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Abstract

Solution of the Global Navigation Satellite Systems (GNSS) phase ambiguity is considered as a global quadratic mixed integer 

programming task, which can be transformed into a pure integer problem with a given digit of accuracy. In this paper, three alter-

native algorithms are suggested. Two of them are based on local and global linearization via McCormic Envelopes, respectively. These 

algorithms can be effective in case of simple configuration and relatively modest number of satellites. The third method is a locally 

nonlinear, iterative algorithm handling the problem as {-1, 0, 1} programming and also lets compute the next best integer solution 

easily. However, it should keep in mind that the algorithm is a heuristic one, which does not guarantee to find the global integer 

optimum always exactly. The procedure is very powerful utilizing the ability of the numeric-symbolic abilities of a computer algebraic 

system, like Wolfram Mathematica and it is properly fast for minimum 4 satellites with normal configuration, which means the 

Geometric Dilution of Precision (GDOP) should be between 1 and 8. Wolfram Alpha and Wolfram Clouds Apps give possibility to run 

the suggested code even via cell phones. All of these algorithms are illustrated with numerical examples. The result of the third one 

was successfully compared with the LAMBDA method, in case of ten satellites sending signals on two carrier frequencies (L1 and L2)  

with weighting matrix used to weight the GNSS observation and computed as the inverse of the corresponding covariance matrix.
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1 Introduction
Highly accurate static Global Navigation Satellite Systems 
(GNSS) positioning is achieved by the processing of rela-
tive phase ranges observed to the GNSS satellites at both 
the reference and the rover stations [1, 2]. To eliminate com-
mon biases such as the satellite and receiver clock error, 
the double-differenced phase observations are formed and 
they are adjusted using a least squares adjustment. The 
linearized observation equation of the double-differenced 
phase observations has the following form, see [3].

∆∆ΦAB
jk

B
jk

B
jk

B
jk

AB
jka x a y a z N= + + +

1 2 3
δ δ δ λδ , (1)

where ∆∆ΦAB
jk  is the double differences phase observa-

tions taken to the j-th and k-th satellite, δxB, δyB and δzB are 
the relative coordinate differences between the reference 
(A) and rover (B) stations, λ is the wavelength of the sig-
nal, δNAB

jk  is the double differenced phase ambiguity and 
j refers to the so-called pivot satellite, that is used as a ref-
erence for forming the double differences.

The terms ai in Eq. (1) stand for the coefficients resulted 
from the partial derivates of the linearized geometrical 
pseudorange distant equations. Let us assume that five sat-
ellites are measured concurrently on both the reference 
and the rover stations in two consecutive epochs. Since 
one satellite is used as a pivot satellite, four double dif-
ferences are formed in each epoch. This means that alto-
gether 8 observation equations are formed, which can be 
used to evaluate 7 unknowns (3 coordinate differences 
and 4 double-differenced phase ambiguities).

A usual solution of the problem is to estimate the 
unknowns using a least-squares adjustment, where the 
phase ambiguities are integers, while the coordinates are 
floating point variables. Consequently, the computation of 
the integer least-squares estimates of the GNSS cycle ambi-
guities leads to a mixed integer quadratic problem see [4, 5],
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where y vector of double differences carrier phase obser-
vation in cycles, A design matrix for continuous-valued 
parameters (baseline components), B design matrix for 
ambiguities, x is unknown vector of continuous parame-
ters, x  3, z the unknown ambiguity vector in cycles, 
z  Zm, where m depends on the number of the satellites 
and the carrier frequencies. The matrix Qy

–1 is the weight 
matrix (Qy is the covariance matrix).

Solving the problem Eq. (2) is well known to be NP 
hard. In other words, there exists no algorithm to find the 
global optimal integer solution to the problem Eq. (2) in 
polynomial time, see, [6]. Thus, for real time applications 
such as wireless communication and Global Positioning 
Systems (GPS) kinematic positioning with many inte-
ger ambiguities due to the use of different wavelengths 
and/or different navigation satellite systems, it may be 
more realistic to expect some good suboptimal integer 
solutions than to find the global optimal integer solu-
tion. Basically, all the methods to construct suboptimal 
integer solutions may be classified into two types: sim-
ple rounding and sequential rounding. This is the whole 
point of the development of the LAMBDA approach by 
Teunissen et al in the 1990s, i.e. [7]. LAMBDA does not 
"solve" integer rounding or sequential rounding it is a tool 
to make ILS more efficient. To solve this task, probably 
the most popular procedure is the so-called LAMBDA  
method, see [8, 9].

In this article, three different methods are introduced to 
solve quadratic integer programming: local linearization, 
global linearization and sequential nonlinear approach. 
All these methods can be time-wise effective in case of 
simple configuration and relatively low number of satel-
lites (less than 8–10). The third method is utilizing the 
ability of the numeric-symbolic abilities of a computer 
algebraic system, like Wolfram Mathematica and properly 
fast for normal satellite configuration. Wolfram Alpha 
and Wolfram Clouds Apps give possibility to run the sug-
gested code via cell phones.

In the first part the three methods to solve quadratic 
integer programming are introduced and illustrated via  
a simple example. Then the third method is demonstrated 
for different satellite configurations: a simple one with one 
carrier frequency using synthetic data with two different 
carrier frequencies based on real field measured data, pro-
vided by Khodabandeh [10]. The results are compared with 
those of the latest version of the LAMBDA method.

2 Three methods to solve integer programming
In Section 2, three different methods are discussed and 
illustrated. All of them are based on the global float (float-
ing point) solution of the problem. Let us consider a sim-
ple integer quadratic programming example adapted from  
Li and Sun [11]. We should minimize the following objec-
tive function,

q x x x x x= − + −27 18 4 3
1

2

1 2 2

2

2
. (3)

Let us visualize the problem, see Fig. 1.
We have to remark that this toy-problem can be solved 

directly. Excluding trivial solution (x1 = 0, x2 = 0), the inte-
ger minimum of q(x1, x2) is x1 = 1, x2 = 3).

However, employing linearization the computation 
time can be reduced considerably, see later.

2.1 Local linearization
Let us linearize this q(x1, x2) function around at the point 
of {x10, x20}:

qL x x x x x x

x x x x x

= + −( ) −( ) −

− + + −

27 54 18 3

18 4

10

2

1 10 10 20 20

10 20 20

2

2 20(( ) − − +( )3 18 8
10 20
x x .

 (4)

The float minimum of q(x1, x2) is (x1 = 0.5, x2 = 1.5). 
Then the linearization point can be, x10 = 1, x20 = 2.

Then linearized model is,

qL x x
0 1 2

7 18 5= − + − . (5)

Fig. 1 Contour plot of the objective function
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To minimize Eq. (5), constraints are required, here we 
use simply a heuristic approach suggested by Champton 
and Strzebonski [12], assuming, that x x xi i i0 0

1 1− ≤ ≤ + ,   
i = 1, 2. Therefore, let us introduce new variables µi i ix x= − 0 
to get a (–1, 0, 1) linear programming problem. Then

qL
0 1 2

1 18 5µ µ µ= + − . (6)

The lower and upper bounds for the variables are 
− ≤ ≤ − ≤ ≤{ }1 1 1 1

1 2
µ µ, .

This linear problem can be solved via linear program-
ming. It can be written in the form of min cμ under the 
restriction mμ ≥ b, where
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The solution is ∆ = {0,1}, then x0 = x0 + ∆ = {1,3}. 
Employing this result a new linearization point is x0 = {1,3}.

Since {1,2}→{1,3}, the minimum is at {1,3}. The run-
ning time is considerably smaller than it was in case of the 
global nonlinear solution.

2.2 Global linearization
In this case linearization is carried out not around a single 
point but on a restricted domain. The global bound is the 
domain where the integer solution may exist, and its center 
is the float solution.

2.2.1 Global bound
The radius of this domain can be computed from the ratio 
of the maximal and minimal eigenvalues of the following 
bilinear form [11]. This bilinear form in our case is
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where x1̃ and x2̃ are the integer solutions of the optimiza-
tion problem and the center of this domain is the float solu-
tion {x1 = 0.5, x2 = 1.5}. The matrix Q can be computed as
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Then the matrix of the bilinear form in our case is 

Q =
−

−










27 9

9 4

 and the eigenvalues {30.1031, 0.896918}.

The ratio of the maximum and minimum values of λ's 
is κ = 33.5628. Then the radius of a n dimensional hyper-
sphere with the float solution as a centre, R n = 1/2 κ ,  
now n = 2, so R = 4.09651.

Using box-type constraint

− ≤ ≤ − ≤ ≤3 4, 2 5
1 2
x x . (10)

Box-bounded region can be seen in Fig. 2.
Having global bound for the solution, the problem 

becomes a constrained nonlinear problem. Further simpli-
fication is possible via linearization of the objective func-
tion. In order to linearize our function over this region, 
McCormick Envelopes is employed, which is described in 
the next paragraph.

2.2.2 Linearization via McCormick envelopes
The McCormick envelopes are the convex relaxation of 
a quadratic problem via introducing new variables for 
the quadratic terms and employing the additional con-
straints [13]. In general, we introduce new variables,

w x xij i j= , (11)

with following constraints,

w x x + x x x x

w x x + x x x x

w x x + x x

ij iL j i jL iL jL

ij iU j i jU iU jU

ij iU j jL

≥ −

≥ −

≤ ii iU jL

ij i jU iL j jU iL

x x

w x x + x x x x

−

≤ −

 (12)

where xL ≤ x ≤ xU .
Let us employ McCormic envelopes approach to our 

simple quadratic problem. Employing Eq. (11), the linear 
objective function of our example is,

qL w w w x= − + −27 18 4 3
11 12 22 2

. (13)

The box-type bounds are,

x x x xL U L U1 1 2 2
3 4 2 5= − = = − =; ; ; , (14)

and the function values at the lower and upper bounds are 
157.

The additional inequality constraints, the McCormick 
envelopes are,
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Now, this is a linear integer programming problem. The 
price of the linearization is the increase in the number of 
variables. 

Considering the new variables (x1, x2, w11, w12, w22), in 
Eq. (13), the coefficient vector of the objective function is

c = − −{ }0 3 27 18 4, , , , . (17)

We introduce a small positive constant ε = 10–3 in order to  
exclude the trivial solution {0,0}. Then the constraints are,
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Now linear programming can be employed, which 
result is {x1, x2} = {2,3}. Using this result as a new upper 
limit, see Fig. 3, the second approach can be computed,

x x x xL U L U1 1 2 2
3 2 2 3= − = = − =; ; ; , (19)

and accordingly, a new McCormick envelopes will be 
determined. The value of the objective function at the 
lower bound is 157 and at the upper bound is 27. The 
results of this iteration process can be seen in Table 1.

Fig. 2 Disk and the box-bounded region of the global integer optimum

Table 1 Results of the global linearization

Iteration
Bounds 
for x1

Bounds 
for x2

Solution
Objective 
at lower 
bound

Objective 
at upper 
bound

0 {-3, 4} {-2, 5} {2, 3} 157 157

1 {-3, 2} {-2, 3} {1, 2} 157 27

2 {1, 2} {2, 3} {1, 3} 1 27

3 {1, 1} {3, 3} {1, 3} 0 0
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No more approximation step is necessary since the next 
iteration will give the same result, so it is a fixed point of 
the iteration process, see Fig. 3.

This method is converging, however now the size of the 
linear model is 19 × 5. After the linearization techniques, in  
the next Section 2.3 a non-linear method will be discussed.

2.3 Successive nonlinear method
Here we employ the heuristic technique suggested by [12]. 
We are looking for an improved integer solution xi + 1 in 
the neighborhood  of the actual one, xi, assuming that 
x x L x xi i i i+ +∈ =( )1 1 1

1 : ( , ) that xi + 1 is in the neighbor-
hood of xi with L1 norm equal 1. In this way, we have a 
{–1,0,1} quadratic problem.

Starting with x0 = {1,2}, and introducing the new vari-
ables x1 = x01 + μ1 and x2 = x02 + μ2 we get our objective 
function

q = + + − − +1 18 27 5 18 4
1 1

2

2 1 2 2

2µ µ µ µ µ µ , (20)

and the constraints are: –1 ≤ μ1 ≤ 1, –1 ≤ μ2 ≤ 1.
Then minimizing q, the solution can be computed, 

x
0

1 2 0 1 1 3= + ={ , } { , } { , } . (21)

Now no more computation step is necessary.
Until now, we have considered a pure integer problem. 

However, in the case of mixed integer problem, a part of 
the variables are continuous variables.

3 Mixed integer programming
This type of the problem can be transformed into a pure 
integer problem. Let us consider the following illustrative 
example. Let the function to be maximized is,

u x x y y= + + +3 5 2
1 2 1 2

, (22)

with continuous or "float" variables ( , )y y
1 2

∈ , and with 
integer variables ( , )x x

1 2
∈ . First, let us solve the contin-

uous version of the problem. The constraints are
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1 2 1 2 1 2 1 2

1 2 1 2
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≥ ≥ ≥ ≥
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; ; ; .

 (23)

Then the continuous solution is (employing post ratio- 
nalization),

x x
1 2

7 5 6 5= =/ , / . (24)

Now, we introduce new integer variables as

ξi
Accuracy y

i
i y= ( )

10 , = 1,2i . (25)

In our case let accuracy (wi) = 3

ξ ξ
1 1 2 2

1000 1000= =y y,  (26)

In this way, the continuous variable is considered as an 
integer one with 3 digit accuracy.

Then the objective with the new variables is

u x x= + + +3 5
1000 500

1 2

1 2
ξ ξ , (27)

where now all variables are integers,
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The solution is

x x
1 2 1 2

1 1 1000 0= = = =, , ,ξ ξ , (29)

then

y y
1

3

1 22
10 1 0, , ,{ } = { } = { }− ξ ξ . (30)

This technique will be employed in Section 4, dealing 
with the GNSS ambiguity solution.

4 Computing the next best integer solution
With ambiguity resolution, one often also would like to be 
able to compute the next best integer solution for ambigu-
ity validation purposes using e.g. the ratio test, see [14]. 
Let us illustrate this computation with the problem Eq. (3). 
The objective function is,

q x x x x x= − + −27 18 4 3
1

2

1 2 2

2

2
. (31)

Fig. 3 Box-regions of the first three iterations of the linear problem. 
The meaning of the values of the box-regions can be seen in Table 1
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Then the first best integer minimum,

x x
1 2

1 3, ,{ } = { } . (32)

Introducing a new constrain to avoid this minimum,

q q> ( )1 3, , (33)

we solve the problem again,

x x
1 2

1 2, ,{ } = { } . (34)

That means, after computing the best solution, we can 
construct a new constrain, and repeat the minimization to 
avoid best solution and get the next best integer one.

5 Solution of GNSS phase ambiguity problem
In Section 5, the third algorithm with some modifications 
will be employed since it has turned out that the first and 
second algorithms can solve only the simple configuration 
problem [15]. 

Now let us consider a more serious model config-
uration. The data are from field measurements, and the 
theoretical result for the coordinates is the zero vector 
{x,y,z}→{0,0,0}, a base-line solution.

The suggested algorithm is a heuristic one and it does 
not ensure to find the global integer minimum. However, 
when this minimum is in the neighborhood of the float-
ing minimum, the method can be very efficient. The flow 
chart of the algorithm can be seen in Fig. 4. 

In this case of Successive Nonlinear Solution for a real 
satellite configuration we have 10 satellites. One of them 
is the reference one, and the other 9 are sending signals on 
two carrier frequencies (L1 and L2). So we have 18 ambi-
guities and 3 coordinates as unknowns. The actual values 

of the input arrays were provided by Khodabandeh [10] 
which can be found in the Appendix.The results of the iter-
ation steps can be seen in Table 2.

No more iteration is necessary since we get the same 
result. Applying the LAMBDA method, the same result 
was achieved [10].

6 Conclusions
The algorithms based on local as well as global linear-
ization were proved to be efficient in cases of one carrier 
frequency. The third one, a locally nonlinear, iterative 
algorithm, can be employed successfully when L1 and L2 
carrier frequencies are used with weighting matrix having 
elements of very different magnitudes. For multi-GNSS 
cases, when more satellite should be tracked simultane-
ously, one may employ the same strategy however at this 
time the memory management of CAS is not allow to han-
dles large system of equations.
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Appendix 
The matrix A and vector y is, 

A =

0 11350 0 40225 0 50828

1 09230 0 16510 1 02080

0 44717 0 1

. . .

- . - . .

- . - . 77185 0 40806

0 81536 0 47265 0 13043

0 37498 0 88919 1 0210

- .

- . - . - .

- . . . 00

0 28402 0 51891 1 08210

0 63514 0 23136 0 96756

1 59760 0

- . . .

- . - . .

- . - .114047 0 59082

1 14130 0 32446 0 30627

0 11350 0 40225 0 50828

.

- . - . - .

. . .

-- . - . .

- . - . - .

- . -

1 09230 0 16510 1 02080

0 44717 0 17185 0 40806

0 81536 0.. - .

- . . .

- . . .

47265 0 13043

0 37498 0 88919 1 02100

0 28402 0 51891 1 082100

0 63514 0 23136 0 96756

1 59760 0 14047 0 59082

1 14130 0

- . - . .

- . - . .

- . - .. - .

. . .

- . - . .

32446 0 30627

0 11350 0 40225 0 50828

1 09230 0 16510 1 020800

0 44717 0 17185 0 40806

0 81536 0 47265 0 13043

0 37498

- . - . - .

- . - . - .

- . 00 88919 1 02100

0 28402 0 51891 1 08210

0 63514 0 23136 0 967

. .

- . . .

- . - . . 556

1 59760 0 14047 0 59082

1 14130 0 32446 0 30627

0 11350 0

- . - . .

- . - . - .

. .. .

- . - . .

- . - . - .

40225 0 50828

1 09230 0 16510 1 02080

0 44717 0 17185 0 408806

0 81536 0 47265 0 13043

0 37498 0 88919 1 02100

0 28402

- . - . - .

- . . .

- . 00 51891 1 08210

0 63514 0 23136 0 96756

1 59760 0 14047 0 59

. .

- . - . .

- . - . . 0082

1 14130 0 32446 0 30627- . - . - .



























































































, yy =

- .

.

.

.

.

- .

- .

- .

4 75710

2 85700

9 13270

0 19081

1 14110

4 75720

4 75910

4 118520

12 56000

6 83820

2 68960

4 87710

0 73147

1 46970

3 1759

- .

.

.

.

- .

- .

. 00

1 46590

2 20040

1 95520

0 70882

0 01589

0 27637

0 08741

0 18

- .

.

.

- .

.

.

- .

. 1193

0 15592

0 15185

0 09746

0 34652

0 18282

0 27811

0 779
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- .
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- .

- .

- .

- . 663
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0 34707
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The structure of matrix B is,

B
R

R=
















1

2

0

0

0 0

0 0

,

where

R1

0 19 0 0 0 0 0 0 0 0

0 0 19 0 0 0 0 0 0 0

0 0 0 19 0 0 0 0 0 0

0 0 0 0 19 0 0 0 0 0

0 0 0 0 0 1=

.

.

.

.

. 99 0 0 0 0

0 0 0 0 0 0 19 0 0 0

0 0 0 0 0 0 0 19 0 0

0 0 0 0 0 0 0 0 19 0

0 0 0 0 0 0 0 0 0 19

.

.

.

.





























=R2

0 24 0 0 0 0 0 0 0 0

0 0 24 0 0 0 0 0 0 0

0 0 0 24 0 0 0 0 0 0

.

.

.

00 0 0 0 24 0 0 0 0 0

0 0 0 0 0 24 0 0 0 0

0 0 0 0 0 0 24 0 0 0

0 0 0 0 0 0 0 24 0 0

0 0 0 0 0 0 0 0

.

.

.

.

.224 0

0 0 0 0 0 0 0 0 0 24.





























R3

0 59566 0 30044 0 30044 0 30044 0 30044 0 30044 0 30044 0 3004

=

. . . . . . . . 44 0 30044

0 30044 0 43245 0 30044 0 30044 0 30044 0 30044 0 30044

.

. . . . . . . 00 30044 0 30044

0 30044 0 30044 1 43750 0 30044 0 30044 0 30044 0

. .

. . . . . . .. . .

. . . . . .

30044 0 30044 0 30044

0 30044 0 30044 0 30044 0 61351 0 30044 0 330044 0 30044 0 30044 0 30044

0 30044 0 30044 0 30044 0 30044 1 6

. . .

. . . . . 99020 0 30044 0 30044 0 30044 0 30044

0 30044 0 30044 0 30044 0 30

. . . .

. . . . 0044 0 30044 0 53146 0 30044 0 30044 0 30044

0 30044 0 30044 0 300
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. . . 444 0 30044 0 30044 0 30044 0 38545 0 30044 0 30044

0 30044 0 3004

. . . . . .

. . 44 0 30044 0 30044 0 30044 0 30044 0 30044 0 97401 0 30044. . . . . . .































=R4

5956.6 3004.4 3004.4 3004.4 3004.4 3004.4 30004.4 3004.4 3004.4

3004.4 4324.5 3004.4 3004.4 3004.4 3004.4 3004..4 3004.4 3004.4

3004.4 3004.4 14375. 3004.4 3004.4 3004.4 3004.4 30004.4 3004.4

3004.4 3004.4 3004.4 6135.1 3004.4 3004.4 3004.4 3004..4 3004.4

3004.4 3004.4 3004.4 3004.4 16902. 3004.4 3004.4 3004.4 30004.4

3004.4 3004.4 3004.4 3004.4 3004.4 5314.6 3004.4 3004.4 3004..4

3004.4 3004.4 3004.4 3004.4 3004.4 3004.4 3854.5 3004.4 3004.4

30004.4 3004.4 3004.4 3004.4 3004.4 3004.4 3004.4 9740.1 3004.4

3004..4 3004.4 3004.4 3004.4 3004.4 3004.4 3004.4 3004.4 28100.































The structure of matrix Qy is,

Q
R

R
R

R
y =

















−
3

3

4

4

4

0 0 0

0 0 0

0 0 0

0 0 0

10

where
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