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Abstract

Based on the discrete element method and the proposed virtual slicing technique for three-dimensional discrete element model, 

random pore-structural models of soil-rock mixtures are constructed and voxelized. Then, the three-dimensional lattice Boltzmann 

method is introduced to simulate the seepage flow in soil-rock mixtures on the pore scale. Finally, the influences of rock content, 

rock size, rock shape and rock orientation on the simulated permeability of soil-rock mixtures are comprehensively investigated. 

The  results show that the permeability of soil-rock mixtures remarkably decreases with the increase of rock content. When the 

other conditions remain unchanged, the permeability of soil-rock mixtures increases with the increase of rock size. The permeability 

of soil-rock mixtures with bar-shaped rocks is smaller than that of soil-rock mixtures with block-shaped rocks, but larger than that of 

soil-rock mixtures with slab-shaped rocks. The rock orientation has a certain influence on the permeability of SRMs, and the amount 

of variation changes with the rock shape: when the rocks are bar-shaped, the permeability is slightly decreased as the major axes 

of these rocks change from parallel to perpendicular with respect to the direction of main flow; when the rocks are slab-shaped, 

the permeability decreases more significantly as the slab planes of these rocks change from parallel to perpendicular with respect 

to the direction of main flow.
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1 Introduction
Soil-rock mixtures (SRMs, for short) formed since the 
Quaternary Period are a type of extremely inhomoge-
neous geomaterial composed of coarse rock fragments, 
fine grained soil with pores [1, 2]. SRMs are commonly 
found in most geological bodies such as slopes, fault zones 
and dam foundations [3, 4]. When analyzing engineering 
problems such as the stability of slopes undergoing rain-
fall infiltration, water inrush of fault zones during tun-
nel excavation and leakage in dam foundations, the per-
meability of SRMs needs to be determined beforehand. 
Therefore, it is of great significance to gain insight into the 
permeability of SRMs.

In recent decades, some scholars have studied the per-
meability of SRMs through in-situ tests, laboratory tests 
and numerical simulations. Gao et al. [5] measured the per-
meability coefficient of SRMs through in-situ water injec-
tion tests. Zhou et al. [6] and Wang et al. [7] analyzed the 

influences of such factors as rock content and confining 
pressure on the permeability coefficient of SRMs through 
laboratory tests.

Some of the limitations confronting physical tests, such 
as time-consuming, limited sample size and difficulty in 
directly observing the internal seepage field, can be effec-
tively released by numerical simulations. As the most pop-
ular numerical simulation method in geotechnical engi-
neering, the finite element method has been used in several 
studies to investigate the permeability of SRMs [8, 9]. 
However, the complex internal structure of SRM makes 
it time-consuming and difficult to generate high-quality 
finite element meshes. To this end, Chen et al. [10] intro-
duced the numerical manifold method based on regular 
grids to determine the permeability coefficient of SRMs.

The numerical simulations of seepage in SRMs need 
further improvement in several aspects. First, the known 
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numerical models are mainly developed for the contin-
uum, while SRMs are typically composed of discrete 
granular materials. Second, the previous numerical sim-
ulations are two-dimensional, but seepage occurs in the 
three-dimensional pore space.

Compared with the traditional numerical simulation 
methods, the lattice Boltzmann method (LBM) is a meso-
scopic simulation method, which improves the insuffi-
cient calculation accuracy caused by the assumption of 
macro-continuity and has no limitations of the micro-mo-
lecular dynamic models in the time and space. The LBM 
has many advantages including clear definitions of physi-
cal conditions, simple implementation of algorithms, con-
venient boundary processing, and easy parallelism [11]. 
Pore-scale flow simulations based on the LBM and the 
pore-structural model of porous medium have been devel-
oped to study the micro-mechanism of macroscopic perco-
lation [12–21]. However, to our knowledge, three-dimen-
sional LBM based simulation of the seepage in SRMs has 
not been reported yet.

The LBM-based simulation of seepage requires the 
construction of pore-structural models of the SRMs. 
Structure models of SRMs are generally constructed with 
two classes of methods: the measured structure modeling 
methods based on digital image processing [1, 9] and the 
random structure modeling methods [4, 8, 10]. The for-
mer can more realistically describe the meso-structural 
characteristics of the physical models of SRMs, but is 
difficult in independently changing a specified structural 
parameter, while the latter can quickly generate a specific 
structure model as required. Among the existing random 
structure modeling methods, the granular discrete ele-
ment method (DEM) can describe the components with 
the heterogeneous and discontinuous characteristics in 
SRMs. The DEM modeling method has been widely used 
to study the strength and deformation characteristics of 
SRMs [22, 23] and to simulate the seepage of porous 
media in combination with the LBM [15, 19].

In this study, three-dimensional random pore-structural 
models are constructed based on the DEM for the SRMs 
with different rock contents, rock sizes, rock shapes, and 
rock orientations. Then, these pore-structural models of 
SRMs are discretized with the proposed virtual slicing 
technique. Finally, the pore-scale seepage in these SRMs 
is simulated based on the three-dimensional LBM, and the 
influences of various factors are analyzed on the permea-
bility of the SRMs.

2 Three-dimensional discrete element models of SRMs
2.1 A brief introduction to DEM
In this study, the pore-structural models of SRMs are gen-
erated with the DEM [24], which can model the movement 
and interaction of assemblies composed of rigid spherical 
particles. The calculations performed in the DEM alter-
nate between the application of Newton's second law to 
the particles and a force-displacement law at the contacts. 
The Newton's second law is used to determine the motion of 
each particle arising from the contact and body forces act-
ing upon it. The force-displacement law is used to update 
the contact forces arising from the relative motion at each 
contact. The commonly used force-displacement law is the 
spring-viscous damping model of linear contact, and the 
shear contact force also observes the law of friction. 

In the DEM, a common way to make an irregular shape 
is by using the clump logic. A clump is composed of sev-
eral spherical particles with their relative positions kept 
fixed and the contact calculation between them is skipped 
during calculation cycles, which can save computing time 
greatly [25].

2.2 Schemes of DEM modeling for SRMs
As described above, SRMs consist of coarse-grained rocks 
scattered in fine-grained soil matrix. It should be noted 
that the called "rock" and "soil" in SRMs both are relative 
to the studying scale. That is, the "soil" in SRMs is only 
one relative conception, which is different from the granu-
lar soil, such as "silty soil", "clay" and so on, in the general 
conception. The size range of the "soil" changes accord-
ingly with the varying of the studying scale, and the upper 
limits may range from a few millimeters to a few centi-
meters, or even tens of centimeters. Xu and Medley [1, 2] 
found that SRMs are scale-independent and suggested that 
the soil/rock threshold  of SRMs can be expressed as 

d L
S/RT C

= 0 05. , (1)

where LC is the engineering characteristic size of the 
problem studied, for example, it is the slope height for 
slope engineering and the sample diameter for the indoor 
mechanical tests.

Following the laboratory seepage experiments, the 
boundary wall in the DEM model is set to be a cylinder 
with a diameter of 0.3 m and a height of 0.9 m. Thus, the 
soil/rock threshold of SRMs can be calculated as 0.015 m. 
To save the computational time of the subsequent LB sim-
ulations, the soil particles are simplified as spheres with 
diameters of 0.015 m.
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The major objective of this paper is to study the influ-
ence of rock content, rock size, rock shape and rock ori-
entation on the permeability of SRMs. The specific defini-
tions and ranges of these parameters are considered in the 
following modeling schemes.

(1) The rock contents (CR) are 20 %, 30 % and 40 %. 
Here, the rock content is defined as the ratio of the mass 
of all rock particles to the total mass of the SRM sample. 

(2) The rock shapes are block-shaped, bar-shaped and 
slab-shaped, as shown in Fig. 1. The rock shape is charac-
terized by the ratio of the three axial lengths of the rock: 
a block-shaped rock is represented by 1 sphere with the 
ratio of 1 : 1 : 1; a bar-shaped rock is represented by a clump 
with the ratio of 1 : 1 : 3, which is composed of 3 spheres; 
a slab-shaped rock is represented by a clump with the ratio 
of 1 : 3 : 3, which is composed of 13 spheres.

(3) The rock sizes (D) are 0.03 m, 0.04 m, and 0.05 m. 
The sizes of a bar-shaped and slab-shaped rock both refer 
to the diameters of the equivalent spheres with the same 
volumes.

(4) The rock orientations (θ) are 0°, random and 90°. The 
orientation of a bar-shaped rock refers to the angle between 
the major axis of this rock and the main direction of flow. 
The orientation of a slab-shaped rock refers to the angle 
between the slab plane (perpendicular to the minor axis) 
of this rock and the main direction of flow. "θ = random" 
denotes that the rock orientations are random values.

Additionally, when studying the influence of such fac-
tors as rock content on the permeability of SRMs, the 
compactness of samples should be controlled and remain 
unchanged. The general practice of keeping the density of 
soil matrix in the SRM samples to be constant [7, 8, 10] is 
also followed in this study, which is implemented by set-
ting the porosity of soil matrix to be 0.40.

2.3 Methods of DEM modeling for SRMs
A discrete element model can be constructed with three 
kinds of methods: accumulation under gravity; boundary 
compression method; and radius expansion method. It is 
believed that the particle packing obtained by the radius 
expansion method is more uniform [24, 25]. Hence, the 

radius expansion method is used to construct the three- 
dimensional discrete element models of SRMs in this 
study. The main steps are as follows:

(1) Set the seed of random number generator, gener-
ate the boundary walls according to the selected size and 
shape of the sample.

(2) Generate balls (their radii are appropriately reduced 
as required) for the rock particles according to the selected 
rock size and rock content. The balls are randomly distrib-
uted in the sample region, and the radii of these balls are 
then expanded back to the required rock size.

(3) Replace the balls generated in step (2) according to 
the selected rock shape and rock orientation. The three prin-
ciples of "volume equivalent", "volume center equivalent" 
and "mass equivalent" are followed in the replacement.

(4) Generate balls (their radii are appropriately reduced 
as required) for the soil particles in the remaining region 
of the sample, and then the radii of these soil balls are 
expanded to the required size of soil particles.

(5) Set meso-mechanical parameters for the rock and 
soil particles, perform DEM calculation to bring the sam-
ple to equilibrium. During DEM calculation, the velocities 
of particles need to be reset to zero every certain number 
of cycles to prevent particles from escaping the boundary 
due to possibly excessive contact force.

In our work, the density of 2650 kg/m3, the normal and 
shear stiffness of 1.0 × 107 N/m and the friction coefficient 
of 0.5 are set for the solid particles in the DEM modeling 
of SRMs. It should be noted that the orientation of some 
rock particles generated in step (3) may change slightly 
during the DEM calculation in the step (5), but it has lit-
tle effect on the overall rock orientation of SRM samples. 
By changing the random number seed in step (1), 3 par-
allel samples can be prepared for each modeling scheme. 
Considering the computational efficiency in the subse-
quent lattice Boltzmann simulations, the middle part rang-
ing 0.3–0.6 m from the bottom surface in each discrete 
element model is selected, as shown in Fig. 2.

3 LB simulations of the permeability
3.1 MRT-LBE model
The LBM treats the fluid as an assembly of mesoscopic 
particles. The fluid domain is discretized into cubic lat-
tices with side h. Fluid particles at each node would collide 
and then be allowed to move to its immediate neighbors 
with different velocities ei. The interaction and propaga-
tion of those particles are governed by the following lattice 
Boltzmann equation (LBE) (Eq. (2)) [26]:Fig. 1 schematic diagram of the rock shapes of SRMs
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f t t t f ti i i i( , ) ( , )x e x+ ∆ + ∆  - =Ω , (2)

where fi(x,t) is the fluid density distribution function at 
that site x at that moment t in the direction of i, and Δt and 
Ωi are the time-step increment and the collision operator.

The Bhatnagar-Gross-Krook (BGK) single-relaxation- 
time (SRT) collision operator [26] is the most adopted. 
However, several problems are encountered with this pop-
ular method such as numerical instability and viscosity 
dependence of boundary locations. Particularly, the vis-
cosity dependent boundary conditions pose a severe prob-
lem for simulating flow through porous media because the 
permeability becomes viscosity dependent, while it should 
be a characteristic of the physical properties of porous 
medium alone. The deficiencies inherent in the BGK 
model can be significantly reduced by using a multiple-re-
laxation-time (MRT) approach [27, 28], which separates 
the relaxation times for different kinetic modes and allows 
tuning to improve numerical stability and accuracy.

For clarity, the evolution equation of the MRT-LBE is 
divided into two steps, namely collision and streaming, 
respectively expressed as:

f t f t f fi i ij j j'( , ) ( , ) [ ]x x=
(eq)− −Λ , (3)

f t t t f ti i i( , ) '( , )x e x+ ∆ + ∆  = , (4)

where –Λ is the collision matrix and fj
(eq) is the equilibrium 

distribution function. The collision step involves only 
local calculations and can be written in vector form as 

f f f f' [ ]= − −Λ (eq) . (5)

The transformation matrix M relates the distribution 
functions represented by f to their moments represented 
by m, as in the following:

m M f f M m=   ⋅ = ⋅−
,

1 . (6)

Multiplied by the transformation matrix M, the colli-
sion step in Eq. (5) can be executed in the moment space 
as the following:

m m S m m' [ ]= − − (eq) , (7)

where m(eq) = M · f (eq) is the equilibrium function in the 
moment space and S = MΛM–1 is the diagonal relaxation 
matrix.

After the collision step is performed, the post-collision 
moment m' is inversely converted to the post-collision dis-
tribution function f' in the velocity space, and then the 
standard streaming step in Eq. (4) can be executed.

The popular D3Q19 model using a cubic lattice with 
19 velocities is adopted and the corresponding transforma-
tion matrix M is given in [27]. For the D3Q19 model, the 
19 moments are 

m = ( , , , , , , , , , , ,

, , ,
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and the equilibria m(eq) can be defined as:
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where α, β and γ are free parameters. 
Corresponding the particular order of moments used 

here, the diagonal relaxation matrix S is given by

S = diag s s s s s s
s s s

e q q q v

v

( , , , , , , , , , ,

, , ,

0 0 0 0ε

π π                ss s s s s sv v v m m m, , , , , ).
 (10)

The macroscopic fluid variables, density ρ and velocity u, 
can be recovered from the moments of the distribution 
functions as follows:

ρ
ρ

= =
= =
∑ ∑f fi
i

i
i

i
0

18

0

18
1

, ,u e  (11)

while the fluid pressure field p is determined by the fol-
lowing equation of state (Eq. (12)):

Fig. 2 Three-dimensional discrete element models of SRMs with rock 
contents of 30 % and rock sizes of 0.04 m; (a) Block-shaped rocks, (b) 

Bar-shaped rocks and θ = 90°, (c) Slab-shaped rocks and θ = 90°
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p C= ρ 2
3/ , (12)

where C = h/Δt is the lattice speed.
The kinematic viscosity υ of the fluid is, however, not 

directly used in the LB model but implicitly determined by 
the discretization and numerical parameters as

υ = −
∆

1

3

1 1

2

2

( )
s

h
tv

. (13)

To simulate the Darcy's flow through porous media, Pan 
and coauthors [28] suggested that the linear MRT-LBE 
scheme can be used, in which all the nonlinear velocity 
terms are omitted in the equilibria given by Eq. (9), i.e.,

m ( )
( , , , , , , , ,

,

eq
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They also concluded that the relaxation parameters fol-
lowing the two-relaxation-time (TRT) model is with good 
effect, i.e.,

s s s s s s s
se v m q
v

v

= = = = = =
−
−ε π τ

1
8

2

8
,

( )

( )
 . (15)

Hereafter, the linear MRT-LBE and the relaxation param-
eters given in Eq. (15) were used unless otherwise stated.

3.2 Voxelization of discrete element models
The discrete element models constructed for the LB simu-
lation of the seepage in SRMs should be adapted to regular 
cubic lattices beforehand, and this process is called "vox-
elization", which is implemented with digital image pro-
cessing technique in this study. The key problem is how 
to obtain a series of sliced images of a three-dimensional 
discrete element model of SRM. Fortunately, the virtual 
slicing technique [29] developed for three-dimensional 
discrete element models can solve this problem. The basic 
principles and implementation method of this technique 
are briefly introduced in this subsection.

It is noted that the three-dimensional discrete element 
model of SRM is a packing of sphere particles and the over-
lapping of a sphere and a certain cutting plane is a circle. 
In a three-dimensional Cartesian coordinate system, if 
a cutting plane parallel to the XOY coordinate plane with a Z 
coordinate of zcp overlaps a sphere with center at (x0, y0, z0) 
and radius of R, the overlapping circle is expected to be 
located on the cutting plane, whose center is at (x0, y0, zcp) 
and the radius R* is calculated by

R R z∗ = − −2

0

2
(z )

cp
. (16)

In this way, all circles can be obtained, which result 
from the overlapping of the packing spheres and the spec-
ified cutting plane.

The above basic principles can be implemented on the 
MATLAB platform to obtain a series of slices of the three- 
dimensional discrete element model of SRM. The main 
steps include:

(1) Generate three-dimensional discrete element model 
of SRM;

(2) Search for the spheres overlapping with a specified 
cutting plane, calculate the coordinates of the centers and 
radii of all overlapping circles, and export these data;

(3) For each slice in the batch mode, import the data 
regarding the centers and radii of overlapping circles into 
MATLAB, draw all the overlapping circles, and fill them 
with the black color (the background color is white) repre-
senting the solid region.

In this study, the middle part ranging 0.3–0.6 m from 
the bottom surface in each discrete element model is sliced 
along the axial direction (Z axis). For example, Fig. 3 
shows the generation process of the slice image at the mid-
dle of the model in Fig. 2(c). Considering that LBM calcu-
lation domain is generally a cuboid, the solid area on each 
slice image also includes the region between the outer cir-
cular boundary and the circumscribed square, as shown 
in Fig. 3(c). When the discrete element model is sliced at 
0.001m intervals and the pixel size of each slice image is 
also set to be 0.001 m (i.e., 300 × 300 pixels), a discretized 
model consisting of 27,000,000 cubic lattices can be gen-
erated (i.e., h = 0.001 m).

3.3 Definition of boundary conditions and acceleration 
of computation
Appropriate boundary conditions should be defined for 
the LB simulation of seepage flow. In this paper, the flow 
is driven by the pressure difference between the inlet 
and outlet along the positive direction of Z axis, and the 

Fig. 3 Slicing of discrete element model; (a) Discrete element model of 
SRM (CR = 30 %, D = 0.04 m, slab-shaped and θ = 90°), (b) Overlapping 

circles on the middle slice, (c) Filing for the solid region
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associated pressure boundary is treated by the Zou/He 
scheme [30]. The bounce-back rule is used at the sur-
rounding walls and internal solid surfaces where the 
momenta of the fluid particles should be reversed. This 
method is attractive for its simplicity and computational 
efficiency in imposing no-flow conditions on irregularly 
shaped walls. Before performing the bounce-back scheme, 
it is necessary to separate the lattices into the solid lattices 
and the fluid lattices with the following method: the voxel 
with pixel value of 0 (black) belongs to the solid lattices, 
while the voxel with pixel value of 255 (white) belongs to 
the fluid lattices.

The LBM-based pore-scale seepage simulation is likely 
to be computationally demanding especially for three-di-
mensional cases with large domain sizes, so the distributed 
computing platform PALABOS [31] is used with 8 com-
puter threads for parallel computing. In addition, the solid 
lattices are further distinguished into the boundary solid 
lattices and the interior solid lattices in the following way: 
if the 26 lattices adjacent to a solid lattice shown in Fig. 4 
are all solid lattices, then the solid lattice is marked as an 
interior solid lattice; otherwise, it is marked as a boundary 
solid lattice. During the process of LBM computing, the 
bounce-back rule is implemented for the boundary solid 
lattices, but skipped for the interior solid lattices. Fig. 5 
shows the three types of lattices marked for the model in 
Fig. 2(c). It can be seen that a relatively large region of the 
total domain is occupied by the solid lattices (marked as 
red), so the computing time will be effectively saved.

3.4 Permeability and simulation parameters 
The capability of a porous medium to allow the passage 
of fluid is generally characterized by the intrinsic per-
meability or permeability coefficient. The intrinsic per-
meability is controlled by the properties of the porous 
medium (such as the porosity and specific surface), while 

the permeability coefficient is related not only to the prop-
erties of the porous medium but also to the properties of 
the fluid (such as the density and viscosity). In this paper, 
it is the intrinsic permeability of SRMs that is investi-
gated, which is hereinafter termed as "permeability" for 
convenience.

Previous experimental and theoretical studies have 
shown that the main factors affecting the permeability of 
granular materials are porosity, specific surface and tortu-
osity of flow paths. It is generally recognized that the per-
meability increases with the porosity and decreases with 
the specific surface and tortuosity [32, 33]. 

Natural SRMs are extremely heterogeneous porous 
medium, in which over-sized rock fragments often exist. 
The major objective of this article is to explore the influ-
ence of rock fragments on the permeability of SRMs. 
Here, the permeability (k) is calculated from the simulated 
seepage field through the Darcy's law formulated as

k u
p

ul
p p

=
∇

=
−

µ ρυ

in out

, (17)

where μ is the dynamic viscosity of the fluid; u̅ represents 
the average flow velocity; Ñp is the pressure gradient; l is 
the length of the model along the direction of main flow; 
pin and pout are the pressure at inlet and outlet, respectively.

The seepage fluid in SRMs is usually water, but LB sim-
ulation of such fluid flow with a small viscosity presents 
a challenge. Specifically, in this case either lattice size h 
needs to be very small or relaxation time τ has to be very 
close to 0.5. The former option may give rise to a prohibi-
tively large-scale model, while the latter may suffer from 
numerical instability [34]. In view of the above dilemma 
and considering that the permeability of a porous media 
is only related to its own properties, the simulated seep-
age fluid in this paper is assumed to have a viscosity of 

Fig. 4 The 26 lattices adjacent to a solid lattice

Fig. 5 The three types of lattices marked for the model in Fig. 2(c) (blue 
region represents the fluid lattices, green region represents the boundary 

solid lattices, and red region represents the interior solid lattices)
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1 × 10–2 m2/s and a density of 1000 kg/m3. The value of τ is 
0.8 and each relaxation parameter in the MRT-LBE can be 
determined by Eq. (15).

The resolution of the slice images or the number of vox-
els has an important influence on the calculation accuracy 
of LBM [17]. The study of Pan et al. [13] suggested that 
when the diameter of the packing sphere is over 12 times 
of the lattice size, the calculated permeability would not 
change with the resolution. In consideration of the mini-
mum solid particle diameter of 0.015 m, the lattice size h 
is 0.001 m in this paper.

The Darcy's law requires that the flow is laminar, and 
when the derived permeability is constant, the flow is consi- 
dered to be laminar. Hence some LB simulations should 
be run on a test model to determine the adequate pressure 
difference to be applied across the medium in the direc-
tion of flow.

The LB simulations end only when the flow has reached 
a steady state, which is defined as the flow field with the 
standard deviation of the kinetic energy over the entire 
domain measured over 1,000 time steps falling below 
0.01 % of the mean kinetic energy over the entire domain 
averaged over the same time interval. After then, the per-
meability can be calculated from the Darcy's law based on 
the defined pressure gradient, the calculated average fluid 
velocity per unit cross-sectional area normal to the flow, 
and the fluid viscosity.

3.5 Validation of LB simulation
Before applying the LBM to simulate the seepage of SRMs, 
we tested the accuracy of LB simulation by calculating the 
laminar flow of viscous fluid in an infinite straight circular 
pipe. The analytical solution can be derived based on the 
Poiseuille's law:

u p p
l

r r=
−

−in out

4
0

2 2

µ
( ) , (18)

u p p
l

r=
−

in out

8
0

2

µ
, (19)

where r0 is the radius of the pipe and r is the distance from 
the calculating point to the central axis of the pipe.

To be consistent with aforementioned SRMs samples, 
the computational domain of the simulated flow in a straight 
circular pipe is also a cubic region with a side length of 
0.3 m, as shown in Fig. 6. In order to simulate infinite 
length, periodic boundary is set at the inlet and outlet, 
where the pressure difference of 0.3 Pa is maintained to 
satisfy the assumption of laminar flow. 

Comparison is made in Fig. 7 between the result of LB 
simulation and the analytical solution for the flow velocity 
on the middle cross-section, and it can be seen that the two 
solutions are in good agreement. The average velocity cal-
culated by the Poiseuille's law is 0.000281 and that simu-
lated by LBM is 0.000284, with a relative error of 1.07 %. 
The deviation is likely to be caused mainly by the fact that 
the pipe surface is not ideally smooth after voxelization of 
the LB model.

3.6 Permeability simulation
In this section, seepage flow in porous medium composed 
of mono-sized spherical solid particles is simulated with the 
LBM. The porosity is 0.4 and particle size is respectively 
0.015, 0.02, 0.03, 0.04 and 0.05 m, which are all within the 
particle size range of SRMs as described in Section 2.2.

The seepage flow in porous media with the particle size 
of 0.05 m is simulated to determine the adequate pres-
sure difference. When the pressure difference is respec-
tively set as 0.1, 1, 10 and 100 kPa, the correspondingly 
simulated permeability is 1.547 × 10–6 m2, 1.548 × 10–6 m2, 

Fig. 6 Lattices of the model of flow in a straight circular pipe 

Fig. 7 Comparison between the result of LB simulation and the 
analytical solution for the flow velocity on the middle cross-section of 

the flow in the straight circular pipe
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1.550 × 10–6 m2, 1.572 × 10–6 m2. Hence, the pressure differ- 
ence of 1 kPa can be adopted to satisfy the assumption of 
Darcy's flow.

For the porous media with the particle size of 0.015 m, 
when the lattice size h is respectively set as 0.0006, 
0.00075, 0.001, 0.0015 and 0.003 m, the correspondingly 
simulated permeability is 1.210 × 10–7 m2, 1.210 × 10–7 m2, 
1.201 × 10–7 m2, 1.178 × 10–7 m2, 1.124 × 10–7 m2. The test 
results indicate that the resolution of h = 0.001 m selected 
in this paper is adequate.

Previous studies have shown that when the porosity is 
the same, the permeability of porous medium with uni-
form particle size is approximately proportional to the 
square of the particle size, which is also described by the 
Hazen equation. For the porous medium composed of 
mono-sized spherical particles of 0.015, 0.02, 0.03, 0.04 
and 0.05 m, the linear regression of the simulated permea-
bility and square of particle size is shown in Fig. 8. As can 
be seen, the linear correlation is well reproduced and the 
error is not more than 1 %, which further indicates that the 
LB simulation can faithfully describe the flow process in 
porous medium.

4 Results and discussions
Based on the modeling of pore structure with the 
above-mentioned discrete element method and the LB 
simulation of seepage, the permeability can be obtained of 
SRMs with different rock contents, rock sizes, rock shapes, 

and rock orientations. The average is taken of the perme-
ability for 3 parallel samples in each case. Tables 1–3 list 
this simulated permeability of every SRM model.

In addition to permeability, the LB simulation can also 
generate the pore-scale seepage field, as shown in Fig. 9.
Fig. 9(a) shows the velocity contour plot of SRM (CR = 
20 %, D = 0.05 m and block-shaped) with a permeability of 
9.319 × 10–8 m2, which is the largest of all models. Fig. 9(b) 
shows the velocity contour plot of SRM (CR = 40 %, 
D = 0.03 m, slab-shaped and θ = 90°) with a permeability 
of 2.900 × 10–8 m2, which is the smallest of all models. 

Fig. 8 Relation between permeability and square of particle size of 
porous medium 

Table 1 Simulated permeability of SRMs (×10–8 m2) (D = 0.03 m)

CR (%) Block-shaped
Bar-shaped Slab-shaped

θ = 0° θ = random θ = 90° θ = 0° θ = random θ = 90°

20 8.659 8.344 8.343 8.279 7.925 7.060 6.599

30 6.658 6.293 6.135 6.108 6.055 5.138 4.462

40 5.061 4.893 4.834 4.812 4.728 3.610 2.900

Table 2 Simulated permeability of SRMs (×10–8 m2) (D = 0.04 m)

CR (%) Block-shaped
Bar-shaped Slab-shaped

θ = 0° θ = random θ = 90° θ = 0° θ = random θ = 90°

20 8.968 8.839 8.618 8.530 8.417 7.816 7.509

30 7.404 7.123 7.073 7.041 6.668 6.191 5.725

40 5.889 5.706 5.446 5.392 5.027 4.312 4.022

Table 3 Simulated permeability of SRMs (×10–8 m2) (D = 0.05 m)

CR (%) Block-shaped
Bar-shaped Slab-shaped

θ = 0° θ = random θ = 90° θ = 0° θ = random θ = 90°

20 9.319 9.138 9.017 8.971 8.762 8.200 7.955

30 7.692 7.542 7.442 7.364 7.117 6.403 6.040

40 6.197 6.462 5.802 5.796 5.509 4.639 4.278
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As can be seen, with the decrease of simulated per-
meability, compared with Fig. 9(a), remarkably fewer 
flow channels appear in Fig. 9(b) and the flow velocity is 
smaller in the channels.

4.1 Influence of rock content and rock size 
Figs. 10–12 show the influence of rock content and rock 
size on the permeability of SRMs. It can be seen that the 
permeability significantly decreases with the increase of 
rock content and increases with the increase of rock size. 

Fig. 9 Velocity contour plots of SRMs. (a) CR = 20%, D =0.05 m and 
block-shaped, (b) CR = 40%, D = 0.03 m, slab-shaped and θ = 90° 

Fig. 10 The influence of rock content and rock size on the permeability 
of SRMs with bolck-shaped rocks

Fig. 11 The influence of rock content and rock size on the permeability 
of SRMs with bar-shaped rocks. (a) θ = 0°, (b) θ = random, (c) θ = 90°
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The porosity of soil matrix in SRMs are kept to be 0.40 
in this paper. Therefore, as the rock content increases, the 
porosity of SRMs decreases, so the permeability grad-
ually decreases. For example, regarding the SRMs with 
block-shaped rocks of sizes 0.04 m, as the rock content 
increases from 20 % to 40 %, the porosity decreases from 
0.3221 to 0.2566, and thus the permeability drops from 
8.968 × 10–8 m2 to 5.889 × 10–8 m2. Previous laboratory 
tests and numerical simulations [7, 8, 10] also reported 
similar conclusions.

However, it should be noted that some other previous 
studies concluded that the permeability of SRMs increases 
with rock content, which is contrary to the conclusion of 
this work. This may be due to the fact that it is the compac-
tion degree of SRMs rather than the porosity of soil matrix 
that did not change in their experiments for SRMS with 
different rock contents. The distinct effects of rock content 
on permeability of SRMs under different test conditions 
will be investigated in another paper.

Chen et al. [10] simulated the seepage of SRMs with 
two-dimensional numerical manifold method and con-
cluded that the influence of rock size on the permeabil-
ity of SRMs can be neglected. However, according to the 
results of three-dimensional LB simulation presented in 
this paper, the rock size does have some influence on the 
permeability of SRMs. It is known that the specific sur-
face of a solid particle decreases with its size. Therefore, 
when the other conditions remain unchanged, the specific 
surface of SRMs decreases with the increase of rock size, 
so the permeability gradually increases.

4.2 Influence of rock shape
Fig. 13 shows the influence of rock shape on the permea-
bility of SRMs. It can be seen that the rock shape has some 
influence on the permeability of SRMs. If θ = random, 
the permeability of SRMs with bar-shaped rocks is smaller 
than that of SRMs with block-shaped rocks, but larger than 
that of SRMs with slab-shaped rocks.

This influence of rock shape on the permeability of 
SRMs can also be attributed to the effect of specific sur-
face. The specific surfaces are calculated to be 6/D for the 
block-shaped rock, 8.6/D for the bar-shaped rock and 10/D 
for the slab-shaped rock, respectively. Therefore, when the 
other conditions remain unchanged, the specific surface of 
SRMs increases causing the permeability to decrease as 
the rock shape changes from block, bar to slab.Fig. 12 The influence of rock content and rock size on the permeability 

of SRMs with slab-shaped rocks. (a) θ = 0°, (b) θ = random, (c) θ = 90°
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4.3 Influence of rock orientation
As can be seen from Fig. 14, the rock orientation has 
a certain influence on the permeability of SRMs, and the 
amount of variation changes with the rock shape. To be 
specific, when the rocks are bar-shaped, the permeabil-
ity is slightly decreased as the major axes of these rocks 
change from parallel (θ = 0°) to perpendicular (θ = 90°) 
with respect to the direction of main flow; when the rocks 
are slab-shaped, the permeability decreases more signifi-
cantly as the slab planes of these rocks change from par-
allel (θ = 0°) to perpendicular (θ = 90°) with respect to the 
direction of main flow.

Xu and Wang [8] and Chen et al. [10] studied the influ-
ence of rock orientation on the permeability of SRMs with 
elliptical rocks, and concluded that the permeability grad-
ually decreases as the angles increase between the major 
axes of rocks and the direction of main flow. The results of 
LB simulation in this study also conform to this conclusion.

When the rock orientation is varied individually, the 
porosity and specific surface of SRMs are both kept the 
same, but the tortuosity of the flow paths is different. 
Fig. 15 shows the pore-scale seepage field of the inter-
mediate longitudinal sections in the SRMs (CR = 30%, 
D = 0.04 m and slab-shaped). As can be seen, when 
θ = 90°, the area occupied by the rocks is relatively larger 
in the cross-section, so the flow paths are more curved, 
and thus the permeability is decreased. The results of 
two-dimensional LB simulations conducted by Nabovati 
and Sousa [14] also indicate that the tortuosity is larger 
of the porous medium with rectangular solid particles of 
high aspect ratios (corresponding to θ = 90°). Compared 
with the bar-shaped rock, the slab-shaped rock can occupy 
a larger proportion of the cross section when turning per-
pendicular to the flow direction, which makes its blocking 
effect on the seepage paths more significant and its influ-
ence on permeability more obvious.

5 Conclusions
This research represents the first attempt of using the 
three-dimensional LBM to simulate the seepage in SRMs 
from the pore scale. The influences of rock content, rock 
size, rock shape and rock orientation are comprehensively 
investigated on the permeability of SRMs.

Based on the results of present study, the following con-
clusions can be made:

1. Three-dimensional pore-structural models of SRMs 
with different rock contents, rock sizes, rock shapes 
and rock orientations can be constructed with the 

Fig. 13 The influence of rock shape on the permeability of SRMs; 
(a) D = 0.03 m, (b) D = 0.04 m, (c) D = 0.05 m
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discrete element method, and they can be voxelized 
with the proposed virtual slicing technique for fur-
ther LB simulation of seepage. 

2. The permeability of SRMs decreases with rock con-
tent while increases with rock size.

3. The permeability of SRMs with bar-shaped rocks is 
smaller than that of SRMs with block-shaped rocks, 
but larger than that of SRMs with slab-shaped rocks.

4. The rock orientation has a certain influence on the 
permeability of SRMs, and this influence relates to 
the rock shape.

Additionally, the DEM modeling method and the LB 
simulation method presented in this paper can be used to 
further study the influences of other factors, such as the 
rock gradation and confining pressure, on the permeabil-
ity of SRMs.
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