders band phenomenon is notice-
able for all three types of steel, as so softening region due 
to damage under tension. The test shows the growth of 
yield limit, ultimate stress, and fracture stress with the 
increase of steel grade. Yield strengths meet the require-
ments for engineering application. Material characteris-
tics of all three steel grades obtained from tests and used 
for Preisach model formation were given in Table 1.

The proposed model Eq. (12) with parameters in Table 1 
is validated against experimental results, through data 
comparison given in Fig. 11 for all three types of struc-
tural mild steel with prominent yield plateau.

5 Conclusions
This model represents simplified and easy to use a new 
type of Preisach model that characterize structural steel 
response under axial monotonic load. The present paper 

(a)

(b)
Fig. 7 a) The stress-strain curve of the material for the model defined 
by Eq. (12); b) The Preisach triangle for the material model defined by 

the Eq. (12)

Fig. 8 Mechanical single crystal model

Fig. 9 Test equipment configuration

Fig. 10 Experimental monotonic loading curves of S235, S275, and 
S355 steel grade coupons
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focuses on the application of the Preisach model to the 
response of the structural mild steel with prominent yield 
plateau under monotonic load accounting damage occur-
rence under tension only. The main advantage of the pro-
posed model is a simple and rigorous mathematical formu-
lation that provides pure geometrical interpretation, easy 
for use, in the form of the Preisach triangle. This model 
provides innovative and simplified formulation of the soft-
ening region including spring element with negative stiff-
ness in the mechanical model. The first delay element in 
the mechanical model provides the formation of yield pla-
teau characterized for Lüders band phenomenon, while 
with the second element different material behavior under 
tension and compression is provided.

Because of the inherent features of Preisah type mod-
els, this model possesses memory, congruency, and wiping 
out properties. Further extension of the model is needed in 
order to comprehend cyclic phenomena such a vanishing 
of yield plateau and cyclic hardening/softening.

The comparison made with experimental results 
showed that the numerical model can reproduce tension 
loading paths with very good accuracy for mostly used 
European structural steel grades S235, S275, and S355.
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Table 1 - Main mechanical properties of specimens

Steel
grade

1 2 3init 3full 4init 4full 5init 5full D

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

S235

Y [MPa] 263.03 263.03 263.03 360.086 360.086 411.008 411.008 304.241 304.241

ε [%] 0.105 2.029 2.029 6.579 6.579 17.131 25.87 43.509 43.509

E = 249.89GPa               Ea = 3.3GPa               Eh = 0.966GPa               ED = -1.21GPa

S275

Y [MPa] 286.857 286.857 286.857 407.439 407.439 452.563 452.563 297.564 297.564

ε [%] 0.13146 1.5171 1.5171 5.9809 5.9809 15.980 21.991 42.837 42.837

E = 218.202GPa             Ea = 4.5GPa             Eh = 0.9026GPa             ED = -1.487GPa

S355

Y [MPa] 437.98 437.978 436.95 541.206 548.238 569.234 569.234 370.850 360.71

ε [%] 0.220 1.8705 2.091 6.359 6.999 11.741 18.277 23.923 24.605

E = 198.58GPa              Ea = 4.0GPa              Eh = 0.885GPa              ED = =-7.027GPa

Fig. 11 Comparison of numerical and experimental results for all three types of steel grades
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