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Abstract

This paper presents an analytical method for the calculation of the arbitrary loaded spatial pile group fixed or/and hinge jointed 

into a rigid cap. The method uses the vector and matrix procedures to derive spatial equations of equilibrium, in which unknown 

componential displacements appear. The stiffness coefficients in the equations can be determined analytically, numerically or by pile 

load test. The pile group effect are estimated approximately, reducing the piles stiffness coefficients which depend on pile position 

and its mutual distances.
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1 Introduction
The calculation of the displacement and bearing capacity 
of the pile group under arbitrary load, due to the act of a 
large number of different factors is probably one of the 
most complex geotechnical problem. Today, a very sophis-
ticated numerical models are available in this area, which 
include soil non-homogeneity and non-linearity, nonlinear 
pile-soil interface, the influence of the pile installation in 
the ground, the piles spatial arrangement and dimensions, 
the character of the load (static, cyclic, dynamic), the load-
ing condition (drained, undrained or transient) and others.

At first glance, this software achievements, especially 
in the absence of good theoretical background and prac-
tical experience, provides to the users of the software an 
illusion of limitless analytical power. To avoid this trap, 
it should be borne in mind, that however sophisticated 
the software is, it cannot replace the intuition, experi-
ence, critical engineering approach, well-designed solu-
tion and ability to identify the factors that significantly 
affect the results. After all, the history witnesses impres-
sive steady buildings, built with modest knowledge in the 
field of mechanics and material resistance, mainly based 
on experience and intuition. It is unnecessary to prove or 
it is well known, that engineering calculation is always 
approximative, so the well-designed, logical and simply 
dimensioned constructions are always better than a poorly 
conceived one that is dimensioned by using a very sophis-
ticated software.

Furthermore, to obtain qualitative and acceptable 
results by using sophisticated or simple numerical mod-
els it is very important to have a qualitative material data, 
primarily for soil. The procedure to obtain qualitative soil 
parameters are a process, that begins with a well-designed 
scope and type of site investigation, well-executed site 
and laboratory tests and finally with expert elaboration 
and interpretation of the obtained test results. No badly 
done or missing step in this process can be subsequently 
fixed, not even by applying the most sophisticated soft-
ware. In other words, qualitative material parameters are 
always necessary, booth in the case of simple or sophis-
ticated numerical models (software). However, if the cal-
culations are more complex, it is logical to expect bet-
ter results, with greater numbers of material parameters 
and more complex process of determining them, and vice 
versa. With all this in mind, in parallel with the develop-
ment of complex numerical models, there is always pres-
ent an effort to constantly review and improve the already 
existing simple models. The reason for this lies in their 
simple application and accumulated experience gained by 
measurements, comparisons and back analyses.

When it comes to geotechnics, the basis of simple soil 
models is the Winkler model, the elastic continuum model, 
their mutual combinations and a combination with the 
limit state model. Today, there are a lot of published works 
in this area, and the authors of this paper tried to make 
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contribution in this field. It is well known that Winkler 
model replaces the soil around the pile with a series of 
linearly or non-linearly deformable unbounded springs. 
This kind of soil model has a very wide application in geo-
technical calculations, such as beams, mats and slabs on 
deformable foundation, flexible retaining walls, piles and 
pile group.

The basic drawback of the model is that the deformation 
of a single spring has none effects on the other surround-
ing springs, and that the spring deformation characteris-
tics expressed by the so-called modulus of soil reaction, is 
not a fundamental soil parameter. Based on very extensive 
study, Terzaghi [1] gave first recommendations for deter-
mination of the modulus of reaction. For piles in clay, he 
correlated the modulus of reaction with the one-axial soil 
strength, and for the piles in sand, with the relative density 
and moisture. The indicated values of the modulus of reac-
tion are valid for the load level up to about ½ of the failure 
force, taking into account the long-term displacement due 
to creep. On the basis of full scale and model tests, it is 
determined that the back-calculated modulus of reaction 
can be up to 5 times larger than those of Terzaghi, so in 
practice, at least doubled values are recommended (Reese 
et al. [2], Robinson [3], Scott [4]).

One of the first systematic solutions to the problem of 
a beam on Winkler's foundation, which is convenient for 
practical application, was given by Hetényi [5]). In order 
to obtain a solution for the pile, it is sufficient that the hor-
izontal beam, that is end-loaded by force and moment, is 
rotated by 90°. In the simplest case, the modulus of reac-
tion is constant, and as such it is good approximation for 
the pile in the layer of over-consolidated clay. However, 
for the pile in the layer of sand or normally consolidated 
clay, the more complex model is introduced in which the 
modulus grows linearly in depth. An approximate analyt-
ical solution for a rigid and flexible pile in a layer whose 
modulus grows linearly was performed by Barber [6] 
while Broms [7] gave a diagrams for calculating the bear-
ing capacity and displacements of a horizontally loaded 
pile in sands, normally or over consolidated clays.

Matlock [8], Reese et al. [9], Bransby [10], Ashour and 
Ardalan [11] improved the Winkler model by introducing 
a nonlinear contact, taking into account the deformability 
and ultimate strength of the soil (sand or clay) along the 
pile shaft. This concept is known as the "p-y method of lat-
eral load transfer", and is now embedded in a large number 
of commercial software. A similar method, using the deg-
radation of soil modulus with the growth of deformation, 

was given by Prakash and Kumar [12], Bowles [13], 
Hsiung [14], Amar et al. [15], Guo [16], modelling the soil 
at shaft with ideally elastoplastic springs. 

A completely different approach, based on soil mod-
elling as a linear elastic continuum, was given by 
Butterfield and Banerjee [17], Poulos and Randolph [18], 
Randolph  [19], Zhang et al. [20], Higgins et al. [21] and 
others. Unlike Winkler’s model, the model of the elastic 
continuum is defined by two fundamental physical char-
acteristics of the soil, that is, the modulus of elasticity and 
the Poisson coefficient, which can be determined by test. 
Since the continuum model is much more complicated for 
computation than Winkler's, there are only approximate 
numerical solutions, which are based on finite difference 
or finite elements method. The model of the elastic con-
tinuum describes the behaviour of the soil much better, 
because it implicitly implies that the effect at one point 
of the continuum extends to all the surrounding points 
inversely proportional to distance. However, what enables 
a better description of soil behaviour, requires a more 
complicated mathematical methods for computation.

Most of the incipient papers were limited to the cal-
culation and description of the behaviour of an individ-
ual pile due to vertical or horizontal load and bending 
moment. However, the load from the object is almost as 
a rule transmitted to a group rather than a single pile, 
and the behaviour of the pile group is different than the 
behaviour of a single one. The computation of the dis-
placement of the pile group is a more complicated task, 
so the results of the calculations and measurements show 
significantly higher deviations than in the case of a sin-
gle pile. A large number of researchers tried to solve 
the problem of pile group, on the bases of the Winkler 
method, which already had popularity and wide applica-
tion for a single pile. In order to solve the basic drawback 
of the Winkler model when it comes to the pile group,  
the solution was sought in selective reduction of soil 
reaction modulus around the pile in dependence of their 
position in the group. For a vertically loaded pile group, 
selective reductions are carried out through factors of 
interaction, which can be approximated by analytical 
Randolph and Wroth [22], Mandolini and Viggiani [23] 
or numerical methods, or on the basis of pile load test. 
In a horizontally loaded group, a selective reduction con-
cept is also widely used, known as the "method of p-mul-
tiplier". There are number of papers in that area, which 
were published by Mokwa [24], Ilyas et al. [25], Ashour 
and Norris [26] and others.
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In the case of the pile group in elastic continuum, the 
best known solutions are those proposed by Buterfild and 
Banerjee [17], Banerjee [27], Poulos [18, 28], Mandolini 
[23, 29], McCabe and Sheil [30] and others. Unlike the 
Winkler method, the calculation of the interaction between 
the piles in elastic continuum does not require additional 
work or modifications, since the continuum implicitly 
assumes the spread of the impact from one pile to all adja-
cent piles in the group.

In this paper, an attempt was made to provide a cer-
tain contribution to the application of the simple Winkler 
model. The advantage over the sophisticated software 
is simplicity, price and low number of soil parameters. 
This was done by formulating of a simple mathematical 
framework for force and displacement computation for the 
arbitrary spaced and loaded pile group, connected by an 
ideally rigid cap. For a small pile group (e.g. under the 
column) the assumption of an ideally rigid cap is almost 
always justified. 

The method is very simple and can be used with basic 
programming knowledge in Excel, which is available in 
the standard Microsoft Office.

Programming can be done explicitly in the worksheet 
itself or for advance users in the visual-basic background 
code. The entire algorithm of the calculation can be done 
using matrix and vector methods.

The paper presents in detail the derivation of matrix 
equations, which analytically link the load, displacement 
and rotation of the pile head with loads and moments act-
ing on the cap. Piles can have an arbitrary arrangement, 
dimensions and inclinations in the ground, and the cap 
can be arbitrarily loaded with forces and moments in the 
direction of all three coordinate axes. The elements of the 
matrix of stiffness in the piles local coordinate system can 
be assigned directly, determined analytically, numerically, 
or on the basis of pile load test. If the soil is homogeneous 
in depth, analytical solutions for a constant and linearly 
variable modulus of reaction, or approximate solutions 
for a constant and linearly varying modulus of elasticity,  
can be applied. In layered and non-linearly deformable 
soil the elements of the pile stiffness matrix can be deter-
mined approximately up to the workload level and then 
inserted directly into the pile stiffness matrix. The same 
applies to the elements of the stiffness matrix that are 
determined from the load-displacement curve obtained by 
pile load test. The interaction between piles is put into the 
computation indirectly, through selective reduction of the 
soil modulus. 

The main drawback of the presented mathematical 
model in relation to the more complex one is the inabil-
ity to accurately include the pile interactions. As usually,  
it was introduced in approximate manner, reducing the 
soil shear and lateral modulus of reaction around each pile 
in group.

2 Forces in piles in function of the cap displacement
2.1 Pile-cap kinematic and compatibility equations
Displacements of the ideally rigid cap is completely deter-
mined in the spatial coordinate system by two vectors, i.e. 
translation {ρ} and rotation {θ}. The global coordinate 
system is usually tied to the center of gravity of the pile's 
cap. In the developed form, the shift of the cap is deter-
mined by the 3 displacement components in the directions 
of the coordinate axes and the 3 components of the rota-
tion around the axis of the global coordinate system.

In Fig. 1 the translation and the rotation of the cap 
around the point O are denoted by vectors {ρ} and {θ}. 
The position of an arbitrary pile (i) fixed into ideally rigid 
cap is marked by radius vector {r}, and the pile axis by 
unit vector {l}.

Since the pile is at a distance {r} from the rotation cen-
ter (O), in addition to translation and rotation obtained 
directly from the cap, the pile head also has additional 
movement whose direction and intensity is determined by 
the vector product {θ}×{r}.

Apart from the global coordinate system the local sys-
tem which is related to the piles are also used. The local 
coordinate axes coincide with the pile axis and the normal 
on pile axis. The pile axis and the normal on the pile axis 
lies in the plane of pile head displacement and bending. 

Fig. 2 shows the components of pile head displacement 
and rotation in the local coordinate system. The compo-
nents of displacement and rotation of an ideally rigid pile 

Fig. 1 Vectors of pile cap and pile movement and rotation
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cap, {ρ} and {θ}, radius vector {r} and unit vector {l} are 
shown in the global coordinate system by the following 
Eq. (1): 
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In order to determine the forces and moments on the pile 
head, in a linearly or non-linearly deformable medium with 
known stiffness parameters, due to piles cap displacement 
and rotation, it is necessary to establish a relation between 
pile head displacement and rotation in the local coordi-
nate system and piles cap displacement and rotation in the 
global coordinate system. The number of local coordinate 
systems is equal to the number of piles, and the transforma-
tion from the local to the global coordinate system is deter-
mined by the global coordinates of the pile head {r} and the 
angles {l} between the pile axis and global coordinate axes. 
The components of the translational of the pile head in the 
direction of the pile axis {sρ} and in the direction of the nor-
mal on the pile axis {tρ}, in the local coordinate system and 
the piles cap can be displayed in a vector or matrix form by 
Eq. (2). The terms sr and tr in the equation are the projec-
tions of the pile head displacement vector in the direction 
of the local coordinate axes.
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The pile cap rotation {θ}, cause pile head rotation {θ} 
and shift {ρθ}, in proportion to the product {θ}×{r}. 
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The components of the pile head translational vector 
{ρθ} due to cap rotation, in the direction of the pile axis 
{sθ} and in the direction normal to the pile axis {tθ}, can be 
expressed by Eq. (4).
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The components of the pile head displacement vector 
due to translation and rotation of the piles cap is:
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The pile head total displacement includes the transla-
tion according to Eq. (5) and the rotation due to cap rota-
tion. The vector of the pile head rotation should be sepa-
rated into two components: the rotation in the direction 
{θs} which causes torsion and in the direction normal to 
the axis {θt} that causes bending. The expression for the 
components of the pile head rotation is given by Eq. (6).
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2.2 The link between cap displacement and pile head 
forces in local coordinate system
Based on the pile head displacement vector {s} and {t} and 
pile head rotation {θs} and {θt}, the intensity of the normal 
{N} and the transversal force {T}, the bending {M} and 
the torsional moment {M} on the pile head, in the local 
coordinate system can be determined by Eq. (7).
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N, T, M and M are the components of the pile head force 
{Pp}, and s, t, θt and θs are the components of the pile head 
displacement vector in the local coordinate system. [Kp] 
and [Fp] are the matrix of stiffness and flexibility of the 

Fig. 2 Vector components of pile movement and rotation
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pile-soil. The torsional stiffness KMθ is often small related 
to the rigidity of the resistance to lateral movement of the 
piles away from the axis of rotation, and can be ignored. 
The physical meaning of the stiffness is shown in Fig. 3.

The stiffness coefficients KNs, KTt, KTθ, KMt, KMθ and K
Mθ 

can be described by the following way:
KNs =	 The normal force at the pile head, caused by unit 

axial displacement s = 1, without lateral displace-
ment (t = 0), bending or torsion (θs = 0, θt = 0).

KTt =	 The transversal force at the pile head, caused by 
unit lateral displacement t = 1, without axial dis-
placement (s = 0), bending or torsion (θs = 0, θt = 0).

KTθ =	 The transversal force at the pile head, caused by 
unit bending θt = 1, without axial or lateral dis-
placement (s = 0, t = 0), or torsion (θs = 0).

KMt =	 The bending moment at the pile head, caused by 
unit lateral displacement t = 1, without axial dis-
placement (s = 0), bending or torsion (θs = 0, θt = 0).

KMθ =	 The bending moment at the pile head, caused by 
unit bending θt = 1, without axial or lateral dis-
placement (s = 0, t = 0), or torsion (θs = 0).

K
Mθ=	 The torsional moment at the pile head, caused by 

unit torsion θs = 1, without axial/lateral displace-
ment (s = 0, t = 0), or bending (θt = 0).

Stiffness coefficients for a single pile, in general, 
depend on the load level, soil deformability, pile-cap con-
nection (fixed or hinged), elasticity modulus, dimensions 
and pile cross-section and shape.

2.3 The link between cap displacement and pile head 
forces in global coordinate system
The Eq. (7) is applicable for forces and displacements act-
ing at the same plane. The general form of the Eq. (7), 
which links the forces and moments at pile head with the 
displacements and rotations of the piles cap in a global 
coordinate system is represented by Eqs. (8) and (9).
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For the hinged pile-cap connections, the coefficients of 
stiffness KTθ, KMt, KMθ and K

Mθ for those connections are 
zero. If all the connections between the piles and the cap 
are hinged, Eq. (8) is reduced to much simpler form:
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Vector products in the Eq. (8) can be represented in the 
following matrix form:
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Equation (8) links the normal {N} and transversal force 
{T}, the bending {M} and torsional moment {M} with the 
vectors of displacement {ρ} and rotation{θ} of the pile cap. 
All terms are expressed in a global coordinate system. The 
Eq. (8) can be shown by the matrix of sub-matrix:
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By the Eqs. (8)–(11), the unknown forces and moments 
on the pile head are expressed by means of 3 displacement 
and 3 rotational components of an ideally rigid pile cap.

2.4 Equilibrium equations in global coordinate system
If the influence of the piles on the cap are replaced by 
unknown internal forces on the pile head {N}, {T}, {M} 

Fig. 3 The physical meaning of the elements of the stiffness matrix [Kp]
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and {M}, and then the conditions of equilibrium with the 
external forces {R} and {MR} which acts on the cap are 
written, then two vector equations are obtained:
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M r N T M
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By replacing Eq. (8) into (12), and grouping the mem-
bers beside the same vectors {ρ} and {θ}, two vector equa-
tions are obtained Eq. (13), where the only unknowns are 
the cap vector of displacement {ρ} and rotation {θ}. 
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When the pile-cap connections are hinged, the coeffi-
cients of stiffness KTθ, KMt, KMθ and KMθ are equal to zero, 
so they should be omitted, after which the Eq. (13) became 
simpler Eq. (14).
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After grouping the members beside the unknown vec-
tors of displacement and rotation, the equations of equilib-
rium Eq. (13) can come up to a system of 6 algebraic equa-
tions, in which 3 unknown components of displacement 
and 3 unknown components of rotation of the cap appear. 
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The stiffness matrix [K] is symmetrical (Kij = Kji), so 
in the Eq. (15) only the upper triangular scheme is shown. 
The external force {P} includes the components of the 
resultant external forces and moments reduced to the 
global coordinate system origin (O). 

2.5 Coefficients of flexibility/stiffness of the pile-soil
The coefficients of stiffness for individual piles can be 
determined on the basis of the adopted deformable media, 
using analytical or numerical methods or based on the 
results of the pile load test. The simplest and mostly used 
is the Winkler model, which can be linearly or non-linearly 
deformable. In addition, more complex approach can be 
used based on the elastic or elasto-plastic continuum model.

It should be kept in mind, that the pile load test is man-
datory for pile design. As a rule, there is always a test for 
vertical load, and very often because it does not require 
complex equipment, a test for horizontal load. When there 
are test load results, no analytical approach is required 
since the flexibility coefficients of the matrix [Fp] in 
Eq. (7), can be reliably determined directly for the design 
load span. The maximum test load is, as a rule, the failure 
load or minimum twice the value of the service load. 
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In order to complete the matrix [Fp], it would also be 
necessary to carry out a load test with bending and tor-
sional moment. Since such testing is rare and non-stan-
dard, the problem can be solved by an approach based on 
the Winkler model. Firstly, based on the results of penetra-
tion tests, it is estimated whether the deformability of the 
soil is nearly constant (over-consolidated clays) or roughly 
increases linearly with depth (soft clays and sands). After 
that, using the analytical expressions, an equivalent hori-
zontal modulus of reaction kh or a gradient of horizontal 
modulus of reaction nh can be obtained. In most cases, the 
length of the pile is such that with a slight error, a solution 
for a long pile can be used.

For a long pile (λhL > 4) with free head, in the soil with 
constant modulus of reaction, loaded with horizontal force, 
the coefficients of flexibility according to Hetényi [5] are:
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For a long free head pile (ηhL > 4) with linearly increas-
ing modulus of reaction, and loaded with horizontal force, 
the coefficients of flexibility according to Barber [6] are:
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When the flexibility coefficients FtT and FθT are obtained 
by Eq. (16), the equivalent modulus kh or nh and flexibility 
coefficient FθM can be calculated by Eq. (17). The flexibility 
coefficient FθM is obtained by the solution for the torsionally 
loaded pile in elastic continuum (Poulos and Davis [31]) 
with constant or linearly increasing soil shear modulus. 

For slenderness L/d > 20, stiffness 10–1 < GpIo/Gsd
4 < 103 

or 10–1 < GpIo/nGd5 < 104 the simple interpolation function 
can be derived for the pile-soil flexibility coefficient:
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In Eq. (19), Gp is the shear modulus of the pile, Io is the 
polar moment of inertia, d is the width of the pile, Gs and 
nG is the soil shear and gradient of the shear modulus along 
the pile shaft.

After the procedure described above, the elements of 
the flexibility matrix are determined, the stiffness matrix 
[Kp] can be obtained as an inverse of the flexibility matrix 
[Fp] according to the following:
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When the stiffness matrices of the pile-soil system are 
determined for all piles, it is possible to calculate the cap 
displacement and rotation for arbitrary loading. Strictly 
speaking, because of the drawback of the Winkler model, 
the obtained result is without interaction between the 
piles, that is valid only at large mutual pile distance (e/d > 
min 6–8), what is extremely rare in practice.

3 Interaction between piles
The main drawback of the Winkler model is no interac-
tion between piles, what makes it impossible to obtain the 
direct solution for the displacement and rotation of the pile 
group. This deficiency could be solved in an approximate 

way by reducing the modulus of reaction for certain 
piles in the group, according mainly to their geometrical 
arrangement. 

3.1 Interaction between piles for vertical loading
At axially loaded pile group, as a rule, the influence of their 
interaction on the settlement should be taken into account. 
This influence is introduced in Winkler's model by reduc-
ing the coefficient of pile stiffness. The reduction coeffi-
cient depends on the position of the pile, the pile length, 
the layout and the mutual distance of the piles and the load 
distribution between pile base and shaft. The force redis-
tribution in the piles and settlement increase due to their 
interaction can be obtained using the interaction factors 
proposed by Mandolini and Viggiani [23] in the form:
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In Eq. (21), αij is the interaction factor between pile 
i-j, d is the pile diameter, and eij is the mutual distance. 
The coefficients A-D can be determined by pile load test. 
Alternatively, there are other, more complex methods, of 
which the term by Randolph and Wroth [22] is often used:
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In Eq. (22), ξ is the diffraction factor (Mylonakis and 
Gazetas, 1998[32]), rm is the influence radius, νs is the 
Poisson's ratio, ρ is the coefficient of soil inhomogeneity, 
and Gb is the soil shear modulus at the pile base. 

The diffraction factor ξ contains the pile axial stiffness 
and slenderness, the soil shear modulus along the shaft 
and beneath the pile base. The size of the diffraction fac-
tor can be approached by diagram in Fig. 4, using the fol-
lowing input values (Eq. 23):

�
�

� �

�
�

�

�

� �
�

� � �
�
�

�
�
�

�

k S
E A

k
G d

k A
E A

k
G d

E
E

p

b

b b b

b b

p s

p

s

,

,
.

2

1

1

1 3
1

4

�
00

0 6

1 7� �
�
�

�
�
�

�

�
�

�

�
�

�L
d

.

.

	 (23)

For slender piles, the diffraction factor is 0.5, for free 
standing piles is between 0–0.5, and for floating piles is 
between 0.5–1.0. After the factors of interaction have been 
obtained by Eq. (21) or in some other way, the axial stiff-
ness coefficients of the pile-soil system for the group is 
obtained by the following:
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In Eq. (24), [α] is the matrix of interaction factors, KNs 
is the pile-soil axial stiffness without interaction and KNs,i 
is the reduced axial stiffness due to piles interaction. Rs 
is the settlement factor for vertically loaded pile group, 
which represents the ratio of the settlement of the group 
and the individual pile, under the same average load.

3.2 Interaction between piles for horizontal loading
For horizontally loaded pile group in Winkler model, the 
effect of the group on lateral displacement can be taken 
approximately, by reducing the pile stiffness coefficient, 
according to their position and distance in the group. The 
method for reducing the stiffness of the pile-soil sys-
tem for calculating the lateral displacement is known 
as "method of the p-multiplier". A similar procedure by 
Smoltczyk [33] is used here. For long piles, with constant 
or linearly varying soil modulus of reaction, the reduction 
for the pile (i) in the group, for horizontal force Hx in the 
+x direction is:

k k n nh i h x y i h i h x y i, ,,� � � � � �� � � �4 3 5 3 .	 (25)

The coefficients of reduction α depend of pile position 
and force direction. There are two types of coefficients, 
that is, αx which depends on the distance ex in the direction 
of the force and αyA and αyZ which depend on the distance 
ey in the direction normal to the direction of force (Eq. 26). 

For the entire head column, the coefficient αx = 1 while 
for all subsequent columns is αx < 1. The coefficients αyA 
are the same for outmost lateral row of piles and the coef-
ficients αyZ are the same for all inner rows. The rows are 
parallel with the force direction (Fig. 5). If the distance of 
in the direction normal to the force is ey/d ≥ 3 the reduction 
coefficients are αyA = αyZ = 1. If the distance of the piles  
in the force direction is ex/d ≥ 6 the reduction coefficient 
is αx = 1.
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The horizontal force is generally not parallel with axis 
but it already has an arbitrary angle φ with the x-axis. The 
reduction must be done particularly in the direction of both 
axes. Since two different values of the modules (khx and 
khy or nhx and nhy) cannot be entered for any pile in Eq. (15) 
simultaneously, the representative value must be used, 
according to the force angle φ. If the values khx and khy or 
nhx and nhy are understood as the main radius of the ellipse, 
then the value khφ or nhφ is the radius of the ellipse in the 
horizontal force direction. Substituting tan(φ) = Hy/Hx and 
h = khx/khy or nhx/nhy the final expression is:
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According to Eq. (27) the value khφ or nhφ for each pile 
in group, becomes a function of the position in group 
and direction of the horizontal force. It should be kept  
in mind that the angle j must always be between 0–π/2. 
If the force is directed –x or –y, then modules must be 
adapted to obtain a logical results. After the reduced soil 

Fig. 4 Diffraction factor ξ vs. characteristic number λtL

Fig. 5 Reduction factors a for horizontal modulus of reaction kh and nh
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modulus for horizontal loading are obtained by Eq. (26)  
or in some other way, the reduced coefficients of lateral 
stiffness of the pile-soil system can be determined accord-
ing to Eq. (28):
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Stiffness coefficients of the pile-soil, according to the 
Eq. (28), include not only the pile and soil stiffness but 
also their interaction with the horizontal force. Together 
with the coefficient of stiffness according to Eq. (24), 
which involves the interaction of the piles for axial force, 
according to Eq. (15), it is possible to calculate the forces 

and moments in the pile head and the displacement and 
rotation of the ideally rigid cap, due to the arbitrary spatial 
external loading.

4 Conclusions
The pile cap displacement estimation is undoubtedly very 
complex problems in geotechnics. Besides commercial 
software programs based on sophisticated numerical meth-
ods, in everyday practice simple solutions based on soil 
approximation by linear or nonlinear Winkler model are 
still widely used. The content of this paper is on that course, 
with a small modification when using soil parameters. It 
is known, that the pile load test is obligatory to evaluate 
the pile bearing capacity and displacement. Having that in 
mind, this paper presents the simple way to incorporate the 
pile load test results in the numerical model for pile group 
analysis in order to obtain highly reliable predictions.
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