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Abstract

In this paper the pure torsional buckling of thin-walled column members is investigated, with a special focus on the effect of transverse 

plate elements, such as end-plates or transverse stiffeners. The linear buckling problem is aimed to solve analytically, therefore the 

necessary (differential) equations are first established. For some simple problems, namely doubly-symmetric I-sections with pinned-

pinned or clamped-clamped supports and with rectangular stiffeners or end-plates, closed formulae are derived to calculate the 

critical force. It is shown that the transverse elements have two effects: the direct effect is due to the deformation of the transverse 

elements, while the indirect effect is that the transverse elements modify the longitudinal distribution of the member’s displacements. 

It is also shown how the stiffener-to-member connection influences the results. The analytical solutions are discussed by several 

numerical examples: the results from the derived formulae are compared to results from shell finite element buckling analyses.
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1 Introduction
Thin-walled members appear in many structural engi-
neering applications, most frequently made of steel. If 
subjected to torsion, the behavior of thin-walled members 
is complicated, characterized by both Saint-Venant torsion 
(which induces shear stresses only) and warping (which 
induces axial and shear stresses). The classic description 
of the problem can be found in textbooks [1, 2]. Though 
the underlying differential equation (DE) is known, its 
practical handling is challenging. Exact solution of the 
DE is difficult even for the simplest members. Numerical 
(approximate) solution is possible, e.g. by using the finite 
element method. If beam finite elements are used, mini-
mum 7 degrees of freedom (DOF) per node are necessary 
due to the torsion: the classic 6 displacement DOF must be 
supplemented by a warping DOF. Such special beam ele-
ment is not always included in commercial FEM software 
implementations, and even if included, the warping DOF 
induces practical questions (e.g., at supports, at joints) that 
are not easy to correctly respond.

In thin-walled members buckling is always important.  
When a structural member buckles, various buckling types  
are distinguished, depending on the loading of the member 

and depending on the displacements involved in the buck-
ling. Even if we limit our investigations to buckling types 
characterized by practically rigid cross-sections, various 
buckling types can be defined. In the case of columns 
flexural, pure torsional and flexural-torsional buckling 
types are usually distinguished. In the case of beams, the 
buckling is termed lateral-torsional buckling. With the 
exception of flexural buckling of columns (with symmet-
ric cross-sections), in all the other buckling types torsion 
is involved in the buckled shapes. Though from practical 
aspect the pure torsional buckling is rarely governing, this 
is the simplest form of buckling with torsion, therefore the 
proper understanding of pure torsional buckling can help in 
solving flexural-torsional or lateral-torsional buckling, too.  
Research on pure torsional buckling of columns is hardly 
reported recently, though some specific problems are 
addressed [3-6]. In this paper pure torsional buckling of 
columns is investigated, with a special focus on the effect 
of transverse plate elements.

In thin-walled members in many cases transverse 
plate elements are applied. Such transverse plate element 
may appear as an end-plate, a gusset plate, or transverse 
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stiffener. End-plates and gusset plates are applied in order 
to facilitate the connection between various structural 
members (i.e., a beam to a column), while stiffeners are 
typically applied in order to increase the resistance to buck-
ling of slender plates. Transverse stiffeners are known to be 
effective against shear buckling of a web or web crippling 
at supports. Though stiffeners, end-plates and gusset plates 
have different roles, they might have different shapes, etc., 
they have very similar mechanical effect on the torsional 
behavior of members. Thus, the term "transverse stiffener" 
will mostly be used in this paper, but in a general meaning.

While it is reasonable to assume that the presence of 
transverse stiffeners has negligible effect on the flexural 
behavior of the member, the transverse stiffeners definitely 
affect the torsional behavior. The effect of end-plates on 
the warping fixity is well-known, reported and discussed 
e.g. in [7, 8], though without giving a proper theoretical 
explanation on how the geometrical and material parame-
ters are related to the warping springs. In [9] the effect of 
transverse stiffeners is correctly described by some basic 
equations, but the equations then are not applied to solve 
practical problems or to discuss some tendencies. 

In classic buckling solutions for pure torsional (or flexur-
al-torsional, lateral-torsional) buckling the effect of trans-
verse stiffeners is not considered. The strength enhanc-
ing effect of end-plates on flexural-torsional buckling of 
columns is studied e.g. in [10], by experiments and non-
linear finite element simulations. The effect of end-plates 
on lateral-torsional buckling of beams appears in several 
studies, including [11–13], but without any attempt to han-
dle the problem analytically. An analytical solution for the  
lateral-torsional buckling of beams with transverse stiff-
eners is briefly reported in [14], but the reported approach 
seems to be more appropriate for beams with batten plates 
rather than for beams with transverse web stiffeners.  
According to the authors best knowledge analytical solu-
tion for torsional buckling of thin-walled columns/beams 
with directly considering transverse stiffeners or end-
plates is not yet reported. Analytical considerations hardly 
appear in the literature, which is especially true for pure 
torsional buckling. The goal of the research reported here, 
therefore, is to derive analytical solutions for the critical 
load to pure torsional buckling of thin-walled columns 
with transverse elements.

In the paper first the problem is described in a general way 
(Section 2). Since our aim is to have analytical solution, the 
problem is simplified, and doubly-symmetric I-section will 
only be discussed in a detailed way. The solution requires 

the displacement of the stiffeners, hence in Section 3 the 
stiffeners are studied. In Section 4 analytical solution is 
derived for the critical load to pure torsional buckling of 
clamped-clamped columns with transverse stiffeners. The 
analytical solution is discussed and the results are compared 
to shell finite element solutions. In Section 5 pinned-pinned 
columns are studied with end-plates and transverse stiff-
eners: first analytical formulae are derived, then numerical 
results are discussed in comparison with shell FE results. 
Finally, the main conclusions are summarized.

Though in this paper pure torsional buckling is inves-
tigated only, it is believed that the methodology and the 
results presented in this paper can be extended to other 
types of buckling with torsion, like lateral-torsional buck-
ling of beams.

2 Formulation of the problem, solution strategy
2.1 Description of the problem in general
Let us consider a straight and prismatic thin-walled member 
with a length L. It is modelled as a one-dimensional element 
with cross-sections perpendicular to the member axis, i.e., 
beam-model is adopted. The cross-sections are assumed to 
be rigid, hence the displacements of the member are given 
by the displacement function of the system line. Classic 
beam theory is assumed, that is for the torsional behav-
ior Vlasov's theory is applied (which can be regarded as 
the extension of classic Euler-Bernoulli beam theory). The 
material is isotropic and linearly elastic. The member is a 
column, loaded by two opposite axial forces at the member 
ends, uniformly distributed over the cross-section.

Transverse plate elements are assumed. We consider nst 
stiffeners, the position of each is given by xst,i(i = 1, …, nst; 
0 ≤ xst,i ≤ L); L is the length of the beam. The transverse 
plate elements are perpendicular to the member axis, oth-
erwise they are arbitrary. The transverse plate elements are 
assumed to be thin so that the Kirchhoff-Love plate theory 
could be applied. The domain determined by the area of the 
i-th stiffener is denoted as ΩS,i. The transverse stiffeners are 
connected to the main member, in a general case through 
domain ΩL,i. The free edges of a stiffener plate are collec-
tively denoted as domain ΩF,i. The member with the stiffen-
ers and the characteristic domains are illustrated in Fig. 1.

The energy method is employed here, hence the dis-
placement functions must be known or assumed. Since 
pure torsional buckling is investigated, the displacement 
of the member is described solely by the function of the 
twisting rotation θ(x). It has to satisfy the boundary condi-
tions defined by the supports. In the case of energy method 
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the function must be assumed; in many cases it is conve-
nient to assume the function as a linear combination of 
simpler functions (e.g., trigonometric functions). Let us 
assume that the function is expressed as:

� x c f x
k

i i� � � � ��
1

,  (1)

where ci(i = 1, …, k) are the unknown parameters and fi(x) 
are predefined functions.

By the twisting rotation function the u, v and w transla-
tional displacements (along the x, y and z-axis, respectively) 
of any point of the member are determined as follows:
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The stiffeners are assumed to be thin plates, hence the 
wst,i(y, z) displacement function of the i-th stiffener (where 
i = 1,…, nst) must satisfy the DE of the Kirchhoff-Love 
plate theory, plus it must satisfy the boundary conditions. 

As well-known, the DE of the plate is as follows:
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where Dst,i is the plate stiffness, defined as:
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and tst,i is thickness of stiffener, E is modulus of elasticity,  
v is Poisson's ratio, while pst,i is the load acting perpendic-
ularly on the plate. In the actual column buckling problem 
this load is assumed to be zero, hence the right-hand-side 
of the DE is zero.

The wst,i(y, z) function has to satisfy the boundary con-
ditions. One part of the boundary conditions comes from 
the compatibility between the main member and the plate 
(over domain ΩL,i). The other part of the boundary condi-
tions comes from the fact that the normal stress resultant 
(i.e., bending moment) along the plate free edges (i.e., over 
domain ΩF,i) is zero. Mathematically, therefore:
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where n denotes the direction perpendicular to the free 
edge. Eqs. (5)–(7) define a boundary value problem for 
each stiffener. Either we can find the strong solution 
by solving the differential equation, or we may find an 
approximate solution (e.g., by solving the weak formula-
tion of the problem).

2.2 Overview of the solution by the energy method
To find the analytical solution for the critical load the 
energy method is followed: the total potential is expressed 
by some displacement parameters, then the theorem of sta-
tionarity of potential energy is used to find the equilibrium 
configuration. Since the primary aim here is to find crit-
ical load, in calculating the work of the external loading 
the displaced member is considered, by using quadratic 
approximation of the displacements. It is known that for 
simple straight columns the energy can be expressed with 
respect to the original undeformed configuration, i.e., the 

Fig. 1 A sample member and the characteristic domains of a stiffener 
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primary displacements-deformations can be disregarded: 
this is reflected in Eq. (4), and is also reflected in the cal-
culation of the work of the external loading (as follows) 
where the second-order strain terms are considered only.

As far as the main member is concerned, the classic 
energy/work terms are applied. This means that the meth-
odology followed here leads to the classic critical force 
formula of pure torsional buckling if no transverse stiff-
eners are added. However, the effect of the stiffeners are 
also considered. This effect is two-fold. Since the stiff-
ener plates are connected to the main member the direct 
effect is that the stiffeners will displace/deform as soon 
as the main member is displaced/deformed; due to this 
deformation strain energy is accumulated in the stiffeners 
that energy is to be included in the potential energy func-
tion. However, there is a second effect, too: the stiffeners 
modify the longitudinal displacement function of the main 
member (as will be clearly demonstrated in Section 5).

The external potential is the negative of the work done 
by the loading on the (second-order) displacements. Since 
the only assumed loading is axial, we need the longitudinal 
second-order displacement only, which can be calculated 
from the second-order strains (i.e., relevant terms of the 
Green-Lagrange strain vector). The second-order strain, 
therefore:
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By substituting Eqs. (1)–(3) into Eq. (8) we get:
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The longitudinal displacement (at a certain y-z location 
in the cross-section):

�x
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x
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The external potential:
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A
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where: F is the applied axial force, and A is the cross sec-
tion area.

Substitute Eq. (10) then Eq. (9) into Eq. (11):
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Note, if the shear center of the main member cross sec-
tion coincides with the origin of the coordinate system then:
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The internal potential is the accumulated strain energy. 
The strain energy in the main member is due to Saint-
Venant shear strains/stresses, and due to strains/stresses 
from warping. For the Saint-Venant strains/stresses:
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where: G is shear modulus, and It is the Saint-Venant tor-
sional constant.

For the warping strains/stresses:
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where: Iω is the second moment of the sectorial coordinate, 
calculated to the center of twisting rotation.

The strain energy in a stiffener plate can be calculated 
similarly, from the curvatures and stress resultants (i.e., 
moments). The curvatures are as follows:
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The stress resultants are as follows:
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where: Dst,i is the plate stiffness, given by Eq. (5), and vi 

is the Poisson's ratio for the i-th stiffener.
The strain energy for a stiffener plate is:
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After substituting Eqs. (19)–(20) into Eq. (21):
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The total strain energy of the whole member with the 
transverse stiffeners therefore can be composed from Eqs. 
(16), (18) and (22):

� � � �
int int int int,

.� � �� �S V warp
n

i
st

st

1
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The total potential of the whole member is:

� � �� �
int
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In equilibrium the total potential is stationary, thus:
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The critical load can be obtained from Eqs. (25). It is 
worth noting that if the number of parameters is larger 
than one (that is, if k > 1), then the equations define a gen-
eralized eigen-value problem the eigen-values of which 
are the critical loads.

2.3 Specific problem: I-section column with rectangular 
stiffeners
The problem described in the previous Section is too com-
plex to have an analytical solution in a general case. The 
difficulties are as follows: (i) the wst,i(y, z) displacement 
function is sometimes hard to find, and (ii) the presence 
of the stiffeners has, in general, an important effect on 
the θ(x) function. In some specific cases, however, closed-
formed solution can be found to the problem. In the fol-
lowing Sections some specific cases are investigated: ana-
lytical solutions are presented and discussed. Also, the 
analytical solutions are compared to shell FEM solutions.

The specialty of the simplified problem is that the 
cross-section is a doubly-symmetrical I-section, and the 
stiffeners are rectangular plates, centrally positioned with 
respect to the cross-section. As Fig. 2(a) illustrates, the 
depth and width of the member cross-section is h and b, 
respectively, interpreted as midline dimensions. The i-th 
stiffener plate has a thickness tst,i, its height and width 
are hst,i and bst,i, respectively, and now it is assumed that 
hst,i ≤ h and bst,i ≤ b.

The coordinate system defined in such a manner that its 
O origin would coincide the C centroid of the cross sec-
tion, which is now identical to the shear center, too.

For the connection between the main member and the 
stiffeners, three cases will be considered. In the case of 
"flanges-only" connection the stiffener is connected to 
the flanges of the main member only. In the case of "web-
only", the stiffener is connected to the web of the main 

member only. In the case of "web-and-flanges" connection 
the stiffener is connected to both the web and flanges of 
the main member. 

The most practical case is when the stiffener is con-
nected both to the web and the flanges, still, the other two 
cases have been found to be useful. It will be shown (in 
Section 3.3) that for the "web-and-flanges" case there is 
no strong solution of the DE of the transverse plate if the 
cross-section of the main member is assumed to be rigid 
(which is the usual way to define any kind of global buck-
ling). At the same time, if the stiffener is connected either 
to the web or the flanges only, exact analytical solution for 
the DE of the transverse plate is possible. Numerical stud-
ies will show (in Section 4.2) that the difference between 
the "flanges-only" and "web-and-flanges" cases is mostly 
small. That is why the approximate w function for the 
"web-and-flanges" case will be assumed as the perturba-
tion of the "flanges-only" case. To show the validity of the 
newly derived formulae, thus, "flanges-only" and "web-
only" cases have also been considered to avoid the inac-
curacy introduced by the unavoidable inaccuracy of the w 
function in the "web-and-flanges" case.

Fig. 2 a) coordinates, dimensions, b) flanges-only connection,  
c) web-only connection, d) web-and-flanges connection
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3 Analysis of stiffeners of I-section members
3.1 Stiffeners connected to flanges only
The wst,i displacement function of a stiffener plate is aimed 
to derive here, by assuming the displacement function in 
a polynomial form. The function should satisfy the differ-
ential equation of the plate, see Eq. (5), plus the boundary 
conditions, which are dependent on the stiffener-to-mem-
ber connection.

The compatibility conditions at z = hst,i/2 are as follows:

w
h
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,

,
' ,��
2

 (26)
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z

yst i
si

,
' ,�  (27)

where: θ'si is the first derivative (with respect to x) of the 
twisting rotation function at position x = xst,i.

The compatibility conditions at z = -hst,i/2 are as follows:
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The boundary condition for the free edges, i.e. at 
y = ± bst,i/2 are as follows:
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In this case the problem can be solved easily. The func-
tion that satisfies the Eq. (5) and the above boundary con-
ditions is as follows:
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By using this function for the stiffener displacement, 
the strain energy can be calculated, by substituting 
Eq.  (31) into Eqs. (19–22). 

For the i-th stiffener the curvatures:
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Let us substitute Eqs. (32–34) into Eq. (22):
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After performing the mathematical operations, the 
strain energy can be expressed as:
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The above formula can be written in short as:
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3.2 Stiffeners connected to web only
Let us consider the case when the stiffener is connected to 
the main member at the web only. Let us analyze the half 
of the stiffener, i.e., y ≥ 0. The compatibility conditions at 
y = 0 is as follows:

wst i, ,= 0  (39)
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The boundary condition at the free edges are as follows. 
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At y = ±bst,i/2:
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It is easy to prove that the following two functions sat-
isfy all the criteria:
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The general form of plate displacement is searched as 
the linear combination of the two functions:
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w c w c wst i i st i i st i, , ,
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1  (45)

where ci is a scalar parameter. It can be found by minimiz-
ing the strain energy of the stiffener plate. From this mini-
mization, the following formula can be derived:
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The same analysis could be repeated for y ≤ 0, which 
would lead to (essentially) the same results. The strain 
energy in the stiffener can finally be expressed by Eq. (37), 
but now the definition of Cst,i is different. Without showing 
the details, the relevant Cst,i is as follows:

C
h
bst

c
b h

c cst i
st i

i
i

st i st i
i i,

, , ,
.� �� � � �� � � �� �

3
2

2

2
1

5
1 6 2 1�  (47)

3.3 Stiffeners connected to web and flanges
Let's analyze half of the plate, y ≥ 0. The compatibility 
conditions are as follows. At z = hst,i/2:
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At z = -hst,i/2:
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At y = 0:

wst i, ,= 0  (52)
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The boundary condition for the free edges is as follows, 
i.e., at bst,i/2:
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The above-described boundary conditions lead to a 
discontinuity. The second derivative of wst,i along the 
z = hst,i/2 line, from Eq. (49) is:
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On the other hand, the second derivative of wst,i along 
the y = 0 line, from Eq. (53):
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In the intersection point of the z = hst,i/2 line and the 
y = 0 line, that is at the flange-to-web junction point, 
the second derivative of wst,i is discontinuous (for any 
θ 'si ≠ 0 value). It is therefore not possible to find an exact, 
strong solution for the described plate problem. However, 
approximate solution is certainly possible. Here a simple 
approach is followed. It is easy to observe that the wst,i 

function used for the flanges-only case satisfies almost all 
the criteria of the web-and-flanges case. The only excep-
tion is the first derivative along the y = 0 line. Let us sub-
stitute Eq. (31) into Eq. (53):
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To approximately satisfy condition Eq. (53) when y = 0, 
but not to (or only to slightly) disturb the nature of Eq. (31) 
elsewhere, an additional function term is introduced into 
the displacement function as follows:
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where fi(y) function (i) should be zero at y = 0, (ii) should 
have a unit first derivative at y = 0, and (iii) should take 
non-zero values only in the vicinity of y = 0, while should 
take zero values otherwise. These conditions are satisfied 
by the following function:
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where bst i,  is a parameter that should somehow be assumed 
or approximated (According to the experiences from the 
numerical examples, bst i,  can be assumed as 0.15bst,i for 
the investigated problems).

Applying the same process as in the previous cases, 
the new internal potential energy of stiffener plates can be 
derived, resulting in a formulae identical to Eq. (37), but 
with a different Cst,i term. In this case the formula for the 
Cst,i is obtained as follows:
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The wst,i (y, z) displacement functions for the three cases 
are illustrated in Fig. 3. It is to observe that the deforma-
tion in the flanges-only and web-and-flanges cases are 
very similar, but certainly not identical, since some local-
ized waviness around the web is visible in the latter case.

4 Clamped-clamped I-column with stiffeners
4.1 Analytical solution
The considered column is clamped-clamped, therefore the 
assumed longitudinal twisting displacement function is:
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This is realistic if the stiffeners are relatively weak and 
regularly positioned (as we will see later). The first deriv-
ative of the function is:
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By substituting Eq. (60) into Eqs. (13), (16) and (18), we 
obtain the energy function in the main member, as follows:
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Let's analyze a stiffener plate at position x = xst,i. 
Substitute x = xst,i into Eq. (62):
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To get the strain energy in the stiffeners, we need to 
substitute Eq. (66) into Eq. (37). For one stiffener:
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From Eq. (67) it is obvious that Π int i
st
,  is dependent on 

the position of the stiffener, i.e., on xst,i. It is also dependent 
on how it is connected to the main member, reflected in the 
Cst,i term. To obtain the total potential energy function, we 
need to summarize the above energy terms, as in Eq. (23):
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The minimum of the potential energy can be found 
where its first derivative is zero:
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From Eq. (69) the critical force can be expressed as 
follows:
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Eq. (70) indicates that there is an additional term in the 
critical force formula due to the presence of the stiffen-
ers. The effect of the stiffeners is reflected in and only in 
this third term. This additional term can be interpreted 
as a weighted sum, in which the 4Dst,i Cst,i/L term is due 
to the deformation (hence: accumulated strain energy) in 
one stiffener, while the sin ,

2 2�
L
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These weights are related to the first derivative of the twist 
function, since 
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Fig. 3 Stiffener deformations
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function, the more effective the stiffener against torsion. 
It is also to highlight that (a) the Saint-Venant torsional 
term is independent of the length, (b) the warping term 
is inversely proportional to L2, and (c) the term due to the 
stiffeners is inversely proportional to L. Thus, the effect of 
stiffeners cannot be reasonably represented by neither a 
modified It, nor a modified Iω.

It is interesting to mention that if the stiffeners are iden-
tical then Eq. (70) can be written as:
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Furthermore, if the stiffeners are equally spaced (i.e., 
in the case of 1 stiffener it is in the middle of the member, 
in the case of 2 stiffeners they are in the third points of the 
member, etc.), then:
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which finally leads to:
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This means that the third term in the critical force 
formula is linearly dependent on the number of (equally 
spaced, identical) stiffeners.

4.2 Example #1: one single stiffener
In this example some elementary problems are solved, in 
order to demonstrate the effect of the various parameters 
of the stiffeners, and also to validate the analytical solu-
tion against finite element solutions. A clamped-clamped 
I-section column member is considered with one single 
stiffener. The critical load to pure torsional buckling is 
calculated by the above presented analytical approach/for-
mulae. Moreover, the critical loads are calculated by shell 
finite element analysis, using Ansys [15]. 

The column length varies, but relatively long members 
are considered in order to keep the critical force/stress at 
a low value, in order to avoid the local buckling from the 
first buckling modes from the FE analysis. The cross-sec-
tion is similar to an HEA300 hot-rolled steel profile. More 
specifically the cross-section depth is h = 300 mm, the 
width is b = 300 mm, the flange thickness is tf = 20.5 mm, 
the web thickness is tw = 11.5 mm. (The depth and width 
values are interpreted for the midline of the cross-section.)  
The material is isotropic linearly elastic steel, with 
E = 210000 MPa and ν = 0.3.

The stiffener width and height is equal to the width and 
depth of the cross-section. The tst stiffener thickness var-
ies between 0.5tw and 5tw. Its material is identical to that of  
the main member. The position of the stiffener varies along 
the length.

Two concentric axial compressive forces are applied 
at the member ends, equal in magnitude but opposite in 
direction. The forces are put to the member as distributed 
loads uniformly distributed over the cross-section.

In the shell FE model SHELL63 elements are used, 
since these elements are based on the Kirchhoff-Love thin 
plate theory (just like the analytical solution). The sizes 
of the shell elements were kept approx. 50 mm, which 
might seem to be a rough discretization, but mesh sensi-
tivity studies proved the appropriateness of this element 
size. (It is to note that the analyzed phenomenon is global 
buckling, without significant localized deformations, that 
is why fine discretization is not necessary.) 

In this example the member ends are clamped. In the 
shell FEM model the clamped supports were realized by 
rigid constraints (i.e., CERIG command in Ansys). All the 
nodes of the end-section are linked to a master node by 
rigid constraints, by defining the constraints so that all 
degrees of freedom of the nodes are linked to the mas-
ter node. Then the master node is supported as usual at 
a clamped support in a beam model (i.e. preventing rota-
tions and transverse translations, but allowing longitudi-
nal translation). 

In Table 1 the critical stresses are given in N/mm2, for 
the three types of stiffener-to-member connection. The 
presented results belong to L = 8 m, stiffener position 
xs = 2000 mm, and tst is either tw and 2tw. Both analytical 
and FEM results are shown. The more important observa-
tions are as follows

The analytical and shell FEM results are not identical, 
showing a few percent difference. This observation is in 
line with previous experiences, since the analytical solu-
tion is based on a beam-model, while the FEM solution is 
on a shell-model. This question is discussed in detail in 
e.g., [16], where the sources of the small differences are 
identified. Nevertheless, as far as the effect of the stiffener 
is concerned, the shell FEM and analytical solutions show 
very similar tendencies. 

The increment caused by the stiffener is greatly depen-
dent on the stiffener-to-member connection. Web-only 
connection induces a very moderate increment, in the 
order of 1 %. Flange-only connection is much more effi-
cient, the increment is in the order of 10 %. If connection  
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is provided both at the web and flanges, the increment is the 
largest, approximately the sum of the increments caused 
by the web-only and flanges-only connections separately.

Obviously, the increment of the critical load due to the 
stiffener is largely influenced by the thickness of the stiff-
ener: the thicker the stiffener, the larger the increment. 
However, it can also be observed that the difference of 
the FEM and analytical critical values is getting larger 
as the stiffener thickness increases. This tendency will 
be observable throughout all the other examples in the 
paper, and can be explained by two factors. One factor 
is that in the analytical solution the effect of the stiffen-
ers on the longitudinal displacement function of the mem-
ber (i.e., the theta twisting function) is not considered, 
whilst such effect obviously exists and naturally included 
in the FEM calculations (as will clearly be demonstrated 
in some examples). The other factor is that in the ana-
lytical solution the cross-sections are rigid and the plane  
element are free from in-plane shear (due to the beam-
model approach), whilst in the shell FEM model such 
conditions are not enforced. For longer members the 
pure-torsional buckled shape from the shell FEM is very 
similar to that assumed in the analytical solution (that is 
why the critical values from FEM and analytical solutions 
are very similar), but not identical. These differences of 
the deformations are increased if stiffeners are added. 
(More discussion of this question requires modal buck-
ling analysis, which will be presented by the authors in 
another paper.) 

On the basis of the observations from Table 1, in the fol-
lowing examples mostly the flanges-only cases will be dis-
cussed, since for this type of connection the stiffener dis-
placement function wst is precisely known and the effect of 
the stiffener is pronounced. 

In Table 2 the critical stresses are given, for various stiff-
ener positions (measured from one end of the member), cal-
culated for L = 8 m and for flanges-only connection. Both 
analytical and FEM results are shown for two tst values. The 
values in the table are the increments (in N/mm2) caused 
by the stiffener, with respect to the critical stresses without 
the stiffener (1064.1 N/mm2 and 1052.4 N/mm2 from the 
analytical and FEM calculations, respectively, see Table 1).

It can be observed that the tendencies of the analyti-
cal and FEM results are the same, in the case of the thin-
ner stiffener even the numerical values are fairly simi-
lar. According to the analytical solution, see Eq. (70), the 
increment of the critical force due to the stiffeners is:
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which is, since now there is one single stiffener, simpli-
fied to:
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The effect of the stiffener position is included only 
in the sinusoidal term, so the increments in any row of 
Table 2 should be proportional to the corresponding (sin)2 
values as follows: 
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Indeed, the increments in Table 2 follow precisely this 
pattern in the case of the analytical calculation, but also prac-
tically precisely in the case of the shell FEM calculation. 

In Table 3 the effect of the member length is demon-
strated. The presented numerical values are calculated 
with tst = tw and xs = 0.25 L. It is to note that the considered 

Table 1 Critical stresses with one stiffener, L = 8 m, xs = 2 m

no stiffener web-only flanges-only web-and-flanges

tst = tw analytical 1064.3 1065.5 1075.2 1076.3

tst = tw FEM 1051.9 1052.5 1060.3 1060.7

tst = 2tw analytical 1064.3 1073.3 1151.2 1160.0

tst = 2tw FEM 1051.9 1055.3 1093.4 1093.8

Table 2 Critical stress increment due to one stiffener, L = 8 m, flanges-only connection

1000 mm 2000 mm 3000 mm 4000 mm

tst = tw analytical 5.4 10.9 5.4 0.0

tst = tw FEM 4.2 8.4 4.2 0.0

tst = 2tw analytical 43.4 86.8 43.4 0.0

tst = 2tw FEM 21.1 42.7 21.2 0.5
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members are fairly long, which was necessary to avoid 
the dominance of local buckling. It is also worth noting 
that the FEM and analytical results are getting closer as 
the member length increases. According to Eq. (74) the 
increment should be inversely proportional to the mem-
ber length. Thus, if the increments are plotted in the func-
tion of the member length, they should follow a hyperbola. 
This is obviously satisfied by the analytical results, but 
also very well approximated by the shell FEM results, as 
shown in Fig. 4, top. If they are plotted in a doubly logarith-
mic scale, they should lay on a straight line with a -45deg 

inclination. This is shown in Fig. 4, bottom. Though there 
is a systematic difference between the FEM and the ana-
lytical results, the tendencies of the FEM results perfectly 
follow the ones predicted by the analytical formula. 

In Table 4 the effect the stiffener thickness is illustrated. 
In Table 4 the stress increments are given for various 

values of tst, for L = 8 m and xs = 2 m. According to the 
analytical solution, the stiffener thickness is included in 
(and only in) the D plate stiffness, therefore the increment 
is proportional to tst

3. This is precisely satisfied by the ana-
lytical results, but not satisfied by the shell FEM results, 
even though the increments are significantly increasing 
with the increase of the stiffener thickness. 

As already mentioned above, the difference between 
the shell FEM and analytical results is due to the small dif-
ferences between the shell-models and beam-models, and 
also due to the effect of the stiffeners on the longitudinal 
displacement distribution. This latter one can clearly be 
observed by the buckling shapes, see Fig. 5. While in the 
case of a thin stiffener the longitudinal displacement (i.e., 
twist) distribution closely follows Eq. (61), if the stiffener 
is thick, the longitudinal displacement distribution of the 
buckled shape is distinctly different: though the deformed 
shape of the member is globally similar, it also has local-
ized deformations around the thick stiffener, most visible 
in the flanges, see the right part of Fig. 5.

Table 3 Critical stresses with one stiffener, tst = tw, xs = 0.25 L, flanges-only connection

6 m 8 m 10 m 12 m 16 m

no stiffener analytical 1594.2 1064.3 819.1 685.9 553.4

no stiffener FEM 1561.3 1052.4 812.5 681.5 551.0

with stiffener analytical 1608.7 1075.2 827.8 693.1 558.8

with stiffener FEM 1573.0 1061.0 819.3 687.2 555.4
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Fig. 4 Critical stress increments due to one stiffener, tst = tw, xs = 0.25 L, 
flanges-only connection

Table 4 Critical stress increments due to one stiffener, L = 8 m, xs = 2 m, flanges-only connection

tst/tw = 0.5 tst/tw = 1 tst/tw = 1.5 tst/tw = 2 tst/tw = 5

analytical 1.357 10.85 36.63 86.82 1357

FEM 0.958 8.447 23.06 41.53 244.3

Fig. 5 Buckling shapes, L = 8 m, xs = 2 m, flanges-only connection 
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4.3 Example #2: multiple stiffeners
In this Example #2 the problem is essentially identical to 
that of Example #1, but there are multiple stiffeners. The 
member length is L = 8 m. The stiffeners are equally spaced.

The plots in Fig. 6 show that the critical load (or load 
increment) is linearly changing with the number of stiff-
eners, as predicted by the analytical formula, see Eq. (73), 
at least if there are more than one stiffener. The linearly 
increasing tendency is clearly observable from the shell 
FEM results, too. (It is to note that in certain cases it is 
not possible to find a pure torsional mode in the FEM 
solution, due to the large number of buckling modes with 
lower critical load values. This is the situation, for exam-
ple, with the 8-m-long column having more than 10 stiff-
eners with tst = 5 tw, see Fig. 6.) The plots also demonstrate 
what has already been observed: the thicker the stiffener, 
the larger the differences between the shell FEM and ana-
lytical results. In Fig. 7 buckled shapes are shown from 
shell FEM: it can be observed that thick stiffeners generate 
waviness in the flanges.   

5 Pinned-pinned I-column with end-plates
5.1 Analytical solution
In Section 5 an I-section column member is studied again, 
similar to the one in Section 4, but with two differences: 
the member is pinned-pinned, and end-plates are assumed 
at the member ends. Thus, there are two stiffeners, at and. 
The primary goal here is to explicitly demonstrate the 
effect of the stiffeners on the longitudinal displacement 
function. It is very logical to assume that (i) if the end-
plates are very thin, then the behavior of the column will 
approximate a classic Euler column, and (ii) if the end-
plates are very thick, then the behavior of the member will 
be similar to that of a clamped-clamped column. In the 
first case the displacement function (for the first buckling 
mode with the lowest critical force) would be a half sine-
wave, while on the second case the displacement function 
would be a cosine function, just as in Eq. (61). Accordingly, 
the twisting displacement function is assumed as a linear 
combination of these two functions, as follows:
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To obtain the potential energy in the main member, we 
need to substitute Eq. (77) into Eqs. (13), (16) and (18). The 
external potential is as follows:
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The strain energy due to Saint-Venant strains and stresses:
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Fig. 6 Critical stresses in the function of the number of stiffeners, L = 8 m

Fig. 7 Buckling shapes, L = 8m, 6 stiffeners
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The strain energy due to warping strains and stresses:
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To obtain the strain energy accumulated in the end-
plates, we can apply Eq. (37).
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Cst,1 and Cst,2 are dependent on the plate parameters and 
on the stiffener-to-member connection, as we have seen 
in Section 4. Dst,1 and Dst,2 are dependent on the material 
and the plate thickness. For the actual case we can assume 
identical end-plates. Moreover, for the actual case θ 'si, 
i.e. the rate of twisting rotation at the stiffener positions 
x = xst,i, can be calculated as follows:
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For the end-plates this reads as:
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Thus, the strain energy in the two end-plates are identi-
cal. E.g., for the first end-plate:
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The total potential energy function is the sum of the 
above energy terms, expressed by two displacement 
parameters θ0,1 and θ0,2.
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In equilibrium the total potential is stationary, therefore:
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which leads to two equations as follows:
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or:
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In matrix form:
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with:
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where: F1 is the critical force that belongs to a dis-
placement function θ1 = θ0,1sin(πx/L), and F2 is the crit-
ical force that belongs to a displacement function  
θ2 = θ0,21/2[1 – cos(2πx/L)]. In this specific example F12 is 
equal to the critical force of a pinned-pinned column with-
out stiffeners. 

Eq. (92) can be interpreted as an eigen-value problem as:

Aθ – Fθ = 0, (94)

with

 (95)

If A is positive definite, then the above problem has two 
real and positive eigen-values, i.e., two real and positive F 
values. Indeed, it can be proved that A is positive definite, 
hence we can always expect two positive critical forces.  
To actually have the solutions, we can interpret Eq. (92) as 
a homogeneous linear equation system, the non-trivial solu-
tion of which exists if the coefficient matrix is singular. Thus:
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which leads to a quadratic equation in F, as follows:
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From the above quadratic equation the critical force can 
be expressed in closed form. There are two positive solu-
tions, from practical point of view the smaller value is the 
more important one.

Lower and upper bounds for the critical force can be 
found. F12 is a critical force to a member (without end-
plates) when the end cross-section can freely warp. 
Moreover, F2 is a critical force to a member when the end 
cross-sections do not warp at all. If the member ends are 
pinned but end-plates are present, the end-section warping 
is partially (i.e., elastically) restrained, therefore the (low-
est) critical value must be between F12 and F2. Moreover, 
the second term of Eq. (97) is positive, thus, its first term 
must be positive, too. This can be satisfied if either both 
(F – F1) and (F – F2) are positive or both are negative. 
Since F must be smaller than F2, both (F – F1) and (F – F2) 
must be negative. This finally means that

F F F F
12 1 2
� � � �min , .  (98)

Thus, lower and upper bounds are found. By looking 
at the formulae for F1 and F2, it is expected that F1 is the 
upper bound in the case of thin end-plates, while F2 is the 
upper bound for thicker end-plates.  

5.2 Example #3: pinned-pinned member, two end-plates
In this Example #3 the problem is similar to that of 
Example #1: the cross-section and material are the same, 
but now the end supports are pinned and there are end-
plates at both member ends (and no further stiffeners). 
In Fig. 8 the critical stresses are plotted (for two member 
lengths) in the function of the end-plate thickness. 

If the end-plate is thin, the FEM and the analytical solu-
tions are practically identical, which solutions are prac-
tically identical to the critical stress of a pinned-pinned 

member without end-plates. Again, if the end-plate is suf-
ficiently thick, the FEM and the analytical solutions are 
nearly identical, which solutions are practically identical 
to the critical stress of a clamped-clamped member (with 
or without end-plates). The plot suggests that the necessary 
thickness to have a solution close to the clamped-clamped 
case is dependent on the column length: the shorter the 
column, the thicker end-plate is necessary. In any case, 
a fairly thick end-plate is necessary: even if the column 
is long (e.g., 8 m), tst/tw should be around 10, i.e., the nec-
essary end-plate thickness is more than 100 mm. (It is to 
note that the precision of the applied thin plate theory is 
questionable for such thick plates.) Characteristic buckled 
shapes are shown in Fig. 9 for two thickness values, prov-
ing that the buckled shape transforms from the pinned-
pinned to clamped-clamped as the thickness increases.

 From Fig. 8 it is also clear that in the case of thick and 
moderately thick end-plates the difference between the 
shell FEM and the analytical prediction of the critical load 
is significant. As already stated above, the difference is 
caused by the small differences between the shell-model-
based and beam-model-based deformations, i.e., in-plane 
shear strains, plate-like deformations of the web and flanges 
of the member, etc., which are allowed in the shell model, 
but excluded from the beam model. Also, whilst in the ana-
lytical solution the longitudinal distribution of the twisting 
rotations is strictly prescribed by Eq (77), the shell FEM 
model is allowed to deviate from this strict prescription.

In Section 5.1 it has been shown that the critical load 
is bounded. This is illustrated in Fig. 10, where the rel-
ative critical load increments are plotted from the ana-
lytical solution, together with upper bounds F1 and F2, 
where the relative values are related to F12. For example, 
the relative increment of F1 is interpreted as (F1–F12)/ F12, 
and so on. (It is to note that in this plot the lower bound 
is the zero line, since the increment of F12 with respect 
to F12 is obviously zero.) Fig. 10 also demonstrates that 
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the critical-load-increasing effect of the end-plates with 
a certain thickness is dependent on the member length. 
It is also strongly dependent on the stiffener-to-member 
connection. It is worth noting that the stiffener-to-mem-
ber connection influences the critical load value through 
F1 only, since the values of F12 and F2 are independent 
from the stiffener-to-member connection. (It should also 
be mentioned that in the case of web-only connection the 
in-plane shear deformation in the flanges, also known as 
shear lag effect, has pronounced role in the behavior, but 
the analysis of this is out of the scope of the current paper.)

In Fig. 4 it was demonstrated that the critical load incre-
ment due to a single stiffener is linearly proportional to 
the inverse of the member length, as predicted by the ana-
lytical formula, see Eq. (70). In the case of pinned-pinned 
column with two end-plates, the analytical formula is 
complicated, hence it is not obvious how the load incre-
ment is related to the member length. As illustrated in 
Fig. 11, the increment is approx. inversely proportional 
to the length, but not linearly: in a log-log plot the lines 
are not perfectly linear, and their tangent is dependent on 
the end-plate thickness. This tangent increases from 1 to 2 
as the end-plate thickness increases from zero to infinity.  

Fig. 10 Relative critical load increments, pinned member with two 
end-plates

Fig. 11 Relative critical load increments, pinned member with two 
end-plates



Hoang and Ádány
Period. Polytech. Civ. Eng., 64(2), pp. 370–386, 2020|385

(For the actual example, in the case of the flanges-only 
connection the tangent values are approximately 1.00, 
1.02, 1.05, 1.59, 1.93 and 1.99 for tst/tw values 0.5, 1, 2, 5, 10 
and 20, respectively.) 

This changing tangent (i.e., changing exponent of 1/L) 
is associated with the two major effects of the end-plates 
(or stiffeners, in general). If the end-plates are very thin, 
then the longitudinal distribution of the twisting rotations is 
approximately a half-sine wave, that is the direct effect of the 
end-plates is dominant, and the direct effect is proportional 
to 1/L. On the other hand, if the end-plates are very thick, 
then the longitudinal distribution of the twisting rotations is 
approximately identical to that of a clamped-clamped mem-
ber, (when the end-plates are hardly deformed, thus their 
direct effect is negligible,) and in this case the (indirect) 
effect of the end-plates is materialized in the change of the 
longitudinal distribution of the twisting rotations; that is 
why the effect of the end-plates is proportional to 1/L2. In 
between the "very thin" and "very thick" cases the direct 
and indirect effects are combined, that is why the effect of 
the end-plates is proportional to 1/Lβ, where β is between 
1 and 2. (It is also worth noting that that the direct effect 
appears in F1, the indirect effect appears in F2.)

6 Conclusions
In this paper analytical solutions are derived to calculate 
the critical load of thin-walled column members to pure 
torsional buckling, by taking the effect of transverse plate 
elements (termed, for the sake of simplicity, stiffeners) 
into consideration. The energy method is applied for the 
derivations. The applied methodology can theoretically 
be applied to nearly any member and stiffener geometry, 
however, as proved, for simpler cases the critical force for-
mula can be expressed in closed form.

The analytical solutions demonstrate the two major 
effects of the stiffeners. A direct effect is due to the defor-
mations of the stiffeners. It can be understood – by adopt-
ing the logic of energy method – as follows: the deformed 
stiffeners increase the strain energy of the structure with-
out changing its external energy, therefore the critical force 
is increased. The other, indirect effect is that the introduc-
tion of stiffeners can (and typically do) modify the longitu-
dinal distribution of the twisting rotations of the member. 

The direct effect appears in the critical force formula as 
an additional term, depending on 4 factors.

• It is linearly proportional to the inverse of the length 
of the member. Since the Saint-Venant torsional term 
is independent of the length, while the warping term 

is proportional to 1/L2, it is misleading to represent 
the effect of the a modified It, or a modified Iω, or an 
equivalent buckling length.

• It is proportional to the plate stiffness (of the stiff-
ener), that is highly sensitive to the thickness of the 
stiffener.

• It is dependent on the geometry of the stiffener, as 
well as on the connection between the stiffener and 
the main member. In the case of I-section members 
and simple rectangular stiffeners, it is found that the 
key factor is whether the stiffener is connected to the 
flanges, while the web-to-stiffener connection has 
only small effect.

• The increase of the critical force due to a stiffener is 
also influenced by the position of the stiffener. More 
precisely, the effectiveness of the stiffener is depen-
dent on the value of first derivative of the twisting 
function at the location of the stiffener.

The indirect effect of the stiffeners was demonstrated 
by the analytical solution of a pinned-pinned column with 
end-plates. The analytical solution is in accordance with 
earlier findings and engineering expectations. The end-
plates work as elastic warping restraints, and the thicker 
the end-plate, the stronger the warping restraint. The 
increase of the critical force due to the indirect effect of 
the end-plates is proportional to 1/L2. 

When both the direct and indirect effects are present, (as 
in the case of a pinned-pinned member with end-plates,) 
the final increase due to the stiffeners is determined by 
the combination of the two effects. The combination is 
dependent on the parameters of the problem (e.g., member 
length, stiffener thickness, etc.). The analytical solution 
proves that the critical force is bounded: one upper bound 
is associated with the direct effect, the other upper bound 
is associated with the indirect effect.  

In the paper several numerical examples were presented: 
the analytical results were compared to results from shell 
finite element linear buckling analysis. The comparison 
justifies the analytical solutions, since the tendencies form 
the two methods are practically identical (at least within 
the range of validity of the analytical solutions). 

Some difference between the finite element and the ana-
lytical results were found. In many cases the differences 
are small, caused by the differences between the underly-
ing assumptions of the beam models (used in the analyti-
cal solutions) and the shell models (used in the finite ele-
ment calculations). In some cases the differences are large. 
Large differences are experienced when the stiffeners 
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significantly modify the longitudinal distribution of the 
twisting rotations. Relatively large differences may also 
be caused by the seemingly small differences between the 
shell-model-based and beam-model-based deformations, 
i.e., in-plane shear strains, plate-like deformations of the 
web and flanges of the member, etc., which are allowed 
in the shell model, but excluded from the beam model. 
A more formal investigation of these latter differences 
requires modal buckling analysis. Such modal buckling 
analysis of thin-walled members with transverse stiffen-
ers will be presented by the authors in a subsequent paper.

In this paper pure torsional buckling was discussed 
only, which buckling type has limited practical relevance. 
However, the applied methodology and also some of the 
major conclusions can be extended to other types of buck-
ling with torsion, including lateral-torsional buckling, 
which is the critical behavior type for many beams.
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