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Abstract

Concentrically braced frames (CBFs) as one of well-known stiff and common lateral force resisting systems often show limited ductility 

capacity under severe earthquakes. This study proposes rocking zipper braced frame (RZBF) to improve the drift capacity of CBFs 

which is based on combination of rocking behavior and zipper columns. In the RZBF system, rocking behavior permit the braced frame 

to uplift during the earthquake and then restoring force induced through post-tensioned bars self-center the frame to its initial state. 

Also, zipper columns can decrease the concentration of damage by distributing the unbalance force at the mid bay over the frame’s 

height. To assess the performance of RZBF, a comparison study is carried out considering CBF, rocking concentrically braced frame, 

zipper braced frame and RZBF. For this purpose, some frames structures are designed and nonlinear time history analysis conduct 

under a set of earthquake records. Seismic responses such as roof drift ratio, gap opening at the column-base interface, forces of top 

story braces and post-tensioned bars are taken into consideration. The results show that the proposed RZBF has better performance 

among the others and zipper columns can improve the behavior of rocking systems.
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1 Introduction
Concentrically Braced Frames (CBFs) are the most widely 
used lateral load resisting systems which provide great stiff-
ness and ordinary ductility. But under severe earthquakes, 
CBFs may have undesirable response like concentration of 
damage within a single story and soft story mechanism can 
be formed [1, 2]. There are several studies that were con-
ducted to improve the seismic performance of CBF such as 
designing CBFs with new proposed methods [3–6] using 
Buckling-Restrained Braced Frames (BRBFs) [7, 8], Zipper 
Braced Frames (ZBF) [9] and Rocking Concentrically 
Braced Frame (RCBF) [10, 11]. In the CBFs, seismic energy 
was dissipated by yielding of the braces under tension with 
elastic behavior in beams and columns. Costanzo et al. [4] 
assessed the adequacy of two different codes (European 
code (EC8) [12] and AISC34-10 Seismic Provision [13]) 
on the designing of the beams of the braced frames. Results 
showed that designing frames according to AISC341 leads 
to more uniform story drift distribution comparing to 
EC8. Reduced Section Solution (RSS) was suggested by 
Giugliano et al. [6] as a novel method for designing braces. 

According to the results, this new method would have influ-
ence on improving the seismic performance and utilizing 
RSS method, resulted in savings in the weight of construc-
tional steel. Longo et al. [5], proposed the design methodol-
ogy considering the Theory of Plastic Mechanism Control 
(TPMC), for dual systems which consist of moment-resist-
ing frame and CBF. Results indicated that seismic perfor-
mance was improved using TPMC. Merczel et al. [2, 14] 
performed different studies on the seismic behavior of 
CBF under different ground motions. Several frames were 
designed using Euro code provisions. The results of non-
linear time history analysis showed the formation of weak 
story mechanism. The effects of brace behavior and plastic 
deformation of diagonals on the formation of weak story 
mechanism was studied [2, 14]. Merczel et al. conducted 
a comprehensive study on CBF behavior focusing on the 
weak story behavior. Their study consist two primary parts: 
identifying parameters which have influences on forming 
weak story mechanism and improving the Euro code 8 by 
impeding formation of weak stories [15]. 
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The BRBF is an improved case of CBF showing desir-
able energy dissipating performance [7]. This system 
forms from two primary components: steel core blocked 
by a hollow steel section and confining element which pre-
vent the buckling of the core. Naghavi et al. [16] found 
that energy dissipating in CBF system is about 20 % of 
the BRBFs which demonstrates larger ductility and energy 
dissipation via inelastic behavior for BRBF system [16]. 
Sabelli et al. [17] presented that BRBFs had better behav-
ior in terms of inter story drifts comparing with CBFs. 
However, due to low post-yield stiffness of the braces, 
BRBFs are prone to have undesirable large drifts [18–21]. 
Khatib et al. [22] proposed adding zipper columns to over-
come forming soft story mechanism which occurs in the 
ordinary CBF. Zipper columns lead to mobilize the stiff-
ness of the braces those left and all the beams to bear 
vertical unbalanced force. Zipper columns are elements 
which link the intersection point of the beam and brace 
at the midpoint of the bay and as consequence redistrib-
ute the unbalanced force to the braces that are upon the 
threshold of buckling. By this way, damage concentration 
at one story stretched out the frame height. In this rela-
tion, a study on the design and behavior of the ZBF had 
been accomplished by Sabelli et al. [23]. Results indicate 
the adequacy of zipper columns in uniformly distribut-
ing the inter story drift over the height of the frame [23]. 
A method for predicting the design axial forces in zipper 
braced frames was developed by Tremblay and Trica [24]. 
According to the proposed method, under severe ground 
motions, zipper columns remain elastic and prevent ini-
tiating story mechanism [24]. The effects of the building 
height and ground motion type on the seismic behavior of 
ZBFs were studied by Trica and Tremblay [25]. Results 
showed that for ordinary ground motions, frames with 
different heights have satisfactory performance, however, 
under near fault ground motions, taller frames experi-
enced collapse due to dynamic instability [25]. In order 
to better assess the seismic performance of the ZBF, an 
incremental dynamic analysis was performed by Trica and 
Tremblay [26]. The results showed that global dynamic 
instability took place at the same time or shortly after 
reaching to the collapse prevention limit state [26]. Also, 
Yang et al. [1] proposed the refined design procedure for 
modified zipper braced frame consisting of zipper columns 
and the hat truss. Zipper columns force braces to buckle 
at the same time except top story braces and the hat truss 
supply large deformation capacity and impeded the cre-
ation of a full plastic mechanism [1]. However, modified 

ZBFs were not economical in high-rise buildings as they 
needed extremely large cross sections for top story braces. 
In this relation, Ozcelik et al. [27] showed that CBF has 
better performance than modified ZBF in terms of column 
axial load demand in the case of high rise buildings. 

Recently, rocking systems have been used as a new 
lateral force resisting system which concentrate dam-
age in replaceable elements and reduce residual drifts 
noticeably [9, 10]. Generally, rocking systems are consist 
of uplifting joints and post-tensioned cables which pro-
vide rocking behavior and restoring force, respectively. 
First studies about rocking systems were presented by 
Huckelbridge and Clough on a three story frame which 
had rocking joints at the column bases [28]. Also, Kelly 
and Tsztoo [29] conducted study on using yielding cables 
and rocking behavior together in order to dissipate energy 
as columns uplift. Rocking systems due to having near 
zero residual drift and enhanced drift capacity and duc-
tility have been taken in to consideration as lateral load 
resisting system [10, 11, 30, 31].

Wu and Lu [32] suggested light-weight energy-dissipa-
tion rocking core frame as a novel lateral load resisting sys-
tem that has improved seismic performance in terms of low 
residual drifts due to utilizing self-centering energy-dissi-
pation braces. Blebo and Roke proposed seismic-resistant 
self-centering rocking core system to provide consider-
able drift capacity while limiting residual drift and struc-
tural damage [33, 34]. Grigorian and Griogorian [35] pro-
posed structural design of rocking wall-frame which have 
uniform drift distribution and lead to prevention of soft 
story mechanism formation. Mottier et al. [36], use rock-
ing systems in the retrofitting of existing steel structures. 
Jia et al. [37] suggested rocking dual-steel has trilinear 
hysteretic behavior and lead to mitigation of residual drift 
as a result of early re-yielding of low-yield point steel. The 
results of Moradi and Burton [38] showed that the seis-
mic response of the controlled rocking steel braced frames 
do not affect considerably by changing design parame-
ters such as post-tensioned bars modulus of elasticity and 
strain hardening ratio of the fuses.

Rocking Concentrically Braced Frame (RCBF) is one 
type of the rocking system that has been proposed in the 
past decade as high performance lateral load resisting sys-
tem for steel structures. The rocking behavior at the base 
causes the larger lateral displacement and limited mem-
ber force demand as a result of softening mechanism of 
the RCBFs [39]. Also, RCBF experiences first damage at 
higher drifts comparing with CBF system, resulting in 
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better seismic performance in terms of drift ratio and resid-
ual drift as presented in different experimental and analyt-
ical studies [10, 40]. Recent studies presented that RCBFs 
like rocking concentrically braced frame [10, 41, 42], dual 
rocking frames [31, 43, 44], using multiple rocking joint 
through the height of the frame [11], rocking braced frames 
with energy dissipating elements and various story num-
bers [45] and tension-only concentrically braced frames 
with rocking core [46] are able to decrease damage under 
severe earthquakes and enhance the seismic performance 
of ordinary CBFs in terms of uniform distribution of inter 
story drifts. Huang et al. showed that RCBFs are eco-
nomically better systems comparing to CBFs for low and 
mid-rise building under severe earthquakes [47]. Despite 
several studies on the different types of RCBF, this sys-
tem may experience unbalance force concentration in the 
braces of top stories [10]. For further improving the behav-
ior of RCBF in terms of distribution of the unbalanced 
force, in this study zipper columns are proposed to utilize 
at the mid bay of RCBF system. In the proposed Rocking 
Zipper Braced Frame (RZBF), zipper columns connect 
the mid bays together and transmit the undesired unbal-
ance force. In order to evaluate the seismic performance 
of RZBF, a comparative study with other archetypes (CBF, 
ZBF, RCBF) under a set of far field ground motions is car-
ried out considering different seismic responses such as  
roof drift ratio, residual roof drift ratio, gap opening, force 
of post-tensioned bars and top story braces. 

2 Methodology
In order to evaluate the seismic performance of RZBF, 
four story office buildings with different configurations 
were designed and nonlinear time history dynamic analy-
ses were conducted using OpenSees [48].

2.1 Frame configuration
Fig. 1 presents four different configurations that are studied 
in this paper. As presented in Fig. (1), parts (a) to (d) show  
a CBF, a ZBF with a hat truss, a rocking concentrically 
braced frame with Post-Tensioned (PT) bars at the mid bay 
(RCBF), and rocking braced frame with zipper columns and 
PT bars at the midpoint of the bay (RZBF), respectively. 
RZBF is a modified model of RCBF which has zipper col-
umns. The aim of using zipper column is to redistribute the 
unbalance force of the mid bay over the different stories and 
prevent the damage concentration in one story. Both rock-
ing frames have a horizontal base element which located 
between the column bases of rocking frame columns.

This base strut conveys the base shear from the uplifted 
column to the column in contiguity with the foundation. 
Also, they have two additional gravity columns adjacent 
to the rocking frame, which tend to distribute the gravity 
load caused by rocking of the system. Additionally, there 
are Energy Dissipating (ED) elements between the adja-
cent gravity columns and rocking frame columns. Due to 
increase the dissipating energy in higher modes, ED ele-
ments are located over the height of the frame.

2.2 Prototype structure
The floor plans of prototype structure consist of 6 bays in 
width and length (as presented in Fig. 1(e)). The bay length 
is 9.15 m, the height of first story is 4.5 m and the other 
stories height is 3.9 m. Dead load plus the weights of par-
titions constitute the seismic mass. The tributary seismic 
mass values for the first, second, third and roof stories are 
378000, 375000, 375000 and 258000 Kg, respectively.

2.3 Design of archetypes
Rocking frames were designed according to the limit state 
method proposed by Roke et al. [10]. The design proce-
dure is the same as response spectrum analysis design 
one with some modifications in order to consider unique 
behavior of the rocking braced frames. In the proposed 
method, the performance objectives are immediate occu-
pancy under design-based earthquakes and the collapse 
prevention under maximum considered earthquakes.  
The design procedure is presented in Fig. 2. The utilized 
codes are "AISC load and resistance factor design" [49] 
procedure and "Seismic provisions for structural steel 
buildings" [13]. A design acceleration spectrum (SADS) 
is generally determined assuming 5 % for damping ratio. 
The Spectral Acceleration (SA) at periods of 0.2 second 
(SS) and SA at a period of 1 second (S1) is 1.5 g and 0.6 g, 
respectively. The site class considered to be class D and 

 
Fig. 1 Archetypes configuration (a) CBF (b) ZBF (c) RCBF (d) RZBF (e) Floor plan for prototype structure 
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the long-period transition period (TL) assumed to be 8.  
So, in order to define the SADS for Design Basis Earth-
quake (DBE), the mentioned parameters were used.

For all the frames the bay length is 9.15 m, the first story 
and the other stories height are 4.5 m and 3.9 m, respec-
tively. Design steel yield strength, the modulus of elasticity 
and Poisson ratio are set to be 345 MPa, 200 GPa and 0.3, 
respectively. For PT bars, the modulus of elasticity was 
205 GPa, the design yield strength and ultimate strength 
are 454 kN and 567 kN, respectively and the Poisson ratio 
is 0.3. The initial PT bar forces are considered to be 40 % 
of the yield strength for both types. The member sizes for 
the designed frames are given in Tables 1 to 2. The peri-
ods and mass participation ratios are presented in Table 3.

2.4 Analytical model
The seismic behaviors of the archetypes are assessed by 
nonlinear time history analysis. A two dimensional model 
of the analytical models are presented in Fig. 3(a). In the 
rocking systems, connections at the base nodes were mod-
eled using Elastic Perfectly Plastic Gap element with elas-
tic-no-tension materials in horizontal and vertical directions. 
ED elements were modeled using ElasticPP material parallel 
with elastic material. In the numerical model, the base ver-
tical and horizontal gap connection is shown by springs in 
Fig. 3(b). Leaning columns (LC) were used to model the P-Δ 
effects. Elastic-beam-column elements were used for mod-
eling of these LCs. To model structural elements like beams, 

Fig. 2 Procedure of design method used for rocking frames 
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Fig. 2 Procedure of design method used for rocking frames

Table 1 Member size for CBF and ZBF

CBF ZBF

Story Column Beam Brace Column Beam Brace Zipper column

1 W10X106 W12X106 W12X120 W12X136 W10X60 W12X190 -

2 W10X106 W12X96 W12X96 W12X120 W10X60 W12X96 W12X58

3 W12X96 W12X96 W12X106 W12X106 W12X120 W12X120 W12X106

4 W12X96 W12X96 W12X87 W12X58 W8X48 W12X120 W12X152

Table 2 Member size for RCBF and RZBF

RCBF    RZBF

Story Column Beam Brace Column    Beam Brace Zipper column

1 W12X170 W12X106 W12X170 W14X283 W10X60 W12X152 -

2 W10X170 W12X96 W12X106 W14X283 W10X60 W12X120 W12X106

3 W12X106 W12X96 W12X152 W12X106 W12X120 W12X170 W12X136

4 W12X106 W12X96 W12X106 W12X58 W8X48 W14X211 W12X152

Table 3 Periods and mass participation ratios

CBF ZBF RCBF RZBF

Mode Tn(sec) Mn/Mtotal Tn(sec) Mn/Mtotal Tn(sec) Mn/Mtotal Tn(sec) Mn/Mtotal

1 0.447 0.77 0.418 0.79 0.492 0.78 0.467 0.8

2 0.158 0.15 0.147 0.14 0.1433 0.14 0.137 0.13

3 0.091 0.064 0.0783 0.056 0.0821 0.063 0.0722 0.055

4 0.0691 0.02 0.0644 0.018 0.0603 0.02 0.0534 0.015
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columns and braces, forced-based nonlinear beam-column 
elements with four integration points and steel02 material 
for fiber sections were used. In order to model the gradual 
yielding of wide flange sections, eight and four fibers were 
used over the height of web and through the flange thick-
ness, respectively. Beam-column connections in the rocking 
frames were shear tab types that in the numerical modeling 
concentrated rotational spring element was used [50].

To accurately model the buckling behavior of braces, 
braces are divided in to 10 nonlinear beam-column elements 
with three integration points [51]. The initial imperfec-
tion used in the modeling was 0.001 of its effective length. 

Beam-column connections for the CBF and ZBF systems 
considered to be pin, however, for the RCBF and RZBF sys-
tems shear tab types were used. PT bars were modeled using 
corotational truss elements with a combined material using 
elastic perfectly plastic and hardening materials to simu-
late the tension-only behavior. For modeling brace to the 
beam-column connections, gusset plates were used. In other 
words, the brace connections consist of two parts: rigid zone 
at the intersection of beam-column-brace and hinge zone 
(Fig. 4).There are several modeling method for gusset plates 
such as rotational springs [52, 53] and force-based fiber ele-
ments [54]. In modeling of gusset plates, combination of 
elastic beam-column element and force-based beam-column 
element with two integration points were used.

2.5 Ground motion records
A series of seven scaled ground motions with design-based 
earthquake level is used to evaluate the seismic perfor-
mance of the different archetypes. The method proposed 
by Seo et al. [55] was used to scale the ground motions 
to the DBE level. Rayleigh damping with a 5 % damping 
ratio in the first and third modes was used. The properties 
of ground motions are tabulated in Table 4.

3 Results and discussions
3.1 Validating the numerical model
In order to validate the accuracy of modeling for rock-
ing systems, at first the 0.6-scale experimental frame pro-
posed by Sause et al. [56] were modeled. The section prop-
erties, numerical model and the test structure are shown in 
Fig. 5(a) to (c), respectively. The seismic mass from the first 
story to the roof, are: 135900 kg, 134800 kg, 134800 kg, and 
142200 kg, respectively. The tributary gravity loads of the 
test structure from the first story to the roof, are: 1495 kN, 
1484 kN, 1484 kN, and 1556 kN, respectively. The gravity 
columns and base strut sections of the test structure are 

 

Fig. 3 Schematic picture of numerical model for rocking frames (a) elevation view (b) details of boundary conditions for vertical gap, 
horizontal gap and PT bars connections 
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Fig. 4 Numerical model for gusset plate  
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Fig. 4 Numerical model for gusset plate

Table 4 Properties of ground motion set

Records Event Year Station Fault type Magnitude Component Dist (Km) Scale Factor

G1 Mammoth 
Lake-01 1980 Long Valley Dam Normal 

Oblique 6.06 000 12.56 1.49

G2 Loma Prieta 1989 Bear Valley #10 
Webb Residence

Reverse 
oblique 6.93 220 66.89 2.30

G3 Northridge 1994 LA-Saturn St Reverse 6.69 020 21.17 1.03

G4 Northridge 1994 Rinaldi Receiving 
Station Reverse 6.69 228 6.5 0.55

G5 Kobe 1995 Amagasaki Strike Slip 6.9 000 11.34 1.03

G6 Kobe 1995 Kakogawa Strike Slip 6.9 000 22.5 1.95

G7 Kocaeli 1999 Fatih Strike Slip 7.51 000 53.34 2.63
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W8X67 and W36X230, respectively. The comparison of 
the result of the analytical model and experimental test is 
given in Figs. 6 and 7 which the experimental results and 
numerical results are shown in black and red, respectively. 
It is observed good agreement between the experimental 
result and numerical model.

3.2 Roof drift ratio and residual drift
The time histories of roof drift ratio for each frame is shown 
typically in Fig. 8. Rocking frames have larger peak roof 
drifts comparing with the CBF and ZBF due to reduced 
stiffness after decompression of column. The mean val-
ues of roof drift for RCBF and RZBF is almost 2 times 
larger than the mean values for the CBF and ZBF. Also, 
according to Fig. 8, RCBF and RZBF have less residual 
roof drifts comparing with CBF and ZBF which indicate 
the better seismic performance for these systems. This 
result is in line with the results of previous studies [43].  
A comparison between roof drift ratios for different arche-
types under different records presented in Fig. 9. The max-
imum roof drift ratio for CBF, ZBF, RCBF and RZBF is 
0.62, 0.993, 1.63 and 1.74 %, respectively.

Fig. 10 shows the residual story drifts of the archetypes. 
By dividing the difference in residual displacements of 
adjacent floors by the story height, residual story drifts 

Fig. 5 (a) Section properties of the test structure, (b) Numerical model, 
(c) Test structure [56]

 

Fig. 6 Gap opening (a) Experimental result (Sause et al. [57]) (b) Numerical result  
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Fig. 7 Roof drift ratio (a) Experimental result [56], (b) Numerical result
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were calculated. As shown in Fig. 10, the CBF and ZBF 
experience larger residual drifts comparing with the RCBF 
and RZBF. In the other words, the mean values of resid-
ual story drift of rocking frames are considerably smaller 
than the mean values of residual drifts for the fixed base 
frames. The values of residual roof drifts for different 
archetypes are shown in Table 5. Seismic analyses show 
that the RZBF practically eliminates residual roof drift 
which sustains small residual drifts due to plastic deforma-
tions at the column bases. The mean value of residual roof 
drift for the RCBF and RZBF is 0.0014 and 0.00016 radi-
ans, which showed the reliable self-centering behavior of 
these frames. This result is identical with the result of past 
researches [40, 43, 44]. They presented that the residual roof 
drift for fixed base frame is 46 and 54 times larger than the 
residual roof drift for rocking frame under DBE and MCE 
earthquakes, respectively. The results show RZBF system 
has less residual drift comparing with the RCBF system 
indicating effect of zipper columns in enhancing seismic 
behavior of RZBF in terms of residual drift.

The roof displacement time histories of different arche-
types are presented typically in Fig. 11. As mentioned ear-
lier, ED elements used in rocking systems to dissipate 

energy during earthquakes. According to Fig. 11, responses 
of rocking frames damped out more rapidly than the fixed 
base frames. In other words, amplitude of roof drift ratio 
is reduced by ED elements. This result is in line with the 
results presented by Dyanati et al. [40]. As shown in Fig. 11, 
the residual displacement of ZBF is 60 % less than CBF 
which indicate the effect of zipper columns on improving 
the seismic behavior in terms of residual drifts.

According to Fig. 12 section (a) all the archetypes expe-
rience almost same mean values in term of first story drift 
ratio. The mean value of first story drift ratio for CBF, 
ZBF, RCBF and RZBF is 0.608, 0.799, 0.618 and 0.637 %, 
respectively. However, in the other stories, rocking frames 
have larger inter story drift ratio comparing with fixed 
based frames and distribution of inter story drift ratio is 
more uniform in rocking frames. This outcome is similar 
to the results of Rahgozar et al. [43].

 

Fig. 10 Comparison between residual story drift mean values of different archetype (a) rocking frames (b) fixed base frames 
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Fig. 10 Comparison between residual story drift mean values of 

different archetype (a) rocking frames, (b) fixed base frames

Table 5 Residual roof drifts for archetypes (radian)

Record Archetypes

CBF ZBF RCBF RZBF

G1 0.00977 0.00521 0.00021 0.000113

G2 0.0183 0.00767 0.00009 0.0000479

G3 0.162 0.0666 0.000032 0.000113

G4 0.1021 0.2016 0.000113 0.0000995

G5 0.04 0.0258 0.00003007 0.000161

G6 0.0068 0.0154 0.00938 0.000591

G7 0.015 0.0116 0.000000273 0.000000464

Mean 0.050567143 0.047697143 0.001407906 0.000160838

Fig. 11 Time histories of roof displacements under G4 record 
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 Fig.12 Variation of drift ratios for different archetypes under suite of earthquake ground motions (a) first story (b) second story (c) third 
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3.3 Force of top story brace
Forces of top story braces represent the responses of PT 
bars forces, zipper columns and inertial forces of the roof. 
The typical time histories of top story braces force are 
given in Fig. 13. RZBF has the lowest brace force at each 
record, since the PT bars transform the brace forces and 
zipper columns distribute the unbalance force over the 
stories. For instance, the maximum brace force under G4 
record for CBF, ZBF, RCBF and RZBF is 2114, 1667, 1033 
and 550 kN, respectively. 

3.4 Gap opening and PT force
The uplift time histories of RCBF and RZBF under 
G4 record are presented in Fig. 14. Gap opening is defined 
as relative displacement between bearing of column and 
column base. The maximum value of gap opening for 
RCBF and RZBF is 27.43 and 32.1 mm. According to the 
results RZBFs experience larger uplift comparing with 
RCBFs. The maximum uplift which RZBF experienced is 
17 % larger than the value for RCBF. The results show that 
by increasing gap opening, the roof drift ratio increases. 
This outcome is consistent with the results of previous 
relevant studies [56]. As noted previously, ED elements 
have a reduction effects on the gap opening response. Gap 
opening time histories are in consistent with the roof drift 
time histories. 

Fig. 15 shows a combined time history response of PT 
force and gap opening for RCBF and RZBF. The maxi-
mum values of PT force and gap opening occur at the same 
time. In other words, the PT forces are in phase with gap 
opening for both rocking frames, which is similar to Roke 
et al. findings [41, 42]. The maximum PT force for RCBF 
and RZBF is about 0.5 Tu and 0.41 Tu, respectively. RZBF 
has the smaller PT force and larger column uplift compar-
ing with RCBF. Zipper columns help to redistribute the 
unbalance force over the height of the frame and as a result 
the PT force reduces.

4 Conclusions
One of the most widely utilized lateral load resisting sys-
tems is Concentrically Braced Frame (CBF). Due to lim-
ited lateral displacement capacity of CBF, this system 
had been experienced soft story mechanism under severe 
earthquakes. Rocking frames can improve this deficiency. 
This study proposed using zipper columns along with 
rocking behavior to improve the Rocking Concentrically 
Braced Frame (RCBF). So, a comparison study was con-
ducted in order to illustrate the effectiveness of the pro-
posed Rocking Zipper Braced Frames (RZBF). Four dif-
ferent configurations, such as CBF, Zipper Braced Frame 
(ZBF), RCBF and new rocking system, Rocking Zipper 
Braced Frame (RZBF), were designed and modeled in 
OpenSees. Nonlinear time history analysis was con-
ducted to assess their seismic performance, subjecting the 
frames to different ground motions. The main results are 
drawn as follows:

• Rocking frames have lower residual drift comparing 
with CBF and ZBF, which indicate the self-centering 
behavior of these systems. However, due to the soft-
ening behavior, RZBF has the largest peak roof drift 
ratio comparing with the other systems.

Fig. 13 Comparison of top story braces force time histories of different archetypes (kN) 
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 Fig.14 Rocking systems gap opening time histories under G4 record 
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• The amount of column uplift in RZBF is 17 % larger 
than the RCBF column uplift. With increasing the 
value of column uplift, the roof drift ratio increases. 
RZBF has the largest roof drift ratio.

• Adding zipper columns along with rocking behavior 
reduce the force of top story braces in RZBF system, 
reduce the PT bars forces and redistribute the unbal-
ance force over the height of frames. The reduction 
of PT bar force is about 14 %.
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