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Abstract

There is considerable interest in structural health monitoring (SHM) and damage detection of bridges and considerable progress has 

been made in this field in recent years. However, several challenges such as sensitivity to low levels of damage and identification without 

the knowledge of the moving load remain and need to be precisely investigated by researchers. The current work addresses such 

challenges and proposes an efficient response sensitivity-based model updating procedure in time-domain for damage identification 

of railway bridges subjected to unknown moving loads. The bridge is modelled as an Euler-Bernoulli beam and the train is modelled 

as a set of sprung masses passing over the beam. Structural damage is considered as a reduction in the modulus of elasticity of 

the elements. Sensitivity analysis and Tikhonov regularization methods are adopted and used to solve the inverse problem of the 

model updating. To verify the efficiency of the model, two numerical models with multiple damage scenarios subjected to unknown 

moving loads are analyzed. In addition, the efficiency of the proposed method in the presence of measurement noise is also verified. 

Numerical results reveal that the proposed model-updating procedure simultaneously identifies structural damages as well as the 

unknown moving loads with an acceptable accuracy. The effect of critical parameters such as mass and speed of the moving vehicle 

on the accuracy of identification results is investigated as well. Based on the findings of this research, the proposed method can be 

adopted and applied to online and long-term health monitoring of real bridge structures.
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1 Introduction
Structural Health Monitoring (SHM) has been emerged as 
a robust technology for long-term monitoring of infrastruc-
tures such as bridges, tall buildings, dams, aerospace struc-
tures, and so forth. Damage detection algorithms are part 
of the SHM process which aim to locate and quantify the 
occurred damages. Numerous works in the frequency-do-
main have been performed on the detection of local dam-
ages in structures using changes in modal properties such 
as natural frequency, mode shape, mode shape curvature 
and so on [1]. Implementing frequency-domain techniques 
for practical damage detection of bridges under operation 
encounters several problems. Firstly, the bridge-vehicle 
interaction model constructs a coupled equation of motion 
with time-variant elements. Therefore, using frequency-do-
main techniques does not take into account the interaction 
of the vehicle-bridge system. Secondly, the modal frequen-
cies of these bridge infrastructures are very high and it is 

almost impossible to observe these high frequencies. Last 
but not least, the modal properties are strongly affected by 
environmental parameters such as temperature, tempera-
ture gradient, humidity, and so on. It is indispensable to 
take the above-mentioned parameters into consideration 
and eliminate environmental components during identifi-
cation process [2]. 

Based on the aforementioned reasons, to carry out an 
effective damage identification of bridges, the analysis is 
performed in the time-domain by the direct comparison of 
the simulated as well as measured responses. A time-do-
main formulation has been proposed so as to detect dam-
ages in a beam utilizing data originating from the linear 
beam oscillator dynamic interaction [3]. 

Model-updating procedures are the optimization meth-
ods whose objective functions minimize the difference 
between recorded response of the measured structure and 
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that of analytical model [4]. The procedure applies a sensi-
tivity-based change to stiffness parameters in such a way 
that best reflects measured responses. One challenge con-
cerning this method is to select the right vibration param-
eter for updating the FE model. For short-span railway 
bridges it has been demonstrated that bridge displacement 
response is more appropriate than that of acceleration so 
as to update the railway bridge stiffness [5], whereas other 
researchers observed that acceleration time-history of the 
structure presents more exhaustive and useful information 
which can be effectively used for damage identification of 
structures. The performance of finite element (FE) model 
updating to identify the induced damage in a two-story 
reinforced concrete masonry-infilled building is investi-
gated using vibration data as well as lidar (light detection 
and ranging) scans [6].

One important aspect of a SHM system is related to 
obtained measurement data. It is well known that poorly 
distributed sensors are not capable of capturing crucial char-
acteristics of the structure. A mode shape sensitivity method 
is presented for optimal sensor placement (OSP) [7].

Simultaneous identification techniques are the meth-
ods eliciting structural parameters based on the measured 
responses without the knowledge of the moving loads or 
any external excitations [8]. In fact, the identification pro-
cess simultaneously determines the amount and location 
of structural damages along with the values of the mov-
ing load. Adjoint method is proposed for identification 
of structural damage in structures subjected to unknown 
moving masses [9]. 

A number of optimization algorithms have been pro-
posed to tackle the weaknesses of searching algorithms 
in model updating for damage detection problems [10, 11]. 
In Contrast to general optimization algorithms, sensi-
tivity-based methods have revealed their efficiency in 
structural damage detection problems. A robust sensi-
tivity-based approach has been proposed to identify the 
local damages in a structure directly from the measured 
dynamic responses [12]. An improved sensitivity-based 
damage identification approach has also been presented 
for bridge structures subjected to moving loads without 
the knowledge of the vehicle properties [13].

Damage and load identification problems are consid-
ered as inverse problems, and their numerical ill-condi-
tioning seems to be the main factor influencing the accu-
racy of the identification results. The accuracy can be 
improved by regularization methods. Based on the context 
of the inverse problem which might be over-determined or 

under-determined, a number of optimization algorithms 
are presented and evaluated for optimal solution of the 
inverse problem.

In frequency-domain damage detection algorithms, 
dealing basically with modal characteristics of the struc-
ture, ℓ1-norm minimization or ℓ1 regularization has been 
successfully applied [14]. A sparse damage detection tech-
nique is developed using merely the first few frequencies. 
The technique utilizes the capability of ℓ2 regularization 
so as to reconstruct sparse damage among a large number 
of elements of the entire structure [15]. Recently two spar-
sity constrained optimization algorithms are employed 
and compared for damage identification: ℓ1-norm minimi-
zation and non-negative least square (NNLS) solution [7]. 
It was demonstrated that NNLS shows a better perfor-
mance in damage identification than ℓ1-norm. 

Time-domain damage detection algorithms which deal 
with time history of the vibrational response, are generally 
over-determined inverse problems. A standard technique 
to prevent over-determinacy is to use ℓ2-norm minimiza-
tion or Tikhonov regularization. In the context of finite 
element model updating in structural dynamics ℓ2-norm 
regularization has been successfully employed [16]. 
An adaptive regularization approach has been pre-
sented for solving the nonlinear model updating inverse 
problems [17].

In this research project an improved model-updating 
identification method in the time-domain is proposed to 
identify structural damages subjected to unknown moving 
load. The proposed method consists of two iterative steps 
employed to evaluate the moving load as well as structural 
damages. In the current research work, the bridge is mod-
elled as an Euler-Bernoulli beam subjected to unknown 
moving load. The damage is introduced as a reduction 
in stiffness of structural elements according to previous 
works in this respect [18, 19]. Moving load is simulated 
as a set of sprung-masses passing over the beam with con-
stant velocity and unknown variable weights. The coupled 
equation of motion of the bridge-vehicle system is derived 
and force and stiffness sensitivity matrices were calcu-
lated using the direct differential method (DDM) and are 
introduced as three dimensional matrices in time-domain. 
Tikhonov regularization using L-Curve method is applied 
to solve the ill-posed inverse problem of damage detection. 

In recent years, considerable progress has been made 
in the field of SHM and damage detection of bridges. 
However, several challenges such as unknown moving 
load, sensitivity to low levels of damage and identification 
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with limited number of sensors remain and need to be 
precisely investigated by researchers. The proposed FE 
model-updating method addresses such challenges and 
is merely based on the vibrational response. Numerical 
results prove that the proposed method is capable of 
accurately detecting structural damages in the presence 
of unknown moving loads. It is also observed that simu-
lating the train in the form of sprung-masses guaranties 
the interaction of bridge-vehicle system and dramatically 
increases the accuracy of the identification compared to 
existing research works in this respect. To simulate real 
conditions, capability of the model for simultaneous iden-
tification of bridge structure in the presence of measure-
ment noise is investigated by adding a noise to the mea-
sured data as well. In addition, the effect of speed and mass 
of the moving vehicle on the accuracy of the identification 
results is investigated as well and an appropriate range for 
these critical parameters is suggested. Considering these 
qualifications, the proposed method could be effectively 
adopted and applied for continuous and online monitoring 
of railway bridges.

2 Formulation
In this section, the equations of motion of train and bridge 
are derived and coupled so as to obtain the equation of 
motion governing bridge-vehicle system. The resulting 
equation can be solved in time-domain using direct time 
integral methods such as Newmark-β. 

2.1 Sprung mass model of bridge and train system
Most of the recent studies have considered the vehicle as 
a single moving load which ignore the suspension proper-
ties of the moving vehicle. In the current survey the train 
is modelled as a set of sprung-masses moving over the 
beam with constant velocity. The sprung-mass modelling 
has the following merits:

1. The suspension properties of the moving vehicle are 
included in the equation of motion. 

2. Elements of the bridge-vehicle equation of motion 
are time-variant which guarantees the proper con-
sideration of bridge-vehicle interaction. 

To construct the equation of motion, both equations of 
train and bridge should be formulated. As shown in Fig. 1, 
the train is modeled schematically as Nv number of sprung-
masses with distance Dj over a continuous beam, where uwj 
and uvj denote vertical displacements of jth wheel set and 
vehicle and ub(x.t) is vertical displacement of the beam at 
distance (x) and time (t). 

For the jth one-foot sprung mass, the upper mass, mvj, is 
part of the vehicle mass and the lower mass, mwj, represents 
the wheel set; the suspension system possesses stiffness 
value of Kvj and damping value of Cvj. The vertical dis-
placement of jth wheel set and the upper mass are denoted 
by Uwj and Uvj, respectively. The distance between the jth 
and j + 1th one-foot sprung mass is introduced by Dj. 

It has been indicated that the contact force between the 
bridge and the lower mass is fcj, which consists of a static 
element, fwj, because of weight and a dynamic element, fdj, 
due to vertical vibration [20] as described in Eqs. (1–2):
f f fcj wj dj= + ,  (1)

f m m gwj wj vj= + ×( ) .  (2)

The equilibrium equation of train due to the vertical 
force can be written in the form of Eq. (3):
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The bridge is divided into Ne elements with the same 
length, L, that are shorter than the minimum distance 
between the units of sprung masses. Mass and stiffness 
matrices of the beam, Mb and Kb are constructed by 
assembling mass and stiffness matrices of the elements. 
Bridge damping type is Rayleigh damping with the coeffi-
cient α and β calculated from Eq. (4):
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where w1 and w2 are the first and second modal natural fre-
quencies and ζ is the modal damping ratio. Therefore, the 
damping matrix of the beam is as follows:

C M Kb b b= +α β .  (5)

The bridge is initially in static condition, so when the 
train approaches the bridge, the external loads acting on 
the bridge are contact forces, –Nfc, between the wheel and 
bridge, where N is the mapping matrix that utilizes cubic 
Hermit interpolation functions. The equation of motion of 
the whole bridge can be assembled as Eq. (6):

Fig. 1 Sprung-Mass model of the bridge-vehicle system
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M C K Nb b b u u u fb b b c+ + = − .  (6)

The Eqs. (3) and (6) need to be coupled to construct 
the equation of motion of bridge-vehicle system. The 
above-mentioned equations consist of three variables, 
uw, uv and ub. The coupling of the mentioned equations 
eliminates the vibrations of wheel sets, uw, u̇w and üw. It is 
assumed that the wheel set is always in contact with the 
bridge, so the vertical vibrations of wheel sets can be sub-
stituted by the bridge nodal displacements as Eqs. (7–9), 
Where V and A are velocity and acceleration of train, 
respectively. uw and ub are the responses of the wheel sets 
and the beam, respectively.

u uw b= NT  (7)

 u u uw b b= +VN Nx,
T T  (8) 

  u u u uw b b b= +( ) + +AN V N VN Nx xx x, , ,
T T T T2

2  (9)

Substituting Eqs. (7–9) into the first row of Eq. (3) 
results in the expression of dynamic contact forces fd as 
Eq. (10), in which vibrations of the wheel sets are elimi-
nated from the equation.
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Using Eqs. (1) and (10), new form of Eq. 6 will be derived 
as Eq. (11) which is equation of motion of the bridge:

M C K N Nb b b u u u f fb b b d w+ + + = − .  (11)

To construct equation of motion of the upper mass, uv, 
Eqs. (7–9) are substituted into the second row of Eq. (3) 
The result is as follows:

M C K C VN K N C Nv v v v x v v  u u u u uv v v b b+ + = +( ) +,
T T T  (12)

Finally, writing Eqs. (11–12) in the form of matrix will 
result in the coupled equation of motion of the bridge and 
train as follows:
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To simply express the equation of motion, the short 
form of Eq. (13) is written as Eq. (14):

M C K u u u P+ + = ( )t ,  (14)

where:

M M NM Nb w11 = + T  (15)

M Mv22 =  (16)
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T T  (17)
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K NKv12 = −  (22)

K C VN K Nv x v
T

21 = − −,
T  (23)

K Kv22 =  (24)

P fb w{ } = −N  (25)

Equation (14) can be solved through direct time inte-
gral methods such as Newmark-β. This method has two 
different approaches, namely constant average acceler-
ation and linear acceleration. Constant average accel-
eration with coefficients γ β= =








1

2

1

4
,  is stable for small 

amounts of time step, ∆t [21]. Therefore, in this research 
project, Newmark-β with constant average acceleration is 
employed to solve the equation of motion. 

2.2 Solution of the inverse problem
When the parameters of a model are unknown, they 
need to be estimated using measured data. The mea-
sured response is a non-linear function of the parameters. 
Therefore, minimizing the error between the measured 
and predicted responses will yield a non-linear optimiza-
tion problem. Therefore, the identification problem can be 
expressed as follows so as to find the perturbation vector 
δα such that the calculated response best matches the mea-
sured response, i.e. :

  , (26)

 (27)

z = Sδ δα

z u um cal= −  ,δ
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where {δz} is the error vector in the measured output, üm is 
the acceleration response of damaged model as target of the 
identification process, and ücal is the calculated accelera-
tion response of updating model. S is two-dimensional sen-
sitivity matrix whose elements are adopted from the previ-
ously proposed three dimensional sensitivity matrix [12].

 (28)

 (29)

δα is the perturbation which improves the physical 
parameter α in each iteration. The subscript j indicates the 
iteration number by which the sensitivity matrix is com-
puted. As shown in Fig. 1 the iterative procedure is contin-
ued to come up with the determined tolerance.  

Equation (28) can be solved using simple least squares 
method, but it has been realized that Tikhonov regulariza-
tion is an optimal solution [17]. After regularization, the 
Eq. (28) can be written in the form of Eq. (30):

 (30)

where λR is a regularization parameter, as a non-negative 
damping coefficient governing the participation of least-
squares error in the solution. Based on the findings of pre-
vious researchers, in this research, Tikhonov regulariza-
tion with L-curve method is used to solve the ill-posed 
inverse problem [22]. 

2.3 Finite element model-updating procedure for 
damage detection
FE model updating in structural dynamics is the process 
of updating the initial model of structure so that it can bet-
ter reproduce the measured responses of the actual struc-
ture. The updated model can be used to identify and locate 
structural damages occurred in infrastructures during 
years of serviceability. As illustrated in Fig. 2 the itera-
tion process consists of two main iterative procedures: The 
first iteration is employed for force identification, while 
the second iteration is employed for physical parameter 
identification using identified force. Where: Eud, Ed and 
En are modulus of elasticity for undamaged, damaged and 
updating models respectively, P, P0 and Pn are actual, ini-
tial guess and updated values for the moving load respec-
tively, SF and SK are sensitivity matrices due to force and 
physical parameters respectively, Rd and Rn are responses 
of the damaged and updating models respectively, dP and 
dE are perturbation due to load and physical parameters 
respectively. Tolerance is set as 1 × 10–4.

This approach minimizes the difference between accel-
eration response time-history of the measured and analyt-
ical models. This problem may be expressed as the mini-
mization of δz in Eq. (31), 

 (31)

where δz is the error vector in the measured output and 
üm and ücal are the measured and calculated acceleration 
response vectors, respectively. In the inverse problem 
of damage detection, it is assumed that the stiffness of 
the elements uniformly diminishes with damage occur-
rence. Therefore, the flexural rigidity, EI, of the elements 
becomes (1 – DI) × EI after damage occurrence. Where DI 
is the damage index vector of the finite elements as shown 
in Eq. (32). DI consists of elements with values between 
0 and 1. DI = 0 means that the element is healthy and no 

= −S S ST T1 zδδα
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Fig. 2 FE model-updating procedure for simultaneous identification
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reduction in modules of elasticity has been observed, and 
DI = 1 states that the element is totally damaged with 
100 % reduction in modules of elasticity. 

DI E E
E

d=
−0

0
 (32)

To evaluate the accuracy of the model, damage detec-
tion error is calculated using Eq. (33), where DIiden and 
DIreal are identified and real vectors of damage index, 
respectively.

Detection Error = −
×

DI DI
DI

iden real

real
100  (33)

Critical speed of the beam is calculated using Eq. (34) 
and used to obtain speed ratio of the train, where L is the 
total length of the beam and T1 is the first natural period of 
the beam which is obtainable from the solution to Eq. (14). 
Mass ratio of the train is also calculated using Eq. (36):   

Critical Speed L
T

=








( )
1

2

mm sec/ ,  (34)

Speed Ratio Spped of Train
Critical Speed

= ,  (35)

Mass Ratio Average Weight of Moving Axles
Weight of longest span of b

=
eeam

.  (36)

To simulate the condition of a real test, the measured 
responses are numerically perturbed to consider the pres-
ence of measurement errors. A white noise is added to the 
calculated responses to simulate the polluted measure-
ments as follows:

  u u norm um cal cal= + ( )e varp ,  (37)

where, üm denotes polluted acceleration response; ep is the 
noise level (for example 5 % or 10 %); norm is a standard 
normal distribution vector with zero mean and unit stan-
dard deviation; var(.) is the variance of the time history of 
calculated acceleration response ücal.

3 Numerical results
In this research project a three span beam with 21 finite 
elements is investigated under multiple number of sprung-
masses passing over the beam with a constant speed. 
Considering 21 finite elements each of which has two 
degrees of freedom (Dof) in each node and 8 moving 
axles, the total number of DoFs of the bridge-vehicle sys-
tem will be 60. As illustrated in Fig. 3, in each span one 
sensor is located at transitional Dofs close to the mid-span 
to record the vibration response of the bridge.

Characteristics of the vehicle and bridge model are 
presented in Table 1, where Ne and Nv are the number of 
finite elements and moving axles, respectively. Lel is the 
length of elements, ζ denotes modal damping ratio, I is the 
second moment of inertia of the beam, Vratio and Mratio 
are speed and mass ratio, respectively as introduced in 
Eqs. (35–36). Suspension properties of train are assumed 
based on recent proposed values [23]. Moving vehicle is 
modelled as a series of 8 sprung masses. As depicted in 
Fig. 1 the lower mass related to wheel load, (mw), is sup-
posed to be a known and constant value, but the upper 
masses representing the vehicle loads, (mv), have unknown 
values which need to be identified by the proposed method. 
The bridge is modelled as an Euler-Bernouli beam with a 
constant cross sectional area as presented in Fig. 3. The 
tolerance for damage detection process is set to be 1 × 10–4.

Table 1 Properties of bridge, train and moving loads

Bridge Properties

E (MPa) I (mm4) Lel (mm) ζ

25000 2.58e10 1500 0.05

Train Properties

Nv mw (kg) kv (N/mm) Cv (N.sec/mm)

8 2500 9120 86

Moving Loads (Kg)

Mv1 Mv2 Mv3 Mv3

18000 20000 22500 20000

Mv5 Mv6 Mv7 Mv8

17500 20000 22500 16000

Fig. 3 Structural properties of beam and location of sensors
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As shown in Table 2, two damage scenarios are applied 
to the model to represent the capability of the proposed 
method for identification of structural damages under 
unknown moving load. In Scenario I, only three elements 
are considered as damaged with a reduction in elastic 
modulus, but in scenario II, a random selection of 7 ele-
ments with a random reduction in elastic modulus is con-
sidered for identification. 

After applying the proposed method for Scenario I, 
Real and identified {DI} for beam elements are illustrated 
in Fig. 4. The proposed method accurately identified all 
4 damaged elements, as presented in Fig. 4(a). In this case 
the identification error using Eq. (33) is 0.97 % and no 
other healthy elements are detected as damaged. On the 
other hand, when the measured data are polluted with 5 % 
and 10 % noise, identification error increases to 2.49 % 
and 6.95 %, respectively. As depicted in Figs. 4(b, c), in 
the presence of 5 % noise, the proposed method has still its 
efficiency, while in the case of 10 % some healthy elements 
are detected as damaged. Although these false detections 
are minor damages, but they adversely affect total accu-
racy of the proposed method.  

Fig. 5 represents the results of the proposed method for 
damage scenario II, where 7 elements were selected ran-
domly as damaged with a reduction percentage in modules 

Table 2 Multiple damage scenarios

Scenario
Element Number

Reduction in Modules of Elasticity (%)

I
4,  12,  13, 19

7 %, 15 %, 11 %,  5 %

II
Random (7 out of 21 elements)

Random (0–20 %)

Fig. 4 Real and identified damage indexes {DI} for Scenario I in the presence of measurement noise
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of elasticity between 5 to 20 %. As presented in Fig. 5(a), 
all damaged elements are identified accurately. In this case 
elements 5, 6, 8, 11, 13, 15 and 16 are identified as damaged 
with 9, 17, 2, 15, 1 ,3 and 17 percent reduction in modules of 
elasticity, respectively with the identification error of 1.1 %. 
In addition, as illustrated in Figs. 5(b, c), when 5 % and 
10 % noise is added to the measured data, the identification 
error reaches 2.79 % and 7.19 % respectively. This reveals 
that the proposed method is insensitive to noise when it 
comes to low levels of measurement noise (noise < 5 %) 
and has still its efficiency, while for high levels of mea-
surement noise (noise > 5 %) using de-noising techniques 
such as Kalman filter will help the method for separating 
the real vibrational signal and noise. In this problem, com-
paring natural frequencies of the damaged and undamaged 
models revealed that, variations of the first and last 5 nat-
ural frequencies of the bridge are 0.4 % and 1.5 % respec-
tively. This demonstrates that modal properties cannot be 

effectively used as damage indicators in bridge identifica-
tion problems. In contrast, the acceleration response effec-
tively reflects structural damages even at early stages.

As shown in Fig. 6, the proposed method precisely identi-
fies unknown weight of the 8 moving axles (mv). The robust-
ness of the present research is the accurate estimation of a set 
of sprung-masses passing over the beam with known weight. 

In the current research, the effect of critical parame-
ters such as mass and speed of the train on accuracy of 
the identification results is also investigated. Numerical 
results prove that speed ratio plays a significant role on 
identification results. Based on the obtained results, when 
train speed increases and approaches the critical speed, the 
damage detection error increases dramatically. As shown 
in Fig. 7(a) selecting speed ratio more than 0.7 will lead to 
inaccurate results or divergence of the iterative process. 
On the other hand, selecting speed ratio in the range of 
0.5 to 0.7 leads to optimum results which complies with 

Fig. 5 Real and identified damage indexes {DI} for Scenario II in the presence of measurement noise
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Fig. 6 Moving Load Identification result

the findings of previous researchers [20]. In addition, 
Fig. 7(b) shows that when the mass ratio of the moving 
vehicle is relatively high compared to that of the bridge, 
the nonlinearity effect of the moving loads augments the 
identification error and causes false damage detection. 

Consequently, using mass ratio less than 0.3 and speed 
ratio between 0.5 to 0.7 is recommended for future works 
in the same field which leads to optimum results.

4 Conclusions
In current study, an improved response sensitivity-based 
simultaneous identification method is presented for railway 
bridge structure under the passage of multi-axles sprung-
masses with unknown weights. The analyses are conducted 
in time-domain taking into account the bridge-vehicle inter-
action. The proposed model-updating procedure is an itera-
tive algorithm which dramatically reduces the computational 
cost by using sensitivity analysis and Tikhonov regulariza-
tion method. In order to show the capabilities of the pro-
posed method, a set of numerical examples with multiple 
damage scenarios are analyzed. In addition, the efficiency 
of the proposed method for damage identification under the 
presence of measurement noise is also verified. Numerical 
results reveal that the proposed method accurately identifies 
unknown values of the moving loads as well as the location 
and extent of the structural damages even in the presence 
of measurement noise. It is also observed that the proposed 
method is insensitive to low levels of noise (noise < 5 %). 
However, for obtaining optimum results for problems with 
high levels of noise (noise > 5 %), implementing de-noising 
techniques on measured data is recommended. After careful 
consideration of the effect of speed and mass of the mov-
ing vehicle on the identification results, an optimal range 
for these critical parameters is provided. It is also observed 
that simulating the train in the form of sprung-masses 

Fig. 7 Variation of identification error with respect to: (a) speed ratio, 
(b) mass ratio
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guaranties the interaction of bridge-vehicle system and dra-
matically increases the accuracy of the identification com-
pared to existing research works in this field. Since the pro-
posed method is developed merely based on investigating 
the recorded time-history of the structural vibration, which 
takes into account the bridge-vehicle interaction as well as 
the measurement noise, it can be effectively adopted for 
application in the real and long-time monitoring of bridge 
structures under operation. 

Obtained results reveal that the proposed method is 
capable of identifying the location as well as quantifying 
the different patterns of damages in bridge structure with 
acceptable accuracy.
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