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Abstract

In this paper, a reliability-based optimization approach is applied using a recently proposed CMA-ES with optimal covariance update 

and storage complexity. Cholesky-CMA-ES gives a significant increase in optimization speed and reduces the runtime complexity of 

the standard CMA-ES.  The reliability index is the shortest distance between the surface of Limit-State Function (LSF) and the origin 

of the standard normal space. Hence, finding the reliability index can be expressed as a constrained optimization problem. To verify 

the concept and test the feasibility of this algorithm, several numerical examples consisting of mathematical and highly nonlinear civil 

engineering problems are investigated. The reliability indexes obtained agree reasonably well with reported values from some existing 

approximation methods and Monte Carlo simulation.
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1 Introduction
In recent decades, reliability is progressively becoming 
important for the analysis and design of civil engineer-
ing systems. Hydraulic structures, oil and gas pipelines, 
and structural optimization with uncertainties are some 
examples of the application of reliability analysis. In this 
regard, different methods have been proposed to improve 
the accuracy and convergence rate of reliability analysis. 
Reliability analysis requires the specification of uncer-
tain quantities and their distributions via the Limit-State 
Function (LSF). First Order Reliability Method (FORM), 
second-order reliability method (SORM), Response 
Surface Method (RSM), and Simulation techniques (e.g., 
Monte Carlo Method and Subset simulation) are well-
known methods. In addition, approximation methods 
such as response surface have been recently successfully 
applied in reliability analysis [1–2]. Among these meth-
ods, due to the efficiency and simplicity, the moment meth-
ods are widely used in reliability analysis [3]. However, an 
increasing number of dimensions amplify the difficulty 
in computing the failure probability using the classical 
FORM and SORM. 

Finding the reliability index can be expressed as a 
constrained optimization problem because the reliability 
index is the shortest distance between the surface of LSF 
and the origin of the standard normal space. 

Recently, researchers have employed different mathe-
matical and evolutionary algorithms for optimization in 
civil engineering such as [4–8]. In reliability engineering, 
Fu and Frangopol [9] proposed a framework to achieve 
minimum structural weight, highest system reliability, 
and highest system redundancy. Kaveh et al. [10] utilized 
the charged system search (CSS) algorithm as an optimi-
zation tool to achieve the minimum reliability index under 
the limit state function. In other applications of reliability‐
based optimization in civil engineering, Deshpande et al. 
proposed reliability‐based optimization models for sched-
uling rehabilitation actions for flexible pavements [11]. 
Lógó et al. [12] proposed probabilistic topology optimi-
zation method and Several new topology design problems 
was calculated with randomly given loads. Csébfalvi [13] 
presented a new theoretical model and a problem-spe-
cific metaheuristic approach when the only source of 
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uncertainty is the variability of the applied load direc-
tions. Kalatjari et al. [14] used improved algebraic force 
method and artificial intelligence for system reliability 
assessment of redundant trusses. Recently, Kaveh and 
Dadras [15] proposed an efficient method for reliability 
estimation using the combination of asymptotic sampling 
and weighted simulation.

In 2003, Hansen et al. [16] introduced a novel evolu-
tionary optimization strategy based on the randomized 
evolution strategy with covariance matrix adaptation 
(CMA-ES). This derivative-free algorithm demonstrates 
good performance in numerous applications; however, 
the computational cost of CMA-ES is its main prob-
lem. Recently, Krause et al. [17] proposed a Cholesky-
CMA-ES method, which reduces the standard CMA-ES 
complexity. In addition, it reduces the memory footprint 
of the algorithm. 

The purpose of the current study is to verify the concept 
and test the feasibility of this framework in the reliability 
analysis of highly nonlinear civil engineering problems. 

The paper is structured as follows. Section 2 intro-
duces the approximation concepts in reliability analysis. 
Section 3 presents the descriptions of Cholesky-CMA-ES. 
In Section 4, numerical examples are studied to show the 
efficiency and accuracy of the proposed method, and some 
concluding remarks are finally provided in Section 5.

2 Approximation concepts in reliability analysis
A typical limit-state function can be written as:

g R S R S, ,� � � �  (1)

where R is the resistance, and S is the load. If we denote 
the failure event as f = {g < 0}, then we can write:

Failure probability � � � � �
� � � � � � �
P P g R S

P R X S X

f ( , )

( ).

0

0

 (2)

The exact evaluation of failure probability is not pos-
sible for most practical engineering problems because the 
limit state functions are usually highly nonlinear, and the 
number of parameters is usually large. On the other hand, 
in most cases, the limit state functions are implicit. The 
failure probability in correspondence with a reliability 
index (β) is defined as follows:

Pf � � � �1 � ,  (3)

where Φ denotes cumulative distribution function (CDF) 
of standard normal distribution.

As shown in Fig. 1, the reliability index is the short-
est distance between the surface of LSF and the origin 
of the standard normal space [18]. Therefore, finding the 
design point can be expressed as a constrained optimization 
problem:
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where ui are the uncorrelated normalized random variables, 
Xi is the random variable vector and dk are the determinis-
tic design parameters. In this paper, the penalty function 
is utilized in order to make the problem unconstrained:

f Xpenalty
i

p

i� � � �� � �
�
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1

2� � � ��
, ,  (5)

where p is the total number of constraints. The values of 
ϑi are set to zero for satisfied constraints, while for vio-
lated constraints they are selected considering the severity 
of the violation. Here, ε1 is set to unity, and ε2 starts from 
1.5 increases linearly to 4 in iterations for all numerical 
examples.

Normal distributions can be transformed into standard 
normal distributions by:

u x
i

i i

i
�

� �
�

,  (6)

where xi is the ith component of X, μi and σi are the mean 
value and the standard deviation of xi, respectively. In this 
paper, the normal-tail approximation method is used in 
order to transform a lognormal distribution variable to an 
equivalent normal distribution variable. In this method, the 
cumulative distribution functions (CDF) and probability 
density function (PDF) of the original, non-normal random 
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Fig. 1 Reliability index and relevant design point
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variable distribution, and the equivalent normal random 
variable distributions at the most probable failure point 
(MPP) are equal [19]. The mean and standard deviation of 
the equivalent normal variable are calculated as follows:

�
�

�

�

�
� ��

�
�
�� �

� �x

x

x

F x

f x

� 1 *

*
,  (7)

� �� �
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�
�x x xx F x* *

,� 1  (8)

where μx' and σx’ are the equivalent means and standard 
deviations of the approximate normal distributions. In 
this equation φ and Φ denote probability density function 
(PDF) and cumulative distribution function (CDF) of the 
standard normal distribution, respectively. fx(x

*) and Fx(x
*) 

are the PDF and CDF of the original variable X, respec-
tively, at the design point (i.e., at x*).

3 Cholesky-CMA-ES
Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) [16] is a successful optimization algorithm. 
Similar to many evolutionary algorithms, CMA-ES has 
three parts: I: Mutation, which is used for exploration; 
II: Recombination for exploration, and III: Selection which 
is used for exploitation and convergence rate [20]. 

CMA-ES samples from a sequence of multivariate nor-
mal distributions. In this paper, the default strategy param-
eters and the CMA-ES algorithm is presented according to 
Hansen's tutorial paper [21].

One of the drawbacks of CMA-ES is the high compu-
tational cost of CMA-ES. Accordingly, Krause et al. pro-
posed a Cholesky-CMA-ES to reach optimal time com-
plexity. It allows for the numerically stable computation 
of the inverse of the Cholesky factor in quadratic time and 
provides the eigenvalues of the covariance matrix with-
out additional costs [17]. To minimize Eq. (2), Cholesky-
CMA-ES is used as a powerful optimization method. The 
optimization process is outlined in Algorithms 1 and 2. 

4 Numerical examples
In order to investigate the efficiency of the algorithm, 
some numerical examples are presented. In addition, this 
section discusses four engineering design problems, i.e., 
three-span continuous beam, one-bay one-story frame, 
concrete gravity dam, and primary-secondary. In order 
to handle constraints, the penalty function is used, which 
magnifies the weight of the infeasible solutions in order to 
make the problem unconstrained. All the computational 
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parts were performed utilizing the MATLAB software. 
Twenty independent optimization runs with 200 iterations 
are carried out for the considered examples. 

4.1 Mathematical examples
In this section, the performance of the Cholesky-CMA-ES 
algorithm is investigated using three well-known numer-
ical problems used in the literature. The results are then 
compared with FORM, Monte Carlo simulation (MCS), 
and results obtained by other algorithms.  

4.1.1 A cubic polynomial with mixed term
This problem is proposed in [22]. The LSF of the first 
example is a cubic polynomial with mixed term as:

g X x x x x� � � � � �1
3

1
2
2 2

3
18,  (9)

where x1 and x2 are independent standard normal distri-
bution (with zero mean and unit standard). A comparison 
with the results of other references is provided in Table 1. 
The design point obtained from Cholesky-CMA-ES is 
X* = [-0.22368, 2.61492].

4.1.2 A highly nonlinear 10-variable LSF
This example is proposed in [25]. The LSF is a highly non-
linear 10-variable and is defined as:

g X x x
i
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Table 2 presents the statistics of random variables. The 
reference value for the probability of failure obtained by 
MCS using 106 samples is 4 × 10–6 (β = 4.4651). Roudak 
et al. [26] solved the example resulting in Pf = 8.78 × 10–5 
(β = 3.7515). For this example, the optimal reliability index 
and the corresponding probability of failure obtained by 
Cholesky-CMA-ES are 4.78 and 8.79 × 10–7, respectively. 
The design point obtained from the algorithm in origi-
nal space is X* = [0.2935, 0.3008, 0.2547, 0.2778, 0.2832, 
0.2814, 0.2703, 0.2857, 0.2498, 2.0050].

4.1.3 Series system problem
This problem consists of a series system involving linear 
and convex LSFs in a two-dimensional standard Gaussian 
space [27].
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The optimal reliability index and the corresponding 
probability of failure obtained by crude Monte-Carlo, stan-
dard deterministic finite element code [24], Adaptive radi-
al-based importance sampling method [25], ECBO [26] 
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Table 1 Comparison for the cubic polynomial with mixed term

MCS
(106 samples) FORM Wang and 

Grandhi [22]
Gong et al. 

[23]
Keshtegar 

[24] Yang [25] Roudak et al. 
[26] Present work

Reliability 
index 2.5274 2.32 2.2983 2.2983 2.2982 2.298 2.2983 2.5107

The probability 
of failure 0.0057 0.0102 0.0108 0.0108 0.0108 0.0108 0.0108 0.006

Table 2 The statistics of random variables

Variables Distribution Mean Standard deviation

x1, x2, …, x10 Normal 1 0.5
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and proposed algorithms are shown in Table 3. The con-
vergence histories of Cholesky-CMA-ES for mathematical 
examples are illustrated in Fig. 2. Comparisons between 
MCS as an exact method with Cholesky-CMA-ES show 
the robustness of the algorithm.

4.2 Engineering design problems 
In this section, five well-known engineering design prob-
lems used in the literature have been investigated. The 
results are then compared with Monte Carlo simulation 
(MCS) and the results obtained by other algorithms.  

4.2.1 Three-span continuous beam
Consider a three-span continuous beam shown in Fig. 3. 
The maximum vertical deflection of the beam determines 
the LSF:

g w E h L w
Eh

, , ,� � � �
360

360
4

 (12)

where W, L, E, and h are the intensity of the uniform grav-
ity load, span length, modulus of elasticity, and height of 
the section, respectively. The statistics of the variables are 
listed in Table 4. Table 5 summarizes the estimates of the 
reliability index and probability of failure based on MCS, 
Roudak et al. [26], and the present work.

Table 5 Comparison for the three-span continuous beam

MCS
(106 samples)

Roudak 
et al. [26] Present work

Reliability 
index 3.4765 2.5217 2.91

The probability 
of failure 2.54 × 10–4 5.8 × 10–3 1.8 × 10–3

Design point in 
original space - - X * = [10.5474, 

8.63 × 106, 0.3878]

4.2.2 One-bay one-story frame
This example is proposed in [31]. The failure is assumed to 
be described by first-order rigid-plastic hinge theory. The 
structure is subjected to static loads, including a horizon-
tal load P1 and a vertical load P2. Accordingly, there are 
three relevant collapse mechanisms, as shown in Fig. 4. 
The LSF for these failure modes are derived as:
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Table 3 Comparison for the series system problem

MCS Borri and Speranzini [28] Grooteman [29] Kaveh and Ilchi 
Ghazaan (ECBO) [30] Present work

Reliability index 3 2.9999 2.925 2.9999 3

The probability of failure 0.0013 0.0014 0.0017 0.0014 0.0013

Design point in original space - X* = [2.1212, 2.1212] - X* = [-2.1201, -2.1223] X* = [-2.1218, -2.1208]

Iteration
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A cubic polynomial with mixed term
A highly nonlinear 10-variable LSF
Series system

Fig. 2 The best convergence curves of reliability index for mathematical 
examples (semi-log plot)

Table 4 Description of random variables in the three-span continuous 
beam

Variable Distribution Mean Standard deviation

W (kN/m) Normal 10 0.4

L (m) Deterministic 7 0

E (kN/m2) Normal 2 × 107 0.5 × 107

h (m) Normal 0.4 0.01

w

L L L

Fig. 3 Three-span continuous beam
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It is assumed that the plastic moment Mpl is determinis-
tic. The failure of the system occurs if just one of the com-
ponents fails. Hence, this problem is a series system with 
three components. The limit state in the standard Gaussian 
space is shown in Fig. 5. Table 6 and Table 7 present the 
statistics of random variables and the results, respectively. 
The design point obtained from Cholesky-CMA-ES in the 
original space is X* = [3.0255, 2.9742].

Table 6 Description of random variables in the one-bay one-story frame

Variable Distribution Mean Coefficient of Variation

P1 Normal 0.5

P2 Normal 0.5

Table 7 Comparison for the one-bay one-story frame

MCS
(106 samples)

Subset
Simulation [32] Present work

Reliability 
index 3.69 3.86 3.68

The probability 
of failure 1.11 × 10–4 5.66 × 10–5 1.16 × 10–4

4.2.3 The anti-slide reliability of a concrete gravity dam 
This example is a concrete gravity dam shown in Fig. 6. 
The limit state function is defined by [33]:

g h f c f W U c T P

f ah

� , , ,

. . .

� � � �

�
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� � � � �3 096 10 2 156 10 2 744
7 5 ��� �
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44 4900 0

4

2

h

c h ,

 (14)

where μh = 0.935H − 0.33. In this equation W, U, and P are 
the weight of dam, uplift pressure, and hydrostatic pres-
sure, respectively. The material density is ρ = 2400 kg/m3, 
and the statistics of these variables are given in Table 8. 
The optimal reliability index achieved by ABC optimiza-
tion method [33] is 5.51 (Pf = 1.79 × 10–8). While the refer-
ence value for the probability of failure obtained by MCS 
using 106 samples is 0.0069 (β = 4.4651). For this example, 
the optimal reliability index and the corresponding prob-
ability of failure obtained by Cholesky-CMA-ES are 3.89 
and 4.96 × 10–5 respectively. The design point obtained 
from Cholesky-CMA-ES in original space is X* = [0.0517, 
56.3663, 0.5408, 0.9985].

1 7.
M
L
pl

1 7.
M
L
pl

Fig. 4 One-bay one-story frame

U

U

Safe

Fig. 5 Limit state in the standard Gaussian space

Table 8 Description of Random Variables in the anti-slide reliability of 
a concrete gravity dam

Description Variables Distribution Mean Standard 
deviation

The reduction factor 
of uplift pressure α Gaussian 0.25 0.075

The upstream water 
level h(1) [m] Gaussian 51.1 3.22

The shear friction 
factor f' Gaussian 1 0.2

The shear cohesion c' Lognormal 0.9 0.36

(1) H = 55 

Fig. 6 The anti-slide reliability of a concrete gravity dam
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4.2.4 Reliability of the uncertain primary-secondary 
system

This example is originally presented in Kiureghian and 
Stefano [34]. The two-degree-of-freedom primary-sec-

ondary system shown in Fig. 7. Igusa and Der Kiureghian 
[35] proved that the mean-square relative displacement 
response of the secondary spring to a white-noise base 

excitation of the system can be written as [34]: (15)
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p and s denote the primary and secondary oscillators, 
respectively. The failure domain is defined as:

g F K P E xs s s� � � ��
�

�
�

2
.  (16)

In this equation, P is a deterministic peak factor con-
sidered constant equal to 3. The statistical properties of 
random variables are presented in Table 9. The optimal 
reliability index and the corresponding probability of fail-
ure obtained by researchers are listed in Table 10. The 
Cholesky-CMA-ES reached β = 2.1239 and the X* equal 
to: [1.0200, 0.0102, 1.0240, 0.0104, 0.0265, 0.0113, 13.5175, 
103.9595]. 

4.2.5 Reliability of the Three-bay, 12-story frame
Fig. 8 shows the schematic and the loading conditions of the 
linear portal frame structure with twelve stories and three 
bays. Frame members are collected in 5 groups (3 column 
groups and 2 beam groups) consisting of 84 members. The 
sectional moments of inertia are expressed as [36]:

I Ai i i�

� � � � �

�

� � � � �

2

1 2 3 4 50 08333 0 2667 0 2where . ; . ; . ,
 (17)

In this example, the implicit LSF corresponds to the 
horizontal displacement of node “A” is defined as:

g UA� �0 096. .  (18)

The cross-sectional areas Ai and horizontal load P are 
random variables. The Young's modulus E is treated as 
deterministic and considered equal to 2.0 × 107 kN/m2. 

Table 11 and Table 12 present the statistics of random 
variables and the results, respectively. The design point 
obtained from Cholesky-CMA-ES in the original space is 
X* = [0.244, 0.160, 0.350, 0.191, 0.147, 40.01]. 

Fig. 9 provides convergence rates of engineering design 
problems. Comparisons between results show the accu-
racy and numerical performance of the algorithm.

5 Conclusions
In this paper, a newly-developed approximate covariance 
matrix adaptation evolution strategy, named as Cholesky-
CMA-ES, is applied to reliability analysis of some civil 
engineering problems. 

xp xs

Mp Ms

Fig. 7 A primary-secondary system

Table 9 Description of random variables in the primary-secondary 
dynamic system

Variables Distribution Mean Standard deviation

mp Lognormal 1 0.1

ms Lognormal 0.01 0.001

Kp Lognormal 1 0.2

Ks Lognormal 0.01 0.002

ζp Lognormal 0.05 0.02

ζs Lognormal 0.02 0.01

Fs Lognormal 15 1.5

S0 Lognormal 100 10

Table 10 Comparison for the primary-secondary system

MCS (106 samples) Kiureghian and Stefano [34] Keshtegar [24] Roudak et al. [26] Present work

Reliability index 2.737 2.12 2.0163 2.1231 2.1239

The probability of failure 0.0031 0.017 0.0219 0.0169 0.0168
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In this algorithm, the original time and space com-
plexity of CMA-ES are decreased using a quadratic-time 
covariance matrix update scheme with minimal memory 
requirements based on keeping triangular Cholesky fac-
tors. This algorithm is used to deal with some highly non-
linear reliability analysis problems. 

The application to several mathematical and practical 
numerical examples with different type of random vari-
ables shows that the proposed framework provides accu-
rate results. The reliability indexes obtained agree rea-
sonably well with reported values from some existing 

approximation methods and Monte Carlo simulation. 
Therefore, this is general and suitable for different reli-
ability engineering problems. Future research on this 
topic could be pursued in several areas. For instance, it is 
worth investigating the feasibility and the computational 
performance of other optimization algorithms, such as 
BIPOP-CMA-ES.
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Fig. 9 The best convergence curves of reliability index for engineering 
design problems (semi-log plot)

Table 11 Description of random variables in the portal frame structure

Variables Distribution Mean Standard deviation

A1 (m
2) Lognormal 0.25 0.025

A2 (m
2) Lognormal 0.16 0.016

A3 (m
2) Lognormal 0.36 0.036

A4 (m
2) Lognormal 0.20 0.020

A5 (m
2) Lognormal 0.15 0.015

P (KN) Type I Largest 30 7.5

Table 12 Comparison for the portal frame structure

MCS (105 
samples)

Cheng [36]: 
GA-ANN

Cheng [36]:  
GA–ANN–MCSIS

Present 
work

Reliability 
index 1.439 1.463 1.421 1.459

The 
probability 
of failure

0.0751 0.0718 0.0777 0.0723
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