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Abstract

The present article aims essentially to present an analytical and numerical method which makes it possible to study the damped
vibrations of viscoelastic FGM nanoplates resting on viscoelastic foundations. A new model for the higher-order shear deformation
plate theory is coupled with the internal Kelvin - Voigt viscoelastic model and the three-parameter viscoelastic foundation model for
the purpose of reducing and minimizing the vibration response of the system. It is widely admitted that the mechanical properties
of these new functionally gradient materials (FGMs) vary according to the thickness of the plate and depend on its volume fraction.
The use of FGM plates seems to be an ideal solution for the study of free vibrations because of their multifunctionality that is fully
integrated with the nonlocal Eringen effect. The dynamic response of such a complex system has been investigated by varying the
aspect ratio of the plate, the mechanical characteristics of the material used, the internal and external damping and the foundation
rigidity. The results obtained, with and without the nonlocal effect, were compared with those of different models of higher-order

theories and under various boundary conditions; they were found to be in good agreement with those reported in the literature.
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1 Introduction

Functionally graded materials (FGMs) were used for the first
time by Japanese scientists in the 1980s as high tempera-
ture-resistant materials in the area of aerospace construc-
tion. Recently, these new materials have been employed in
various electrical devices, energy transformation, biomedi-
cal technology, and optical systems [1-6]. It is worth indi-
cating that different plate configurations exist today; they
are often classified according to their geometry, type of
stress experienced, and type of behavior (membrane-flex-
ion), with or without transverse shearing. The plates whose
transverse shearing is neglected are called Love-Kirchhoff
plates [7]. Love-Kirchhoff's theory applies to thin plates.
On the other hand, thick homogeneous plates, for which
shear is taken into account, are called Reissner-Mindlin
plates [8-9]. The Reissner-Mindlin theory, also referred to
as the first-order shear deformation theory (FSDT), is well

suited for the analysis of problems linked to bending and
vibration of structures. The first-order shear deforma-
tion theory (FSDT) of Reissner - Mindlin is more precise
than the classical plate theory (CPT) of Love-Kirchhoff.
However, Reissner Mindlin's theory requires a shear correc-
tion factor and gives a constant distribution of shear stresses
across the thickness of the plate, which is not the case here.
In order to represent the kinematics of a point of a beam
or plate, without the shear correction factor, some higher
order shear deformation theories (HSDTs) have been pre-
sented in order to describe the behavior of beams and plates
under various mechanical loadings. Thus, Levinson [10]
and Reddy [11] developed higher-order functions, like the
higher-order shear deformation plate theory (HSDT), in
terms of thickness in the form of a third-degree polynomial.
In ddition, it should be noted that the variation of shear
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stress can be represented using a second degree polynomial
as a function of the thickness. Several researchers, such as
Touratier [12], Karama et al. [13], Aydogdu [14], Soldatos
and Timarci [15], Mechab et al. [16] and Benyamina
et al. [17] have developed other types of sinusoidal, hyper-
bolic or exponential form functions for the mechanical
analysis of structures. In order to deal with the problems
of static and dynamic analysis of orthotropic plates, Shimpi
and Patel [18—-19] developed a refined plate theory (RPT)
that is classified among higher-order theories. Unlike the
first-order shear deformation theory (FSDT) and higher-or-
der shear deformation theory (HSDT), the refined plate the-
ory reduces the calculation time and gives four equilibrium
equations instead of five, without correction factor, and
with a parabolic variation of shear stress through thickness
of the plate. The RPT theory has recently attracted a lot of
interest among researchers to solve the problem of vibra-
tions, buckling of isotropic, orthotropic and FGM structures
under various loadings [20-22].

Over the last few years, due to the rapid development
of technology, particularly in the field of nanostructures
that have superior mechanical properties and a large num-
ber of applications in technology, the researchers were
urged to take into account the effects of scales and atomic
forces in order to obtain solutions with acceptable accu-
racy. Eringen's nonlocal theory is based on this hypoth-
esis which suggests that the stresses at a reference point
in the body depend not only on the deformations at that
point but also on the deformations at all other points of the
body. Consequently, the analysis of nanostructural vibra-
tions has become a subject of major interest for current
and future research studies [23-27].

Recently, the nonlocal theory has been used in the
analysis of nanobeams and nanoplates made of function-
ally graded materials (FGMs). For this, Farzad et al. [28]
investigated the buckling of FGM nanoplates, subjected
to variable thermal, linear and nonlinear loads, resting
on a Pasternak-type foundation. They found out that the
responses of buckling with the nonlocal effect are weaker
than those with a local effect, under various loading con-
ditions. As for Zenkour and Arefi [29], he conducted
a static and dynamic analysis of an FGM nanoplate resting
on a visco-Pasternak foundation, and subjected to ther-
mo-electromechanical loading. Note that both Eringen’s
nonlocal elasticity theory and the classical plate theory are
used for the determination of the equilibrium equations.
The refined higher-order shear deformation theory was
used by Zur et al. [30] for the analysis of the vibrations

and buckling of FGM structures in terms of the nonlo-
cal parameter, volume fraction index, power law index,
mechanical, electrical and magnetic loads, mechanical,
electrical, and magnetic loadings, as well as the geometric
ratio of the section.

Viscoelastic materials are used in various fields of engi-
neering such as the design of household appliances, auto-
mobile, aeronautics and even the vast area of civil engineer-
ing. Reducing mechanical vibrations and noise is one of the
major concerns in the automotive, naval and aeronautical
industries. To remedy this problem, there are anti-vibra-
tion sheets, called sandwich sheets, made of a thin layer of
viscoelastic material interposed between two steel sheets.
The damping capacity can therefore be improved by the
viscoelastic material.

On the other hand, Wang and Tsai [31] used the finite
element method (FEM) to analyze the quasi-static and
dynamic response of the linear viscoelastic plate, where
the temperature field is assumed to be constant and homo-
geneous; here, the relaxation modulus is supposed to be
in the Prony series form. Kiasat et al. [32], Pouresmaeeli
et al. [33], Liu et al. [34] and Hosseini et al. [35] stud-
ied the free vibrations of thin plates made of function-
ally graded materials and composite materials, using the
Love-Kirchhoff theory, also known as the classical plate
theory (CPT), resting on visco-Winkler and visco-Win-
kler-Pasternak foundations, using the Kelvin-Voigt visco-
elastic model. As for Ebrahimi and Barati [36] and Arefi
and Zenkour [37], they used a refined higher-order plate
theory with a trigonometric shear stress function for the
purpose of exploring the influence of viscoelastic parame-
ters, due to hygrothermal and piezoelectric charges, on the
vibration frequency of FGM nanoplates and viscoelastic
sandwich nanoplates with nonlocal effect.

The present work focuses on the viscoelastic study of
nanoplates and Winkler-Pasternak type foundations in
order to analyze free plate vibrations using the higher-or-
der plate theory with nonlocal effect, as well as a new shape
function for the shear-stress distribution through the nano-
plate thickness. It is useful to mention that the mechan-
ical properties of the plate vary gradually through its
thickness, in accordance with the distribution of the pow-
er-law FGM (P FGM). The scale effect, shear deformation,
mechanical properties, damping and rigidities of the foun-
dations are taken into account while studying the response
of the structure. The results obtained for free vibrations
were compared with those of different versions of higher
order theories, and under various boundary conditions.



2 Mathematical development
Consider a nanoplate made of FG viscoelastic materials,
with length a, width b and thickness 4. The properties of
the elastic materials of the FGM plate are the Young's mod-
ulus £(z) and mass density p(z). The plate rests on a visco-
elastic foundation; its coordinates are illustrated in Fig. 1.
The Kelvin-Voigt model used consists of an infinite set
of springs and dampers connected in parallel; the spring
stiffness and damping coefficient are defined respectively
by k,, k, and ¢, The displacements of any point on the
nanoplate can be expressed in terms of average displace-
ment components of the surface. The displacement field is

given by: (D)
U(x,y,z,t):u0 (x,y,t)—z%+(f(z)—z)w,
V(x,y,z,t) =, (x,y,t)—z%y’y’t)+(f(z)—z)%y’y’t),

W(x,y,z,t) =w, (x,y,t)+ws (x,y,t).

Note that U, V and ¥ are the displacement components
along x, y and z, respectively. The fundamental unknowns
consist of the four generalized displacements u,, v,, w,,
and w, which are functions of the coordinates x and y. Note
that u, and v, are the displacement components along x and
v, and w, and w, are the displacement components along z.
A new transverse shear deformation shape function is
given by the following expression:

f(z)=; z—h~e(2) i-sin(%n’j . 2)

i
l-7-e*

Different higher-order shear deformation plate theo-
ries are summarized in Table 1. According to Soldatos and
Timarci [15], the shape function must meet the following
three conditions:

Their derivatives should be equal to zero at the point
(x, v, £h/2), on the top and bottom surfaces of the plate

(Fig. 2(a)).
F(z)_n=0 A3)

The function f{z) must be an odd function (Fig. 2(b)).

2
z=h/2

f(z)dz=0 )
z=—h/2
The deformation field is expressed in Cartesian coordi-
nates. Taking into account the warping of the straight sec-
tion of the plate, the refined theory of thick plates can be
written in the following form:
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Fig. 1 Geometry of a viscoelastic FG nano-plate resting on a

viscoelastic Pasternak foundation

Table 1 The various transverse shear functions used in different plate

theories

unknown

Theory Shape function f{z) generalized
displacements
CPT(classical
0 -

plate theory)
FSDT( first
order theory) z
TSDT 422 o
Aghababaei z 1——2 0:9 0:9 0
and Reddy [25] 3h o 0,
SSDT L [EJ oy Ve Wy
Touratier [12] T h 0.0,

z 2 1
Present ! - he(;) N sin (i n) -z
model 2 h o o Y 2
1-rme 4
ou azﬂ 82ws
. a axz 0x2
X ov azw 62W
Ew (=1 = (% >+ /(2) > [
oy oy y
Vx
vl | ou oy o’w, 50w, )
dy ox Ox0y Oxdy
owy
0
g, =0, Tz :_f(Z) o :
Vye) 0z |Ow
y

The strain and stress fields in a medium are linked by
constitutive laws; these laws characterize the mechanical
behavior of the medium. Consequently, the linear elastic
relationship for an FGM plate can be written in the follow-
ing matrix form:
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—A—SSDT
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—¥— Present Model
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Fig. 2 Convergence of the proposed functionand its derivative with
those of (FSDT), (TSDT), (SSDT) and present models

o, ¢, (z) ¢,(2) 0 0 Co(2)] (e,
o, C,(z) C,(2) 0 0 Cy(2) | e,
Tr=| 0 0 Cul2) C(z2) 0 |37, (6
T, 0 0 Cs(z) Ciu(2) 0 .
) [Co(2) Cu(z) 0 0 Cul(2)]lr.

The elasticity relationships are generally expressed as
a function of the rigidity constants which themselves are
expressed in terms of the elasticity modulus that are deter-
mined by mechanical tests in which the material used is
subjected to a particular stress and deformation state. The
terms C,(z) represent the stiffness constants which depend
on the constituents of the FGM material.

C”(z) = sz(z) = IE_(jg ,Chy (z):le_—E/Zz)
C44(Z):C55(Z):C66(Z):% ™

Furthermore, the parameters £(z) and v are the Young's
modulus and Poisson's ratio of the material; they depend
on the characteristics of the FGM plate. The mechanical
properties of the FGM plate containing ceramic and metal,
which are uniformly distributed, are given by the power
law hypothesis which is written as the general mixing rule
under the following form:

z 1Y
P(z)—(Pc—Pm)(;+5j +P. (8)
where: P denotes the effective material property, and the
subscripts ¢ and m stand for ceramic and metal, respectively.

In addition, the equations expressing Young's modu-
lus E(z) and density p(z) of the material of a functionally
graded plate can be written as follows:

E(z)=(E. Em)(%+ljp +E |

2

©

h 2

r(z)=(p. —pm)(i+ljp + Py

where: E, E,, p, and p,, are Young's modulus and volume
densities corresponding to ceramic and metal, respec-
tively; p represents the exponent of the volume fraction
which takes only values greater or equal to zero (0 < p <o)
The value zero corresponds to a ceramic plate.

In our study, the Poisson's ratio is assumed to be constant.

3 Non-local viscoelastic theory

3.1 Nonlocal elasticity theory

Given the importance of the intermolecular attractions of
the material, the theory of nonlocal effect developed by
Eringen suggests that the stresses at a reference point x in
the body depend not only on the deformations at x but also
on the deformations at all points of the body (scale effect).
The constitutive relation of the elastic constitutive law of a

nanosolid is expressed by the following relation: (10)
O-AX O-)’(
G»" O'”
T, —yV2 T, (=
TY T’r
Txy Txy
¢, (z) c.(z) o o ¢ ()]
c,(z) c,(z) 0 0 c,(2) s,
0 0 c,(z) c.(2) 0 v
0 0 c.(z) c.(2) 0 v,

¢, (z) 0 0 ¢, ()],



The term V* is the Laplace operator in two-dimensional
Cartesian coordinates. It is expressed by:
0
Vz = —2 + —2 .
ox” Oy
The parameter u = (eoa)2 is the nonlocal parameter
which depends on the material constant e, and the internal
characteristic a (lattice parameter, crack length or molec-

ular diameters).

3.2 Theory of viscoelasticity

The theory of viscoelasticity can take into account materi-
als capable of storing and dissipating mechanical energy.
On the basis of the Kelvin-Voigt model on elastic mate-
rials with viscoelastic structural damping coefficient 7,
the rigidities C;, which depend on Young's modulus £ and
shear modulus G are replaced by the operators, c”.(nr,g).
Therefore, Eq. (6) can be written again as follows:

(1n
O C”(z) Cy (Z) 0 0 16 (Z) &
Oy N Cy (Z) Cyp (Z) 0 0 26 (Z) &
Ty :(1+77_) 0 0 Cu (z) Cys (Z) 0 Yy
ot
™ 0 0 Cis (Z) Css (Z) 0 Ve
Ty Cm(z) Cs (Z) 0 0 Cs (z) Vs

The theory of the nonlocal viscoelasticity principle,
previously developed by several researchers, initially
assumed a combination of the models of nonlocal elas-
ticity and viscoelasticity. Therefore, for nonlocal visco-

elastic plates, the nonlocal viscoelastic stress field can be

expressed in the following form: (12)
o ¢, (z) ¢, (2) 0 0 c, ()] (-,
o, c. (z) c (=) 0 0 c ()],

(1-pv*)q7, :(1+ni 0 0 c, () ¢, (=) 0 v,
T, “ 0 0 c. () ¢ (2) 0 v,
T, c (z) c (2) 0 0 c ()],

4 Equilibrium equations

To establish the equations governing the equilibrium of
an FGM viscoelastic nanoplate resting on the Winkler-
Pasternak viscoelastic foundation, the principle of virtual
work (Hamilton's principle) can be used in the following

form:

i
IHdz—I(éU 5K —6W,,)di=0. (13)
lo f

In this case, the virtual strain energy may be expressed as:

oU = J..”‘(GHSEU + 0"1‘_58”‘ + Txy57.xy +7 0y, + Tyﬁyyz )dV . (14)
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By substituting Eq. (5) into Eq. (13), the virtual strain
energy becomes:

2
N[ Q) a5 T | s 5[ O
Ox ox’ ox?
2
+N,,8 av‘)] M, aw,,
oy 6

N 5| o Do) opy s
“ oy ox Y 6x6y

+QX28 [ aw ] QVZS [ j
oy

where: N, M; and O, are the normal forces, bending

moments and shear forces, respectively. The unusual

:'[,j

(15)

term S, has the dimension of a moment that is induced by
(f(z)—2) in the displacement field; it is defined as:

oy [l,z,f(z)z,afa—(zz)J dz . (16)

'—.N\:-

( U’MZI’SU’Q’/)

SR

In addition, the expressions of local elastic forces and

moments are given by: (17)
N 4, 4, A, B, B, B, Elﬂ B]; B/ "

Nyv AIZ A22 A26 BI?. BZZ BZG Bl; BZ/Z BZ/S v&) .

N“ Ao Ay A B By By Blf6 Bzfe Bs,s Uy,
M, B, B, B, D, D, D, D D D[l -w.
M, +=\B, B, B, D, D, D, D, D) DL Wy
M"" Big By By Dig Dy D DI{S Dz/s Dsfs W
R G T A T
o | B2 Bh B Dy Dy Dy Ry By Bl

R A T A A YA A A
{Qﬂ}: Ay Al {W} )

Similarly, the elements of the matrix given by Egs. (17)
and (18) can be expressed as: (19)

l]’ l]’ I]’

{4,.8,.0,. B/} = [, (:){1L22 1 (2) -2} 1j=1.2.6,

{pf.Ff}=]c,(z {
af}=]c,(2) (%(ZZ)]Z d i, j=4,5.

On the other hand, the kinetic energy is defined as follows:

z),(f(z)—z)z}dz i,j=1,2,6,
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aW
az

4
ot

= (20)

2 2
lﬂ j v + + av
2 ot
4
When Eq. (1) is substituted into Eq. (20), the virtual
kinetic energy becomes:

2
11%_126% 58u0
ot Oxot Gxat
o= f
il g, Ouy o* wo . s 62wb
ot 8x6t 6x8t OxOt
%_ o Wb S
o S 8x6t axaz
2
[1%_ 2a . +[4 (ﬁvo @n
ot 0oyot Oyot
2 2 2
2%_6Wb+lsawséawb N
ot  0Oyot oyot oyot
2 2
1461/0 Sawb ]66Ws 5aws +
ot Ovot oyot oyot
ow, Oow, ow,  Ow;
L =2+ =15 =L+ av.
l[at GIJ[GI aﬂ

Where: 1, 1, I, 1,, I and I, are the mass inertias which

are defined by: (22)

{1}

Z,Z(f(Z)—Z),(f(Z)—Z)2}dZ,i =1..6.

e I

p(z){l,z,zz,f(z)—

|
SRR

The virtual work done by the viscoelastic Winkler-
Pasternak foundation is given by:

N 4, 4, 4, B,
N 4, 4, 4, B,

w
N o A16 A26 AGG B 16
M B, B, B, D,

0
2
(l_yv ) Myy _(14_77;) B, B, Bze D,
M

e Bm BZG BGG D16
Sxx f f f !
B, B, B, D,
S-"y Bf Bf Bf Df
S 12 2 26 12
v 7 y f 7
| By By By D

oW, = [[ £.(x.v) 5w
A

&
W, =” KWk | <+
y Ploxr o2

where: k, k, and ¢, are, respectively, the Winkler coeffi-

cient, Pasternak coefficient and damping parameter.

(23)

ow
jW+Cd a—j5WdA,
t

By performing integration by parts of Eq. (15), Eq. (21)
and Eq. (23), one obtains the equations of motion used in
the refined FGM plate theory. These equations may be
applied to homogeneous thin or thick laminated plates.
They take into account the transverse shearing effect.

Therefore:
N, ON,  d'u, 3w,  w,
Suy + =L——-1, Sty S
Ox oy ot oxot Oxot
S aNch oN wo_ azi _ 63Wh 6 W
Vo + =1 ) +
Ox oy or? oyor? 6y612
oM M, M, o* 8*
Swy i —= 42 = 2= f 41, P M
ox? oxdy o’ o or
3 4 4
L 0 u, 5\/0 1, ow, 0w, .
P oyor? axorr oy’or
4 24)
o'w, 6 W,
I 5
ox 612 6y or?
oS s, oS, & 0.,
6WS: xx 2 Y 4 Yo sz_ Q,V :]re_'_
o’ Ox0Oy 8y2 ox oy
2 2 3
I 6Wb+6ws o, 0 u, 6v0 B
or? or? 6x6t2 oyor?
o'w o'w o'w o'w
[5 . b 5 b +16 5 s 5 s .
ox“ot* Oy or? ox“ot* oy or?
7 b 7]
Blé Bll BIZ BIG
uO x
f f f ’
B, B, B, B, v
0.y
f f !
866 Bm BZ6 Bos u, +V0x
f f f
D16 Du D12 Dm W
/ / 7 _
Dzs DIZ Dzz D26 W”’)’y (25)
! ! f 2w,
D66 DIG D26 Dse b
ba ! ! ! Wex
DI6 El F;Z Eﬁ
! ! ’ f Yoo
Dy F, F, I
2wv o
f f ! ! :
Dy Fy Fy Fyl




The internal forces with viscoelastic and nonlocal
parameters can be expressed in the following form:

{sz}_yvz {Qﬂ}:(m’ B ) Ay Al {w} 26)
0, 0,. ot)| afs  Als |[Wsy

The equations governing FGM viscoelastic nanoplates
resting on a viscoelastic medium having three parameters
in the case of free vibrations, in terms of displacements,
are obtained by introducing the constitutive Eq. (25) and
Eq. (26) in the equations of equilibrium (24). This makes it
possible to obtain the four fundamental relations of the refi-
ned theory of nonlocal viscoelastic plates of FGM materials:

o* [1 d%u, _1, *w, 63wsj
1

ouy : U— +1,
RS o T P aa e

2 2 3
Al 0 s 0°u, _1, *w, ‘1, 0 ws2 N
8 or oxor* oxOt
o*u o'w ow,
( 5) A, 6x20 - B, 3” + B/ =+
I+— +
ot *v, Y o*w
- B b A s 27
Paoy Caltor 7 oplox 7
2 2 3
Agg ¢ “20 + 2% +2Bg 0 W”2 +
(1 . 0 j oy Ox0y Ox0y
ot -~ 53WS
66 oxoy?
%u o*w o*w
=] —0_ bip s
B R R e
2 2 3 3
5Vo,ua(]8v0 126w172+[46w32j
al\ ot Caarr oy
o D, v, Pw, N *w, .
atl e oot overl
&%u, _B o*w, I &*w,
(1+ aj Cady ol Voca
2 3 3
M sty O g, OV, g O ©8)

—-By, > + 55 Y

2 2 3
66(6 u, +8 VOJ—ZB% o°w, N

4 2
0 oxdy @ Ox~oy
1+§ .
28/ 2 -
Ox~0y
v, *w, 0w
“h—/ 2 TR PR 2
ot oyot oyot
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5 Analytical solution

In general, rectangular plates are classified according to
the type of support used. The goal is to find the analytical
solutions of Egs. (27) to (30) under various boundary con-
ditions imposed on the lateral edges, as shown in Table 2.
The edges of the plate are either embedded or simply sup-
ported. The boundary conditions used are:

Simply supported plate (S) along direction x:

at x=0,a:

oy, =W, = S =0
=M=,
.Nxx:Alla + 4 6u0+% _Bna v; +Blf18W
Ox oy  Ox ox Ox
wa, 20 _p il % _op S ow, v, apr M g
oy oy Oyox oy Oyox
’ 31
‘M —Bllau B]@ 6u0+6v0 D 3142/ +lelaw + ( )
ox dy Ox ox ox
v, *w, o*w ow, ow,
275, -Dyp,—>-2Dg—* —° D/ +2D1/6 =0
Y Oy Oyox oy 0yox
.va:Biq%"'Bi’; %+% _Dfa 5 +F/ 6W
Ox oy  Ox Ox Ox
2
Blfzaaﬁ—[)lg—a V?’—lef(a %y mf M agr D% g
y oy 0yox oy Oyox
Simply supported plate () along direction y:
at y=0,b:
ow,
=w, =—% =0
o= Ox
N, =4, SR g + Ay Oy |, O B, o’ ¥, By, ow,
Ox oy Ox Ox Ox
v, *w, o*w, ow,
+dpy =By~ = 2By —— + B, 2% A A
oy Oyox oy ayax
ou, Ouy O, *w, s ow, (32)
M, =B, 67; + By (0 + 8):} —Dy, Py +Dy, .
o o*w, *w, - ow, - ow,
BZZ 670 - D22 2b 2D26 b + D2/2 =+ 2D2/6 S =0
y oy QOyox oy dyodx
ou, Ouy OV, - %w, ow,
_nf / S s / s
'Syy_Blzaijf 326(60 +a;]— i axz + F p +
oV, o*w, - 0w, - Ow, ow,
B, 5—0 -D§,=——t-2Dj ~—L+Fj, 2F =0
i oy 0Oyox 0 dyéx
Embedded plate (C) (33)
ow,  Ow,
at x=0,a,y=0b uy=vy=w,=2t="2=0
ox Oy

Table 2 The admissible functions X,(x) and Y,(y) as given by
Kiasat et al. [32] and Sobhy [38]

BC Xi(x) Yi(»)

ssss [ sin (o) sin(By)

ccce {7} 1-cos(2ax) 1-cos(2By)
CCsSs D 1-cos(2ax) sin(By)

CSCS D cos( jfco (%j COS[ ﬁyjfcos( ﬁyj
CSSS I“‘_“‘T cos[ J—cos( ] sin(By)

CCSC i‘::j 1-cos(2ax) cos(%ﬁy)—cos[%ﬁy]

The Navier method is used under the specified boundary
conditions to find the analytical solution to Eqgs. (27)—(29)
and (30). The displacement functions, which satisfy the
boundary conditions, are expressed as the following

Fourier series:

oxX,(x)

U.. Y.

Uy v Ox J (y)
0 00 oY. (y)

Vol _ Vo X (x)—2 L
" —21; )= e (34)
", Wy Xi ()7 ()

WX (x)Y;(7)
The quantities Uy, V,, W, and W, refer to the ampli-

tudes, and A corresponds to the complex eigen-frequency
of the (ith, jth) vibrational eigen mode, with a = in/a,
p=in/b

Using Eq. (34) in the equations of motion Egs. (27) to (30)
gives, for any fixed values of i and j, in the case of free
vibrations, the eigenvalue equations can expressed as:

Ly Ly Ly
Lys Loy Vij
Ly Ly Ly Ly || Wy
Ly Ly Lyg Ly /4

= {0} (35)

It is worth noting that [U,, V,, W,,;, W,,] is the displace-
ment, and [L] is the global matrix of the system. The ele-
ments L, = L, of the coefficients matrix are given in the
Appendix. For non-trivial solutions of Egs. (27) to (30),
the following determinants should be set equal to zero to

find the eigenfrequency A:



Det ([L])=0 (36)

Note also that the frequency and parameters used in
this study are dimensionless and can be written in the fol-
lowing form:

3 (37)
2
c a D - E.h

C,=—49 _ p=——
‘= JphD, 12(1-v?)

Finally, the dimensionless eigenfrequency may be
expressed as follows:

@ =—Q(§iiﬁ),9=za2\/gz’ (38)
c

Here Q and ¢ are respectively the dimensionless
undamped frequency and damping ratio.

Regarding the expression under the square root 5@ ,
three different cases may be considered:

0 < ¢ < 1, in the case of underdamped vibration of
nanoplate,

¢ =1, in the case of critically damped vibration of
nanoplate,

¢ > 1, in the case of overdamped vibration of nanoplate.

6 Comparative studies

In order to validate the suggested model, the authors
decided to compare the results obtained with those previ-
ously found by several other researchers. The first exam-
ple involves three natural frequencies, given by the pres-
ent model for various values of the nonlocal parameter (u),
which are compared with those given by the nonlocal high-
er-order theory for simply supported plates using Reddy's
third-order shear deformation theory (TSDT) [25], as pre-
sented in Table 3.

The approach followed here is pretty straightforward.
Indeed, it was revealed that for the first vibrational mode,
(€, second vibrational mode (£2,,), and third vibrational
mode (Q;;), and for any nonlocal parameter value, this
method gives very precise results. Moreover, it is import-
ant to mention that the findings obtained by this method
agree very well with those obtained by the theory devel-
oped by Aghababaei and Reddy (Higher-order shear defor-
mation theory or TSDT) [25].

On the other hand, the first natural frequencies of the
exponentially graded material (EGM) sandwich plate
lying on elastic foundations, studied in the present article,
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Table 3 Comparison of non-dimensional frequenciesof simply
supported plate between fundamental frequencies given by present
model and those of Aghababaei and Reddy (TSDT) [25]
(E=30x10°v=03,a=1,a/b=1,alh=10)

Frequencies — p TSDT  FSDT  Classical Present study
0 0094  0.093 0.096 0.093
1 0085 0085 0.088 0.085
20079 0079 0.082 0.079
u 30074 0074 0.076 0.074
4 0070 0070 0.072 0.070
50066  0.066 0.068 0.066
0 0346 0341 0.385 0.341
1 0259 0255 0.288 0.255
2 0215 0213 0.240 0.212
P 30188 0.186 0.210 0.185
4 0170 0167 0.189 0.167
5 0156 0154 0.173 0.153
0 0702 0689 0.867 0.684
1 0421 0413 0.520 0.410
2 0329  0.323 0.406 0.320
s 30279 0274 0.345 0.271
40247 0242 0.305 0.239
50223 0219 0.276 0.217

under different boundary conditions and for different
length-to-thickness ratio values, are compared with those
suggested by Sobhy [38], as displayed in Table 4. It is
worth noting that the values obtained were for inhomoge-
neous plates (p = 0.5 and p = 3.5) and homogeneous plates
(p = 0) resting on elastic foundations, under any bound-
ary conditions. It is important to mention that the results
obtained are quite precise.

7 Numerical results
For the purpose of investigating the effect of the viscosity
parameter, nonlocal parameter, damping coefficient and
material properties on the vibration response of an FGM
viscoelastic nanoplate (metal and ceramic: (Al / A1203)
lying on a viscoelastic foundation, a parametric study was
performed on a square plate made of the following mate-
rial and having the geometric characteristics given below:
Ceramic: alumina: £, = 380 GPa, p, = 3800 kg/m’, v=0.3
Metal: aluminum: £, =380 GPa, p, = 3800 kg/m’, v=0.3
Fig. 3 displays the variation of the damping ratio ¢ as
a function of the nonlocal parameter x for these damping
coefficients of the viscoelastic foundation C, = 0 and 60
and for K, = 50 and K, = 10, with a material index p = 0,1
and 5 under the boundary conditions (SSSS, CCSS and
CCCC). Note that for the three boundary conditions and
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Table 4 Comparison of natural frequencyof EGM sandwich plate with those of Sobhy [38] (b/a =2, K, = 50 and K, = 10)
p=0 p=05 p=35
BCs Sobhy [38]
alh=5 10 20 alh=5 10 20 alh=5 10 20
FSDT 1.5386 1.5942 1.6113 1.3971 1.4304 1.4399 1.3361 1.3589 1.3653
SSSS TSDT 1.5387 1.5947 1.6113 1.3989 1.4310 1.4401 1.3375 1.3594 1.3655
SSDT 1.5388 1.5947 1.6113 1.3990 1.4310 1.4401 1.3376 1.3594 1.3655
Present 1.5387 1.5947 1.6113 1.3989 1.4310 1.4401 1.3374 1.3594 1.3654
FSDT 2.2578 2.5112 2.5997 1.9476 2.0880 2.1341 1.7472 1.8273 1.8519
CCss TSDT 2.2590 2.5114 2.5997 1.9610 2.0930 2.1355 1.7622 1.8320 1.8532
SSDT 2.2596 2.5115 2.5998 1.9614 2.0932 2.1356 1.7630 1.8323 1.8533
Present 2.2590 2.5114 2.5997 1.9608 2.0930 2.1355 1.7617 1.8318 1.8531
FSDT 2.3359 2.6010 2.6940 2.0111 2.1586 2.2072 1.8022 1.8847 1.9107
ceee TSDT 2.3372 2.6012 2.6940 2.0250 2.1638 2.2087 1.8157 1.8895 1.9121
SSDT 2.3379 2.6013 2.6941 2.0255 2.1640 2.2088 1.8165 1.8898 1.9121
Present 2.3372 2.6012 2.6941 2.0248 2.1638 2.2087 1.8151 1.8893 1.9120
FSDT 2.2176 2.3921 2.4491 1.9319 2.0302 2.0610 1.7653 1.8242 1.8421
CSSS TSDT 2.2181 2.3922 2.4493 1.9395 2.0330 2.0618 1.7720 1.8267 1.8428
SSDT 2.2185 2.3923 2.4493 1.9397 2.0331 2.0618 1.7724 1.8268 1.8428
Present 2.2182 2.3922 2.4493 1.9394 2.0329 2.0618 1.7717 1.8266 1.8428
FSDT 2.3323 2.5262 2.5904 2.0265 2.1364 2.1712 1.8456 1.9117 1.9319
CSCS TSDT 2.3328 2.5262 2.5904 2.0349 2.1395 2.1720 1.8531 1.9145 1.9327
SSDT 2.3332 2.5263 2.5905 2.0352 2.1396 2.1721 1.8535 1.9146 1.9327
Present 2.3329 2.5263 2.5904 2.0348 2.1395 2.1720 1.8528 1.9144 1.9327

for C, = 0, the damping ratio ¢ decreases as the nonlocal
parameter pand the index p go up. For p = 0, i.e. for an
isotropic ceramic material, ¢ is equal to 0.0737, 0.1198 and
0.1533, respectively, for the boundary conditions (SSSS,
CCSS and CCCC) with a value of 4 = 0. However, it is
important to mention that ¢ decreases and can take the val-
ues 0.0525, 0.0813 and 0.1001, respectively, when the coef-
ficient u = 3.

For C, = 60, the damping ratio ¢ increases propor-
tionally with the growth of the nonlocal parameter ¢ and
index p, under different boundary conditions. In general,
for a value of C, equal to zero, there is a subcritical damp-
ing. However, for C,= 60, the damping becomes over-crit-
ical except for an isotropic plate embedded on all four
sides (CCCCQ).

Fig. 4 shows the variation of the damping ratio ¢ of
a plate (SSSS) supported by a viscoelastic foundation
(C,=10, K, =50 and K, = 10) as a function of the nonlo-
cal parameter y, for the values 0, 1, 5 and 10 of the mate-
rial index p and damping coefficients of the viscoelastic
material w =0 and 0.01. It is noted that the damping ratio &
increases proportionally with the nonlocal parameter u,
the material index p, and the damping coefficients of the
viscoelastic material y. Here the system oscillates, and the
amplitude of oscillation gradually decays to zero. In this
case (¢ < 1), the system is called underdamped.

Moreover, the results confirm the advantage of using com-
positional gradient materials. It is worth noting that as the
material index p increases (p = 10), like in the case of a pure
metal, the damping ratio increases too (& = 0.3422); how-
ever, it is the reverse case when the material index decreases
(p = 0), like in the case of pure ceramics, where the damping
ratio decreases (&= 0.2754), with 4 = 1 and y = 0.01, as can
be seen in Fig. 4(b). Consequently, a low damping factor
indicates a decreased capacity to dissipate energy.

Figs. 5, 6 and 7 illustrate the effect of the damping coef-
ficient of the foundation on the free vibration of the FGM
square nanoplate simply supported (SSSS), for different
Winkler (K, = 10, 50,100,150) and Pasternak (K, =0, 5, 10)
rigidities values of the foundation. In addition, the curves
(@), (b) and (c) represent the variation of the imaginary fre-
quency, real frequency and damping ratio, respectively.
This variation increases progressively with the foundation
parameters up to a critical point (the system goes back to
its equilibrium position very quickly, without oscillating).
As illustrated in Fig. 6, the vibrating system is damped
for K, = 5 and K, = 10, and the damping coefficient C,
of the foundation is equal to 27.669. However, in Fig. 7,
for K, = 10, the damping coefficient C, of the foundation
is equal to 33.085, with K, = 10. Note that the increasing
value of the damping coefficient is due to the increasing
stiffness of the foundation.
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Fig. 4 Variation of the damping ratio ¢ of a plate (SSSS) as a function
of the nonlocal parameter u for different values of the volume fraction
index p and the damping coefficient ¥ of the viscoelastic material

Beyond this point (¢ > 1), the real part of the frequency
increases and admits two solutions for the same value of
each of the three parameters C,, K, and K|, and the damp-
ing becomes over-critical; the imaginary part of the fre-
quency tends towards zero . In this case, the plate oscil-
lates more slowly towards the equilibrium position than it
does in the case of critical damping.

Similarly, Figs. 8 and 9 show the evolution of the
non-dimensional frequencies of free vibrations for dif-
ferent values of the nonlocal parameter x4 of square FGM
nanoplates simply supported SSSS with a geometric ratio
a/h respectively equal to 5 and 20, with stiffnesses of the
foundation K, =50 and K, = 10, as a function of the damp-
ing coefficient of the foundation C,. It has been observed
that the real part of the non-dimensional natural frequency
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increases proportionally with the nonlocal parameter y;
however, the imaginary part is inversely proportional to
this parameter. The additional damping reduces the nano-
plate stiffness. For a geometric ratio a/h = 20, the values of
the non-dimensional frequencies are too close for the dif-
ferent values of the nonlocal parameter u, since the effect
of the transverse deformation on these frequencies is neg-
ligible (Love-Kirchhoff theory). On the other hand, for
a geometric ratio a/h = 5 (thick plate), the effect of shear-
ing is significant which causes an increase in the non-di-
mensional frequency that is represented by a significant
difference between the curves as a function of C, up to the
critical point. For example, in Fig. 8(b), the (a/h = 5) for
i = 4, the critical point is reached for a value of Cd equal
to 31.646, and in Fig. 9(b) (a/h = 20) for u = 4, the critical
point is reached for a value of C, = 35.845.

Figs. 10, 11 and 12 show the effect of the damping
coefficient C, of the foundation and the viscosity y of the
material on the non-dimensional free vibrations of simply
supported square FGM nanoplates, for different volume
fraction indices p. Curves (a), (b) and (c) respectively show
the variation of the dimensionless imaginary frequency,
dimensionless real frequency and damping ratio. The vis-
cosity w of the material induces a considerable reduction
in the real and imaginary parts of the dimensionless fre-
quencies until a critical point is reached, where the dimen-
sionless imaginary part of the frequency becomes zero.
At this point (¢ = 1), the nanoplate is critically damped and
does not oscillate.

For example, in Fig. 10(c), for an isotropic material
(ceramic), the viscosity value is y = 0.075, and the critical
point is reached for C, = 25.75. Note also that the critical
point can be attained when C, = 42.934, for the viscos-
ity value w = 0.01. This behavior is certainly due to the
decrease in the viscoelasticity of the material y.

With regard to Fig. 13, it shows the variation of the
damping ratio ¢ as a function of the damping coefficient
C, of the viscoelastic foundation, for an FGM nanoplate,
under various boundary conditions. It is easy to notice
also that for a simply supported plate (SSSS), the damping
is subcritical for a viscoelastic coefficient C, < 35. On the
other hand, for plates under CCSS and CSSS boundary
conditions, these viscoelastic coefficient values are greater
and may be equal to 42. For more rigid plates, under CSCS
and CCCC boundary conditions, the damping remains
sub-critical for C, < 48.34.
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8 Conclusions

The present study aims at investigating the free vibration
of an FGM viscoelastic nanoplate, lying on a viscoelastic
foundation, using the Kelvin-Voigt model. A new model,
which takes into account the higher-order transverse defor-
mation theory, was utilized to develop nonlocal equilibrium
equations that are based on Hamilton’s principle, under
various boundary conditions. The results obtained are pre-
sented for the purpose of showing the impact of different
parameters on the free vibration of the FGM nanoplate.

The new model was validated based on studies previ-
ously carried out by Aghababaei and Reddy et al. [25] and
Sobhy [38]. The findings in this article turned out to be
in good agreement with those reported by the aforemen-
tioned authors.

The dimensionless frequency increased when the
side-to-thickness ratio (a/h) of the FG nanoplate went up.
In addition, the effect of the transverse deformation was
clearly noticed for thick nanoplates.

The vibration eigenfrequencies of simply supported FG
nanoplates (SSSS) were smaller than those of the embed-
ded ones (CCCC). It is interesting to note that for plates
with intermediate boundary conditions (CSSS, CCSS and
CSCS), the eigenfrequencies exhibited intermediate values.

The functionally graded (FG) nanoplates were better
damped than the local FG plates (u = 0); this is certainly
due to the fact that the nonlocal parameter reduces the
structure stiffness significantly.

In the presence of an elastic foundation, the stiffness
of the FG nanoplates rises, which leads to a significant
increase in the vibration eigenfrequency.



The findings of the study indicate that the predominant
real part of the vibration frequency of the FGM structures
is significantly influenced by the viscoelastic parameter of
the material and by the damping coefficient of the foun-
dation as well. In addition, it was found that the real part
of the frequency decreases as the structural and external
damping values of the foundation go down.
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