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Abstract

Usually, in a fully grouted rock bolt pullout test the load-displacement curve of the rock bolt head is recorded. This paper presents 

an analytical method to use this curve for determining the bond (bolt-grout and grout-rock interface) shear strength parameters. For 

this purpose, the fully grouted rock bolt interaction with grout and surrounding rock in the pullout test is investigated and the load-

displacement curve of the bolt head (beginning of the bonded section) is obtained analytically. For modeling the bolt-grout interface 

behavior a distribution of the shear stress along the fully grouted rock bolt by consideration of bolt shank failure is used. In this regard, 

different stages including complete bonding, partial decoupling, decoupling with the residual shear strength and complete decoupling 

are considered. With increasing the applied load, two possible cases involving the rock bolt complete pullout and bolt shank yielding 

are taken into account. Based on the presented analytical method, the obtained bolt head load-displacement curve can be compared 

with the one recorded in the pullout test. With this, the relevance of selected shear strength parameters compared to real parameters 

can be assessed. A flowchart for determining the bolt bond shear strength parameters is presented using the trial and error method 

(coded in Matlab). The proposed solution is used to determine two experimental pullout shear strength parameters. The results show 

good agreement between predicted and calculated load-displacement curves.
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1 Introduction
Fully grouted rock bolts are frequently used for rock rein-
forcement and stabilization of underground and surface 
excavations. Grouted rock bolts are usually inserted in a 
drilled hole and interact with the surrounding medium via 
cement based or resin grout. To evaluate the load bearing 
capacity of bonded (grouted or anchored) bolts or to control 
the installation quality of rock bolts (acceptable anchor-
age), pullout tests are performed based on ISRM suggested 
method or ASTM standard [1, 2]. The output of the pullout 
test is typically a load-displacement curve of the bolt head. 
Understanding bolt-grout-rock interaction in pullout tests 
helps in designing the rock bolts for reinforcement. 

Determining the pullout capacity of rock bolt is 
immensely important in design of anchorages in civil and 
mining engineering such as pre-tensioned rock bolts in 
caverns, transmission tower foundation, and suspension of 
rock blocks [3]. The capacity depends on the shear strength 
characteristics of the bolt-grout and the grout-rock contact. 

So, determining the bond shear strength parameters is very 
important in design of underground and surface structures. 

Many researchers have investigated the bolt-grout-rock 
interaction. Farmer [4] was one of the first researchers 
who presented a solution for determining the distribution 
of axial stress and displacement in grouted rock bolts and 
the shear stress in the contact between  bolt and grout. 
He proposed an exponential relationship for decreasing 
stress along the rock bolt in complete bonding and elas-
tic condition. Li and Stillborg [5] considered decoupling 
in the bolt-grout contact based on pullout experimental 
results. They presented an analytical model for the dis-
tribution of axial stress in the bolt and shear stress at the 
bolt-grout contact in a pullout test, in uniform displace-
ment of rock mass, and in a joint opening. They have not 
considered bolt shank failure. He et al. [6] used a simi-
lar assumption by including bolt shank failure. They con-
sidered long and short rock bolt pullout test, but did not 
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give a solution for the bolt head load-displacement curve. 
They presented a method for increasing load as a result of 
joint opening. Benmokrane et al. [7] presented a tri-linear 
bond slip model based on experimental pullout tests per-
formed on bolts and cables of short length. Ren et al. [8], 
Martin et al. [9] and Shuqi Ma et al. [10] used the tri-lin-
ear bond-slip model and presented a solution for deter-
mining load-displacement curve of the bolt head. They 
did not take into account the bolt shank failure, but they 
introduced small residual shear strength. Ma et al. [11] 
presented an analytical method for fully grouted rock 
bolt using a tri-linear bond-slip relationship considering 
post-yielding characteristics of the rock bolt material. 
They did not evaluate bond shear strength based on bolt 
head load-displacement curve.

This paper develops the model proposed by Li and 
Stillborg [5] by considering the bolt shank failure to deter-
mine the bolt head load-displacement curve analytically. 
Then a method is proposed to define the bond shear strength 
parameters by comparing the predicted load-displacement 
curve with the one obtained in a real pullout test. It is 
important to note that the proposed method is applicable 
even if the bolt is not pulled out completely (either the bolt 
shank yields or the test is stopped before bolt total pullout).

2 Model assumptions
A sketch of a relatively long rock bolt pullout test is illus-
trated in Fig. 1. In the fully grouted rock bolt, the bond 
length (Lb) is equal to the bolt length inside the hole and 
the free length (Lf ) is the distance between the loading 
point and the hole head. Lf is usually the loading jack 
length. In a partially grouted rock bolt, the free length (Lf ) 

includes the de-bonded section (Lf2) inside the hole (usu-
ally made by a smooth sheet) plus the free length outside 
the hole (Lf1). The remaining bolt length inside the hole is 
the bond length (Lb). 

The rock bolt (assuming a ribbed steel bar with cross 
section Ab, diameter db, and elastic modulus Eb) inter-
acts with the surrounding rock in the bonded section via 
a grout (a cement based mortar or resin). The grout pro-
vides the coupling at the interfaces (bolt-grout contact and 
grout-rock contact) [5]. 

Based on Windsor classification [12], the grouted rock 
bolt in the bonded section is categorized as continuously 
mechanically coupled (CMC). In the free length section, 
the bolt acts as a steel bar under tension (independent from 
the surrounding rock). 

By applying a load on the rock bolt head, displacement 
occurs in the bar, in the grout, and in the rock. During a 
pullout test, usually, the elongation of the rock bolt in the 
loading point versus the applied load is recorded, which 
results in a load-displacement curve. The stress-strain 
equation of the rock bolt free length is just its elongation 
as a result of the applied load. It can be added to the elon-
gation of the rock bolt bonded length; thus, the model in 
this paper concentrates on determining analytically the 
load-displacement curve in the bonded length (start of the 
grouted/bonded section). Based on this, the bond shear 
strength characteristics are determined.  

Increasing the applied load can cause a failure either in 
the bolt shank, in the bolt-grout interface, inside the grout, 
in the grout-rock interface, or inside the rock, depending 
on the weakest point [6]. In this paper failure of grout and 
surrounding rock is not considered. It is assumed that they 
remain elastic. Failure is considered to occur either on the 
interface or in the bolt shank (steel bar).

For the grouted section of the rock bolt, the model by Li 
and Stillborg [5] as well as He et al. [6] for the shear stress 
distribution along the interface is considered, as presented 
in Fig. 2 [5, 6]. The so-called decoupling front initiates and 
propagates along the bolt by increasing the applied load. 
In this paper, it is postulated that as long as the rock bolt 
shank is elastic, a residual shear strength (Sr) exists in the 
interface (shear stress will not be zero). When the rock bolt 
shank reaches its yield limit, complete decoupling hap-
pens at a specific distance from the loading point (x0) and 
the shear stress at the bolt interface will be zero (Fig. 2). 

The residual shear strength exists up to a point x1; then, 
it increases gradually to peak shear strength (Sp) within a 
distance from x1 to x2 (∆ = x2 – x1). In the decoupling front 

Fig. 1 Sketch of a rock bolt pullout test, a) fully grouted rock bolt; 
b) partially grouted rock bolt, (Lf = free length, Lb = bond length)
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(point x2) shear stress at the interface is equal to the peak 
shear strength. Beyond this point (x2), deformation in the 
interface is compatible and the shear stress (τrb,x) attenu-
ates toward the far end of the rock bolt [3–6].

To reach this shear stress distribution along the bolt, the 
behavior of interface (at each infinitesimal element) during 
shearing is assumed to be elastic-softening-residual type.

A simplified model is assumed for the rock bolt shank 
(steel bar) obeying the elasto-plastic constitutive model of 
steel material [6], as shown in Fig. 3. 

Under increasing tensile stress, the bar strain increases 
elastically with a constant rate of Eb (elasticity modulus) 
until the elastic strain and stress reach the yielding limit 
(εy, σy). The yielding stress remains constant until the strain 
reaches the εh1 limit. Then, growing stress causes more 
strain with the rate of Et (hardening stage) to reach the ulti-
mate stress and strain level (εh2, σu). In this point, the stain 
increases constantly at the same stress level to reach the εu 
limit (in which necking and failure of bar occurs). 

It should be noted that dilation behavior at the bolt-grout 
and the grout-rock interface and the resulted normal stress, 
which is a function of surrounding medium stiffness, is not 

considered directly in this study. Also, the characteristics of 
bolt shank ribs that have direct effect on bond shear strength 
are not considered directly in this study. These phenomena 
are taken into account indirectly by evaluating peak and 
residual shear strength of contact and their distribution 
along the bolt. It is also assumed that the medium is stress 
free (the only stress in medium is due to pullout tests). 

3 Rock bolt head Load-displacement relationships in 
complete bonding 
At low stress (load), the interfaces and the bolt bar remain 
elastic and the displacements are compatible. Unlike 
Aydan [3], Farmer [4] considered the surrounding rock as 
a deformable media. The free force diagram for the bolt-
grout-rock system as an idealized stress and deformation 
state is shown in Fig. 4 [3, 4]. Note that the grouted bolt 
length in the bonded section (Lb) is relatively large and 
simply shown by L.

The definitions of the parameters in Fig. 4 are as fol-
lows: rb is the bolt radius, rh is the hole radius, ro is the 
radius of a circle in the rock outside which the influence 
of the bolt disappears, σ0 is the axial stress on the bolt at 
the bolt head, dx is an infinitesimal element length, σbx is 
the stress in the bolt at distance x from the bolt head, dσbx 
is the variation of the bolt stress within the length dx, u0 is 
the displacement or total elongation at the bolt head, ubx is 
the bolt displacement at distance x, dubx is the amount of 
displacement within dx, τrb,x is the shear stress at the bolt-
grout interface (in radius rb) at distance x from the bolt 
head, τrh,x is the shear stress at the grout-rock interface (in 
radius rh) at distance x from the bolt head. 

Considering force equilibrium in axial direction on a 
small section of the bolt, following expression is derived [4]:

d
dx r
bx

b
rb x

σ
τ= −
2

, . (1)

Fig. 2 Assumed interface shear stress distribution along the rock bolt 
bond length [5, 6]

Fig. 3 Constitutive simplified model of bolt shank (steel bar) [6] Fig. 4 Idealized stress and deformation field along the bolt in complete 
bonding and elastic condition (no de-bonding) [3]
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To solve Eq. (1), all parameters should be provided 
based on a single variable. Considering stress-strain as 
well as strain-displacement relationships of an elastic bar, 
Eq. (1) can be written based on displacement as:

d u
dx r E

bx

b b
rb x

2

2

2
= τ

, . (2)

Considering a linear relationship between the shear 
stress at the grout-bolt interface and the shear stress at a 
point perpendicular to the bolt axis (τ τr x b rb xr r

, ,
( / )= ), the 

shear strength, τrb,x, can be as a function of the bolt dis-
placement. Thus, a homogeneous linear differential equa-
tion is derived as follows [3, 4, 13]:

d u
dx

ubx
bx

2

2

2
0− =′α , (3)

where α' 2 is defined based on different conditions as:

′

′

′

=
( )

=

=

α

α

α

2

2

2

2

2

2

2

2

G
E r r r

G
E r

r
r

G G

E r G r
r

g

b b h b

g

b b

h

b

R g

b b R
h

b

-

ln

ln








 +







































G r
rg
h

ln

.

0

 (4)

The first relation of Eq. (4) is for a rigid rock mass with 
a thin grout annulus, the second one is related to a rigid 
rock mass with a thick grout annulus, and the third one 
is for a deformable rock mass with a thick grout annulus 
[3, 4]. The general solution of Eq. (3) is:

u c e c ebx
x x= +′ ′−

1 2

α α . (5)

Where c1 and c2 are constants that are defined based on 
boundary condition (σ σ σbx bxx x L= = = =

0
0 0at & at ). 

Considering that in most long rock bolts L is significantly 
larger than 1

′α , the distribution of displacement and stress 
along a rock bolt and shear stress on the bolt-grout inter-
face for a general case (deformable rock and thick annu-
lus) are [4]: 
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Assuming α α2 2 2= ′ rb , Eq. (6) is given as:
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Where α2 (for deformable rock and thick annulus) is 
given as:
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In which d r d r d rb b h h o o= = =2 2 2, , , and GR is the 
shear modulus of the rock, and Gg is the shear modulus of 
the grout. Other parameters remain as defined previously. 

It is important to note that the relations presented in 
Eq. (7) are independent of the bolt length. The displacement 
at the bolt head (x = 0) is given as u d

Eb
b

b
0

0

2
=

σ
α ,which is not 

related to the bolt length. Generally, to determine the bolt 
head displacement, an integration should be taken along the 
bolt length to get the total elongation of the bolt, as follows:
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Considering the fact that L is significantly larger than 
db, the total elongation can be written as:

δ
σ
α α

α
δ= = ⇒ =

d
E
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A E

P A E
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b b

b b

b

0 0

0
2 2

2
. (10)

P0 is the applied load on the bolt head and Ab is the bolt 
(bar) cross section area. 

Equation (10) gives the load-displacement relation (a 
linear relationship) for the bolt head under elastic condi-
tion without de-bonding.

4 Load-displacement curve of bolt head considering 
de-bonding and bolt failure
Based on the presented model for assessing the interface 
shear stress distribution and the constitutive model of 
the bolt presented in Fig. (2) and Fig. (3) respectively, the 
evolution of the de-bonding process (moving decoupling 
front) and the bolt failure with increasing load on bolt head 
is classified in 4 different stages which are illustrated in 
Fig. (5) [5, 6].

It should be noted that He et al. [6] developed Li and 
Stillborg [5] proposed model by considering the bolt 
shank failure. They determined axial stress distribution 
along the short and long bolt. However, they did not pres-
ent load-displacement curve of bolt head in pullout test.  
In this paper the bolt axial stresses are presented in a con-
venient way based on the assumed shear stress distribution 
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in each stage of de-bonding. Then the equations are devel-
oped for determining the elongation of bolt head in each 
stage of de-bonding based on the applied load using a dif-
ferent integration method over the bolt length.

Stage I: P Pcr
I

0 £
When the applied load on the bolt head (P0) is small, com-

plete bonding and compatible deformation condition exist  
in the bonded section of the rock bolt (Fig. 5.a). This state 
was explained in the previous section. The shear stress at  
the interface (τr

I
b,x), the bolt axial stress (σb

I
x), and the displa- 

cement (elongation) at the bolt head (δI ) can be calculated  
using Eqs. (7)–(10). Note that superscript I refers to Stage I.

The applied load becomes maximal when the shear 
stress at the beginning of the grouted rock bolt (bolt head) 
reaches to the maximum shear strength (τ rb

I
PS,0

= ). In this 
situation, the critical (maximum allowed) pullout load for 
Stage I (Pc

I
r) is: 

σ
α α0

2 2
= ⇒ =
S P S AP

cr
I P

b . (11)

When the applied load reaches its critical value, the 
maximum elongation at the bolt head is:

δ δ
α αcr

I
Max
I b cr

I

b b

P b

b

d P
A

S d
= = =

2
2

E E
. (12)

Theoretically, by defining the maximum displacement 
in the linear part of the load-displacement curve based on 
pullout test result, the  can be determined using Eq. (12). 
But, practically, defining the  from pullout test is not easy 
since the displacement is usually very small.

Stage II: P P Pcr
I

cr
II< ≤0

When the applied load exceeds Pc
I
r , partial decoupling ini-

tiates from the loading point and propagates towards the far 
end of the bolt by increasing the load (Fig. 5.b). In this case, 
shear stress distribution is divided into two sections along the 
bolt. In Section 1 ( x x L∈[ ]2

, ), deformations are compatible  
under full bonding conditions; and, as explained previously, 
the shear stress at the bolt-grout interface (τ rb x

II
,

,1 ) decreases 
exponentially. In Section 2 ( x x∈[ ]0

2
, ), the shear stress at 

the interface (τ rb x
II
,

,2 ) decreases linearly with the rate of S SP r−
∆

. 
Note that superscript II,1 and II,2 refers to sections 1 and 2  
of Stage II. Thus, shear and axial stresses are derived as:
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(a)

(b)

(c)

(d)
Fig. 5 Considered stages for distribution of shear stresses along the 

bolt, a) Stage I: elastic bar and complete bonding, b) Stage II: elastic bar 
and partial de-bonding, c) Stage III: elastic bar and de-bonding with 
residual shear strength, d) Stage IV: elasto-plastic bar with complete 

de-bonding [5, 6]
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Where db is the diameter of bolt, ω is the ratio of Sr to 
Sp, and ∆ is the distance in which Sp decreases to Sr. Other 
parameters are the same as defined above.

The applied load reach its maximum - the critical pull-
out load for Stage II ( Pcr

II ) - when x2 in Stage II ( xII2 ) 
becomes equal to ∆. As a result, the critical load is:

P
d

S Acr
II

b
P b= + +( )









2 2
1

α
ω

∆
. (15)

To define the location of xII2  before reaching to ∆, in 
Eq. (14) the condition σ σbx

II
bx
II

2 2

1 2, ,=  should be satisfied when 
x = x2. Thus, location of xII2  can be defined by solving the 
derived quadratic equation as follows:
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To determine the elongation of the grouted bolt head the 
relation δ σ= ∫

1

0E
dx

b
bx

L  with Eq. (14) is used. The total elon-
gation of the bolt head in Stage II is the sum of the elonga-
tions in Sections 1 and 2 (δII = δII,1 + δII,2). The maximum 
elongation of Section 1 in Stage II equals to δ δ δcr

I II
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The elongation (Eq. 17) reaches its maximum when  
P Pcr

II
0 = and xII2 = ∆  so:
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Stage III: P P Pcr
II

cr
III< ≤0

Once the applied load exceeds Pcr
II , Stage III begins 

and the shear stress distribution along the bolt is divided 
into 3 sections (Fig. 5.c). Section 1 (x  [x2, L]) is related 
to the full bonding condition. Partial de-bonding occurs in 
Section 2 (x  [x1, x2]) and shear stress (τ rb x

III
,

,2 ) decreases 
linearly from Sp to Sr within distance ∆. In Section 3 
(x    [0,  x1]), de-bonding appears with residual shear 
strength. The shear and axial stresses along the bolt in 
Stage III are defined as:
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Axial stresses are equal (σ σbx

III
bx
III

2 2

1 2, ,= ) at x2 (intersection 
of zone 1 and 2); so, the position of x2 in Stage III ( xIII2 ) is:
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To determine the displacement (elongation) of the bolt 
head as a result of the applied load in Stage III, integra-
tion δ σ= ∫

1

0E
dx

b
bx

L  should be taken along the sections 1, 2, 
and 3. The total displacement of the bolt head is the sum 

of the elongation in each section (δIII = δIII,1 + δIII,2): (22)
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The total displacement of the Stage III can also be 
defined using equation δ σ δIII
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Note that results of Eqs. (22) and (23) are the same. 
Increasing the pull load results in two possible cases:

Case 1: By increasing the load to a maximum, the 
rock bolt is pulled out completely without bar failure. 
This occurs usually, in relatively short bolts or in low Sp. 
Equilibrium condition between the applied load and the 
interface shear force ( P d dxb rb x

L

0
0

= ∫π τ
, ) gives:
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Derivation of Eq. (24) relative to x2 solves the equa-
tion x L db

2
2

1

2
= +

+





α

ω
ln . Thus, the maximum applied load 

in Stage III for complete pull out of rock bolt without bolt 
shank failure is as follows: (25)
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Li and Stillborg [5] measured P Max
III

0  in a pull out test. 
Then, they determined Sp by knowing or assuming all 
other parameters. It should be noted that they used an equa-
tion which differs from Eq. (25) due to a minor calculation 
error. This item is explained in detail in the appendix A. 

Li and Stillborg [5] used only the maximum load needed 
for complete pullout (without bolt shank failure) for deter-
mining the bond shear strength. Other parameters are 
either known or should be assumed. The method is devel-
oped in this paper in which the bolt head load-displacement 
is used for determining bond shear strength.

Case 2: If the bolt length is large (long rock bolt) or Sp 
is high, the rock bolt cannot be pulled out. The bolt shank 
will touch yield limit and Stage IV initiates. In this case 
Eq. (25) cannot be used to determine Sp.

Therefore, as long as the applied load is lower than 
the yield load of the bar, Stage III is applicable, which 
means that the critical load ( Pcr

III ) is equal to bar yield load 
(Py  = Abσy).

P Pcr
III = y  (26)

Stage IV: P P
y
£

0

As soon as the applied pull load exceeds the steel yield 
load, Stage IV begins. Within some distance from the bolt 
head (x0) the bolt shank yields and obeys the elasto-plastic 
constitutive model of steel material as shown in Fig (3). 
Moreover, the shear strength at the interface becomes zero.

In Stage IV, the shear stress distribution along the bolt is 
divided into 4 sections (Fig. 5(d)). Section 1 (x  [x2, L]) is 
related to the full bonding condition, Section 2 (x  [x2, x1]) 
is assigned to partial de-bonding, in Section 3 (x  [x0, x1]) 
de-bonding happens with residual shear strength, and in 
Section 4 (x  [0, x0]) the steel bar yields and the shear 
strength is zero. The shear and axial stresses along the bolt 
in Stage IV are given as:
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 (28)

To define the total displacement (elongation) of the bolt 
head in Stage IV, the displacement of Section 4 (δb y

IV
,

,4 ), in 
which the bolt shank is yielded or passed the yield limit 
should be added to the elongation of the Sections 1 to 3 
(δ δ δ δIV IV IV IV, , , , , ,1 2 3 1 2 3= + + ). It is important to note that 
the location of  is considered to be constant. 

Depending on the amount of the applied load in 
Stage IV which may be P P A P P Py b y u0 0

= = < <σ
y
,  or 

P P Au b u0 = = σ  the strain of the bolt shank is defined from 
Fig. (3). Then, the displacement of Section 4 is determined 
as follows:
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To determine the elongation of Sections 1 to 3, all rela-
tions presented in Stage III are applicable with a new posi-
tion of x2 and x1, which are as follows:
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The displacements (elongations) of the Sections 1 to 3 
are given as: (31)
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Thus the total displacement of the bolt head is the sum 
of the elongations (δ δ δ δ δIV IV IV IV IV= + + +, , , ,1 2 3 4 ). 

In the Sections 1 to 3 of the Stage IV, equilibrium con-
ditions between the applied load on the bolt head and the  
interface shear force (P d dxb rb x

L

0
0

= ∫π τ
, ) changes Eq. (24) to:

P d S x x S d S eIV
b r P

b
P

d
L x

b
0 1 0

2

1

2
1

2
1

2

= + +( ) + −











−

− −( )
π ω

α

α

( ) ∆









. (32)

The derivation of Eq. (32) relative to x2 gives the max-
imum load needed for the complete pull out of the bolt in 
Stage IV by considering bolt shank failure as follows:  (33)
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. 

Depending on the conditions, either the bolt shank fail-
ure occurs or bolt pull out happens. As mentioned before, 
Eq. (33) differs from the equation that Li and Stillborg [5] 
presented in their paper (due to a minor error, as explained 
in appendix A).

5 Determining bond shear strength
The presented analytical solution can be used to deter-
mine load-displacement curve of the grouted rock bolt 
head. Some input parameters such as rock bolt specifica-
tion, hole diameter, grout, and rock mass parameters are 
known. On the contrary, the bond shear strength parame-
ters such as Sp, ω, ∆, x0 are undetermined. To define these 
parameters based on load-displacement curve of the bolt 
head obtained in pull tests, a trial and error method is 
used. By assuming initial parameters (based on previous 
experiences) for bond shear strength, a load-displacement 
curve is derived using the presented analytical method. 
Comparing the obtained curve with the recorded one in 
pullout test reveals that how much the assumed parameters 
are close to the realty. A flowchart for implementation of 
this method is given in appendix B, which is programmed 
in Matlab. This method is used in obtaining the shear 
strength parameters of two experimental pullout tests.  

5.1 Rong et al.'s pullout test
Rong et al. [14] performed a pullout test on a rock bolt with 
32 mm diameter and 1 m bond length anchored in a con-
crete block with compressive strength of 30 MPa [14]. The 
comparison of the analytically obtained load-displacement 
curve with the pullout test result is presented in Fig. 6. The 
two results are in good agreement. The Root Mean Square 
Error (RMSE) method is used to measure the amount of 
error between the predicted and the measured displacements 

under applied pull load. The RMSE value for this test is 
0.013 for the loads lower than the bolt yield load. The input 
parameters of the pullout test, of which some are assumed, 
are also provided in Fig. 6. The determined bolt-grout shear 
strength parameters are presented in Table 1. 

Some researchers used Rong's pullout test for vali-
dation of their proposed methods [8–11, 15, 16]. Most 
of them used tri-linear shear bond-slip model proposed 
by Benmokarne [7] incorporating different peak shear 
strength for a single pullout test. Except Ma et al. [10], 
other authors did not consider yielding of the bolt shank. 
Instead, they modeled the bolt shank yielding with small 
residual shear strength at contact.

5.2 Liu et al. pullout test
Liu et al. [17] performed pullout tests on fully grouted rock 
bolts with a diameter of 42 mm and a length of 3 m. These 
were embedded in a concrete block with an uniaxial com-
pressive strength of 27 MPa [17]. Fig. 7 shows the compar-
ison between the obtained analytical load-displacement 
curve and the experimental results. The proposed analyti-
cal solution models the load transfer mechanism from bolt 
to rock and is able to predict the load-displacement curve 
of the bolt head, which agrees well with the experimental 
results under tensile loading. The RMSE value for this test 
is 0.008 for the loads lower than the bolt yield load. 

Note that there are minor difference between analyt-
ical predictions and the test results after yielding of the 
bolt shank. This is mainly due to the considered simplifi-
cation in the steel constitutive model. The evaluated bolt-
grout shear strength parameters for this pullout test are 
presented in Table 2.

Fig. 6 Comparison of the bolt head load-displacement curve obtained 
analytically with the Rong's pullout test results

Table 1 Determined shear strength parameters for Rong's pullout test

x0(mm) x1(mm) x2(mm) ∆(mm) ω Sp(MPa)

26 417.8 467.8 50 0.65 6.85
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It is interesting to note that the characteristics of the two 
bolts in the pullout tests are different from each other (such 
as bolt diameter, bolt length, bolt shank yield stress …).  
The shape of the load-displacement obtained in tests 
are also different. So, the evaluated bond shear strength 
parameters are different accordingly (compare the parame-
ters given in Table 1 with Table 2).

Numerical methods can also be used for determining the 
load-displacement curve of the bolt head. But for evaluating  
the bond shear strength parameters several modelling may 
be needed. The analytical method has the priority to evalu-
ate a particular parameter effect in a more convenient way. 

6 Conclusions
In this paper grouted bolt bond shear strength is deter-
mined using an analytical method. First, the load transfer 
mechanism from the bolt to the rock mass under a pull load 
is investigated comprehensively, by considering two pos-
sible cases including rock bolt complete pullout and bolt 

shank failure. Then, the load-displacement of the rock 
bolt at the head is determined. A flowchart is provided for 
determining the bond shear strength using trial and error 
method that is coded in Matlab. A verification of the pro-
posed method is done using two pullout test results, which 
show good agreement between the analytical predictions 
and the experimental tests results.

Since the goal is to define the shear strength parame-
ters (Sp, ω, ∆, x0) based on experimental results, following 
items should be considered:

1. The Sp is the most important parameter both before 
and after the bolt yielding point. This item defines the 
critical locations, which should match the experimen-
tal output (for example, if either bolt pullout or failure 
occurs). 

2. The ∆ mainly defines the location of Pcr
II  and the 

slope of the load-displacement curve after Pcr
II . It has 

minor effect on the curve after bolt failure. 
3. The ω mainly determines the slope of the load-dis-

placement curve after the location of Pcr
II . It has little 

effect on the curve after bolt failure. 
4. The x0 (constant value) mainly determines the shape 

of the curve after bolt failure and has a considerable 
effect. 

Due to simplification considered in steel constitutive 
model after failure, the predictions of the analytical model 
slightly differ from real pull out test results. This can 
be modified by introducing two or three linear behavior 
(between εh1 and εh2) for steel failure. 
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Fig. 7 Comparison of the rock bolt head load-displacement curve 
obtained analytically with the Liu's pullout test results

Table 2 Determined shear strength parameters for Liu’s pullout test

x0(mm) x1(mm) x2(mm) ∆(mm) ω Sp(MPa)

27 769.2 869.2 100 0.65 3.3
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Appendix A
Li and Stillborg [5] proposed a back-calculation method to 
evaluate bolt-grout interface peak shear strength. In this 
method a bolt should be completely pulled out before bolt 
shank starts to yield. Only the maximum load should be 
recorded, and the rest of the parameters either are known 
(such as db, Eb…) or assumed (such as ω, ∆, …). Then, the 
unknown peak shear strength (Sp) is determined using the 
equation as follows:     (34)

P d S L d x d
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b b= + − −
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In which Pomax is the maximum pullout load which is 
recorded in pullout test. Then, Sp is calculated by knowing 
all other parameters. At first, the procedures for obtain-
ing this equation is presented. Then, the mentioned minor 
error is explained in detail.

Considering the shear strength distribution model 
along the bolt (as shown in Fig. 2), the applied load on bolt 
head is in equilibrium state with the summation of shear 
force along the bolt. So we can write:
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 (35)

The distribution of τrb,x in each section is known based 
on the assumed model. The result of integration is:

Simplification results in the following equation:
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. (37)

This equation is also given by Li and Stillborg [5]. To find 
the maximum applied load (Pomax), the critical point of x2  
should be found by derivation of Po relative to x2. This is the 
key point which results in two different equation for Pomax. 
Li and Stillborg took derivative as follows (x1 = x2 – ∆): 
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Solving this equation gives x L db
2

2
= +

α
ωln . Then the 

Eq. (34) is obtained. It is important to note that the middle 
part is not considered in derivative. 

On the contrary, the authors used Eq. (36) for derivation 
(derivation of all items relative to x_2). In this case the 
derivation will be as follows:

∂
∂

=
+( )

+ −






















− −( )P
x

d
S d S

d
eo

b
P b

P
b

d
L x

b

2

2
1

2 2

2 2

π
ω

α
α

α

== 0 . (39)

Solving this equation will give x L db
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substituting the x2 in Eq. (36) or Eq. (37) the following 
equation is derived: (40)
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This is the same equation as Eq. (25). As it is shown in 
this appendix the  is determined by two different equation 
due to two differentiation method. 

Appendix B
A flowchart is given in Fig. 8 which presents the proce-
dure for determining the bond shear strength parameters. 
A Matlab code is prepared based on this flowchart. 

Fig. 8 Flowchart for determining the bolt bond shear strength parameters
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