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Abstract

The present paper focuses on the study of wind-induced responses of cross-plan shaped tall buildings. Initially, three parametric 

building models are studied for the purpose with a constant plan area 22500 mm2. The length and velocity scales are taken as 1:300 

and 1:5, respectively. Wind angle of attack (WAA) is considered from 0° to 330° with an increment of 30°. At first, the external surface 

pressure coefficients (Cp) at different faces of the models are carried out for different wind occurrence angles employing Computational 

Fluid Dynamics method of simulated wind flow. Again, Fast Fourier Transform (FFT) fitted expressions as the sine and cosine function 

of WAA are proposed for attaining mean wind pressure coefficient on the building faces. The accuracy of the Fourier series expansions 

is justified by presenting histograms of sum square error (SSE), R2 value and root mean square error (RMSE). The results are also 

compared by training Artificial Neural Networks (ANN). Training is continued till Regression (R) values are more than 0.99 and Mean 

Squared Error (MSE) tends to 0, ensuring a close relationship among the outputs and targets. The face-wise value of (Cp) obtained 

using all three methods, are plotted. The error histograms of the ANN models show that the fitting data errors are spread within 

a  reasonably good range. It is observed that the deviation in the result is not more than 5 % in any case. Finally, the ANN predictions 

are presented for nine parametric models to cover a wide range of possible cross-shaped buildings.
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1 Introduction
With the advent of modern technology and scarcity of 
available land in the globe, modern buildings are very 
tall and also non-conventional and irregular in both plan 
shape and elevation. Thus, tall buildings being suscepti-
ble to lateral forces (Part-especially for the response of 
across direction), may vibrate in all the three directions 
(x, y, z). As the building height increases, wind becomes 
the predominant lateral force as the wind intensity inten-
sifies exponentially with the altitude of the building. 
Not only that, but wind-induced responses depend sig-
nificantly upon the shape of the building also. Different 
International Standards are providing guidelines for 
estimating wind-induced responses for regular (both in 
plan and elevation) shaped buildings. But non-conven-
tional, irregularly shaped structures demand guidance 
from specialized literature or wind tunnel study or CFD 
approach. Over the years, wind tunnel model experiments 
were conducted by the researchers to study localized 

wind forces  [1], experimental results of U and L shaped 
building in the plan [2], occupant comfort under dynamic 
wind [3], the effect of size of recessed and chamfered cor-
ners of tall buildings  [4], aerodynamic forces and wind 
pressure on various unconventional configurations  [5], 
pressure coefficients on the walls of the buildings  (Cpe) 
and propose surrogate models [6], the deviation of pres-
sure dispersal of tall square plan shaped building for var-
ious wind azimuths [7] so on and so forth. In some cases, 
a combination of wind tunnel study and numerical simu-
lation was also carried out to demonstrate wind-induced 
responses of '+' shaped in plan tall building model for 0° 
as well as 45°  [8], mean pressure coefficient of 'E'  plan 
shaped tall building [9]. Again numerical simulation tech-
niques were adopted to study wind tempted interference 
characteristics  [10], turbulent scalar flux for near-field 
scattering around buildings  [11], the variation of exter-
nal pressure coefficients and force coefficients on 'Z' plan 
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shaped tall building  [12], wind response for regular and 
angular cross plan shaped building model [13], the effect 
of horizontal modifications like corner cut on tall build-
ing [14], the variation of pressure due to the presence of 
the courtyard and opening of a rectangular plan shaped 
building numerically and analytically  [15] and so on. 
Wind tunnel tests being strenuous, expensive, time-con-
suming, and a very complex problem may not always be 
adopted. Later Computational fluid dynamics has been 
found as a  suitable alternative to predict fairly accurate 
wind-induced responses on structures. But because of 
the assumptions associated with the problem of CFD and 
many flow situations during wind-structure interaction, 
the data acquired using CFD should be suitably compared 
with experimental results or other modes of prediction. 
The comparison can be aptly carried out using Artificial 
Neural Network (ANN), which is a proficient tool for ana-
lyzing complex engineering problems and also proven to 
deliver feasible solutions. ANN can be effectively used to 
develop functional relationships between input and asso-
ciated output parameters derived from any source  [16]. 
Thus, ANN can be conveniently used to create a gener-
alized relationship from limited and occasionally erratic 
input data. Many researchers had applied and reported 
ANN to be extremely efficient to solve complex engineer-
ing problems. In the past few decades, ANN has become 
exceedingly popular and found its application not only in 
the wind engineering studies but many civil and struc-
tural engineering research problems. 

ANN had a widespread application in the field of civil 
engineering since long. It was applied in the develop-
ment of the backpropagation neural net and the improved 
counter-propagation neural net for the analysis and design 
of large scale space structures  [17] and also for the pre-
sentation of a neurocomputing strategy combining neu-
ral networks and numerical structural optimization  [18]. 
Again ANN was used to train efficient backpropagation 
neural networks for design of double-layer grids  [19], to 
train neural networks that predict M-ф diagrams for the 
type of connection considered and for saddle-like connec-
tion with sufficient accuracy [20, 21]. Further, to develop 
fuzzy neural networks (FNN) approach to predict mean 
pressure distributions on the roof model and to identify the 
patterns of pressure distribution, ANN was applied [22]. 
ANN was combined with a genetic algorithm to form a 
complete design and optimization approach for transmis-
sion tower [23] and to develop a robust simulation-based 
optimization scheme using an ANN-surrogate model [24]. 

ANN found its application specifically in the field of 
wind engineering too. ANN was utilized to predict wind 
spectra and to calculate wind loadings for rectangular 
cross-section buildings [25]. Further, to present an inno-
vative method for investigating the seismic vulnerability 
of the existing concrete structures with moment resist-
ing frames (MRF) [26] and to generalize the across wind 
response of tall and slender buildings from the inadequate 
existing data so that across wind response can be attained 
for a building with specified (h:b:d) ratio [27], ANN was 
adopted. Neural nets were used to estimate mean exter-
nal surface pressure coefficients of tall buildings  [28] 
and to propose a simplified approach for estimating the 
dynamic along-wind response of tall buildings based on 
Indian Wind Code  [29, 30]. Again for stabilizing proper 
orthogonal decomposition-based reduced-order models 
for quasi-static geophysical turbulent flows  [31], to pro-
pose an efficient and cost-effective computational tool that 
can be applied to estimate the wind response of a build-
ing [16], ANN was used. ANN also helped the researchers 
to present a numerical methodology combining regression 
analysis with flow modal decomposition for construct-
ing reduced-order models of fluid flows  [32] and also to 
develop equations of wind-induced pressure coefficient 
using experimental data, for the group method of data 
handling neural network that can efficiently predict aver-
age surface pressure coefficients on the projected surface 
of different C-shaped building models [33]. 

In the present study, wind-induced responses are com-
prehensively studied for Cross plan-shaped tall buildings. 
More precisely, mean wind pressures on different faces 
of three tall buildings are considered for wind occur-
rence angle varying from 0° to 330° at an increment of 
30°. At first, a numerical study is performed using RANS 
k-ε turbulence model by CFD. The CFD is suitably cal-
ibrated with available experimental results. Mean pres-
sure coefficient  (Cp) on the different building faces of 
the buildings are proposed numerically. Again, the wind 
flow pattern around the building for one orthogonal and 
one skew wind angle of attack is shown to through light 
on the wake regions where the vortex shedding is taking 
place under the turbulent wind. Afterwards, Fast Fourier 
Transform (FFT) fitted expressions as the sine and cosine 
function of wind incidence angle are proposed for attain-
ing mean wind pressure coefficients. Finally, the results 
are compared by training Artificial Neural Networks 
(ANN). The ANN predictions are compared among dif-
ferent parametric models.
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2 The parametric models of the study
As discussed, rectangular with horizontal limbs to form 
cross-plan shaped tall building is taken as the paramet-
ric building model. Initially, three models are gener-
ated and studied to understand the shape effect on pres-
sure distribution among different faces of the building. 
The  external pressure distribution on the several sur-
faces of the building (Cpe) is studied with different wind 
direction. The  building model defining building sur-
faces, dimensions and wind incidence angles, is shown in 
Fig. 1. Dimension b is varied among three building mod-
els to change the d/b and h/b ratios, where h is the height 
of the building. The plan area of the building is 22500 
mm2. The detailed specifications of the parametric build-
ing models are presented in Table 1. After comparison of 
results obtained using CFD, FFT and ANN for three para-
metric models, ANN predictions of Cpe for additional six 
models (including a  '+' shaped model for which calibra-
tion of CFD is done in Section  5) are also presented to 
carry out a comprehensive study. Details of the additional 

models are given in the figure titled "Definition of the 
building surfaces and dimensions of six additional mod-
els for the comprehensive study (All units are in "mm")"  
on the page 10.

Fig. 1 Plan of building models describing surfaces, dimensions, and 
wind incidence (all dimensions are in mm)

Table 1 Geometry of different cross-plan shaped buildings

Model d/b
h/b

d 
(mm)

b 
(mm)

h 
(mm)

Plan
(All dimensions are in mm)

Isometric view 
(All dimensions are in mm)

M-1 1.63 5.00 162.5 100 500

M-2 1.08 3.33 162.5 150 500

M-3 0.81 2.50 162.5 200 500
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3 The domain used in Computational Fluid Dynamics 
(CFD)
While performing a numerical simulation, the volume in 
which the flow has to be computed need to be well defined 
and usually designated as computational domain. A rea-
sonably large domain invariably increases the number of 
cells after meshing the entire domain. But a coarser mesh-
ing is sufficient in regions far away from the building sur-
faces or wake region. Hence the domain size for CFD, 
especially for a tall building shall be chosen rationally 
so that the analysis time does not increase needlessly.  
Revuz et  al.  [34] prescribed the suitable domain size 
for tall buildings considering the effects of varying the 
domain size around a tall building. They took into account 
the generation of vortices and fluctuations in velocity in 
the region of disturbed flow (turbulent) downstream of the 
building caused by the wind flow are derived with suffi-
cient accuracy. They recommended the domain size hav-
ing an inlet, top and two side clearance of 15 H and outlet 
clearance of 5 H from the building edges, where H is the 
building height. The domain used for the study is shown in 
Fig. 2(a) and Fig. 2(b).

4 Meshing and boundary conditions
An amalgamation of tetrahedral meshing and hexahedral 
meshing is used to mesh the entire domain as well as the 
building walls. Very fine hexahedral meshes are gener-
ated close to the building surfaces by the pre-processing 
software which helped in simulating even flow. Uniform 
coarser tetrahedral meshing in rest of the domain is taken 

up to lessen the time of analysis significantly negating any 
considerable harm in precision. The meshing thus adop-
ted is shown in Fig. 3(a) with an enlarged view near the 
building model in the inset. The first grid points adjoining 
the wall were located at y + > 30 to implement empirical  
wall functions.

Grid independence is an essential criterion in any CFD 
method to derive the conclusion that further reduction in 
grid size does not lead to any more precision in the results. 
The grid independence test is carried out by trial and error 
method decreasing the grid size in each trial resulting sub-
sequent increase in the number of elements in the domain. 
Initially, a Z shaped building model is designed in the 
pre-processing software (ANSYS CFX-CFD). The mesh is 
generated several times, and the pressure coefficients for 
different faces of the buildings are extracted correspond-
ing to 0° wind incidence angle. The results obtained in 
each case are checked for the grid accuracy correspond-
ing to the results of Paul and Dalui [12]. Based on the 
grid dependency test, the optimal number of elements is 
obtained at 8.1 million. The outcomes of grid indepen-
dency study are shown in Fig. 3(b).

(a)

(b)
Fig. 2 (a) Plan of the domain, (b) Elevation of the domain

(a)

(b)
Fig. 3 (a) Meshing used around the building and domain, (b) Results of 

grid independence test
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 A high degree of similitude between the boundary con-
ditions of both the numerical and the experimental meth-
ods should be achieved mainly for inlet or inflow boundary. 
The boundary layer flow was generated using power-law 
with α = 0.133 to accomplish the desired terrain category 
as per IS: 875 (Part 3) [29]. The velocity profile near the 
windward side is compared for the numerical method and 
wind tunnel measurement. The velocity profile is nearly 
alike, as observed in Fig. 4 [35]. The turbulence intensity 

along the building height was also compared for numeri-
cal method and wind tunnel measurement and is presented 
in Fig. 5 [35]. The turbulence intensity was also matching 
with good agreement for both methods.

5 Calibration of CFD with experimental results
The numerical simulation technique adopted for this partic-
ular study is calibrated using the experimental data avail-
able for a '+'  shaped tall building. Chakraborty et  al.  [8] 
presented the external pressure coefficients (Cpe) on differ-
ent faces of a '+' shaped tall building obtained from wind 
tunnel model experiment and k-ε numerical simulation. 
The height-ratio and the plan-ratio of the building are sim-
ilar to the parametric models adopted for the present study. 
The '+' shaped model defining building surfaces, dimensions 
and wind incidence angles are shown in Fig. 6 (The wind 
angles and the building surfaces are designated comparing 
the present study). The experiment was carried out in the 
boundary layer wind tunnel (BLWT) at Wind Engineering 
Centre, Department of Civil Engineering, Indian Institute 
of Technology Roorkee, India [8]. The BLWT was an open 
circuit suction type tunnel in which the suction flow is gen-
erated with a blower fan of 125 HP capacity [8]. The test 
section was 2 m (height) × 2 m (width) × 38 m (length) [8]. 
An elliptical effuse profile having a contraction ratio of 
9.5:1 along with a 6 m × 6 m squared-holed Honeycomb 
was located at the entrance of the tunnel [8]. 

The wind flow pattern around the building model cor-
responding to 0°, 45° and 60° wind incidence angles is 
shown in Figs.  7(a) to (c), respectively, to represent the 
effect of wind angle on the formation of wake region and 
vortices. As the building model is symmetric concerning 
both axes, the vortices formed downstream the building 
are also symmetric under wind angle 0° and 45°. This 
implies, under 0° and 45° wind occurrences, symmetrical 

Fig. 4 The velocity profile

Fig. 5 Turbulence intensity
                        (a) Plan                                 (b) Isometric View

Fig. 6 Plan and 3-D view of the '+' shaped building model
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surfaces of the building will experience the same distribu-
tion of pressure. Whereas for 60° wind angle of attack, the 
vortices are somewhat chaotic in nature. 

The values of the pressure coefficients achieved for the 
'+' model form the present study are compared with the 
results of the wind tunnel study and k-ε numerical simu-
lation presented by Chakraborty et al.  [8]. The compari-
son of results for different building surfaces is shown in 
Figs. 8(a) to (l). It is observed that the results achieved from 
the numerical method considering the k-ε viscosity model 
(both past and present) show a reasonably good agreement 
with experimental results. Though, some discrepancies 
are observed in zones of high vorticity like Face B and 
Face C under 45° wind angle of attack, Face E and Face F 
under 135° wind angle. However, the variance in the mean 
pressure coefficient, obtained from the numerical and the 
experimental method is within the permissible limit.

6 Fast Fourier Transformation (FFT) methodology
The Fourier expansion has been utilized as the sum of sine 
and cosine function to propose analytical expression for 
determining surface pressure and force coefficients [9]. 
The Fourier expansion, in general, is given by,

f x a a i x b i x
i

n

i i( ) = + +( )
=
∑0

1

cos sin ,ω ω 	 (1)

where, a0 is the constant, which is also intercept of the 
model, ω is the frequency of the signal or, the predictive 
function. In this equation, i should be truncated at some 
finite number n to develop a proper harmonic polynomial. ai 
and bi are the coefficients of the harmonic terms [9]. To pro-
pose polynomial for the different faces of the building with 
the Fourier series as provided in (1), n = 2 has been chosen 
for the present study. So, the Fourier expansion becomes,
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where x is the wind incidence angle in degree and f(x) 
denotes the mean pressure coefficients and force coeffi-
cients. Three different error measurements have been per-
formed in this study to check the accuracy of the fitted 
models, namely sum squared error (SSE), also known as 
the residual sum of square (RSS), The value of R2 which 
is a widely used statistical measure to check the feasibil-
ity of the model and root mean square error (RMSE). The 
expressions for all the three error measurement procedure 
are given below.
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7 The architecture and algorithm used in Artificial 
Neural Network
The selection of the network architecture, training algo-
rithm, number of neurons and patterns to be used for the 
training should be rational and comply not only to the kind 
of study being carried out but also the volume of the study. 
In fact, one of the significant challenges of doing research 
using neural networks is to select the appropriate size and 
topology of the networks. Because often neural networks 
are trained to negligible errors, the response is not suit-
able for patterns other than those being used in training. 
A general tendency among researchers is to use a large 
number of neurons to limit the error but Hunter et al. [36] 
proposed to use minimum neurons along with a consider-
able amount of training patterns, which can lead to a good 
response of neural nets for almost all patterns. 

a) 0°,                                                                         b) 45°,                                                                          c) 60°
Fig. 7 Wind streamlines around the ‘+’ shaped building model for different wind angles
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(a) Face A                                                                 (b) Face B                                                                 (c) Face C 

(d) Face D                                                                  (e) Face E                                                                  (f) Face F

(g) Face G                                                                   (h) Face H                                                                   (i) Face I

(j) Face J                                                                    (k) Face K                                                                    (l) Face L
Fig. 8 The comparison of pressure coefficients obtained using experimental and numerical methods
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In the present study, the Levenberg-Marquardt (LM) 
algorithm and Multilayer Perceptron (MLP) architec-
ture (Feed-forward backpropagation) are used  [37–39]. 
Levenberg  [37] and Hagan and Marquardt  [39] pro-
posed that among several second-order methods for neu-
ral network training, the most efficient is the Levenberg 
Marquardt (LM) algorithm. Even then there are problems 
with this algorithm like using this only MLP network 
architectures can be trained [39] and only comparatively 
small problems with only a few patterns can be solved 
using this algorithm [36]. The study has been carried out 
using the MATLAB Neural Network Toolbox, which has 
both first and second-order training algorithms, but it can 
only train MLP networks. As the associated data with 
the current study is not huge, MATLAB Neural Network 
Toolbox is chosen with three neurons in Feedforward 
backpropagation (FFBP) network. The general architec-
ture of the network is shown in Fig. 9.

Levenberg-Marquardt algorithm is primarily applied in 
the least-squares curve-fitting problems. For a given set 
of m empirical pairs(xi, yi) of independent and dependent 
variables, the algorithm derives the parameters β of the 
model curve f(x, β) so that S(β), the sum squared error 
(SSE) is minimized. 

	 (6)

is supposed to be non-empty.
Similar to other numeric minimization techniques, 

the L-M algorithm is also an iterative process [37, 39].  
The minimization process triggers with a primary predic-
tion of the parameter vector β. If there exists only one min-
imum, a regular guess like βT = (1, 1, …, 1) is sufficient. 
But in cases of multiple minima, the algorithm can yield 
the global minimum based on the closeness of the prelim-
inary guess with the actual solution.

In every step of the iteration, the predicted vector β is 
substituted by a new approximation β + δ To determine δ, 
the function f(xi, β + δ), is estimated by:
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If the derivative of S(β + δ) concerning δ, is fixed equal 
to zero,

J J J y fT T( ) = − ( ) δ β ,	 (8),

where J is the Jacobian matrix, whose i-th row equals Ji, 
and where f(β) and y are vectors with i-th component 
f(xi, β) and yi respectively. The Jacobian matrix, as defined 
above, in general, is a rectangular matrix of size m × n, 
where n is the number of parameters in the vector  β. 
The  matrix multiplication (JTJ) produces the required 
n × n square matrix and the matrix-vector product on the 
right-hand side yields a vector of size n. The result is a set 
n linear equations, which can be solved for δ.

Levenberg introduced damping in Eq. (8) and modified 
the same with,

J J I J y fT T+( ) = − ( ) λ δ β , 	 (9)

where the identity matrix is denoted with I, and λ is the 
non-negative damping factor adjusted at every iteration. 
If S reduces rapidly, a smaller value of λ may be used, 
to  bring the algorithm to the vicinity of the Gauss-Newton 
algorithm. But if it doesn't, λ can be assigned a slightly 
higher value, giving a step closer to the gradient-descent 
direction. Notably, the gradient of S with respect to β 
equals 2 J y fT T

− ( ) ( )β . Hence, for large values of λ, the 

β̂ β ββ β∈ ( ) = − ( ){ }
=
∑argmin argmin ,S y f xi i
i

m
2

1

Fig. 9 The three neurons FFBP network
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step will be approximated in the opposite direction of the 
gradient. If either the length of the δ or the reduction of 
sum of squares from the newest parameter vector β + δ 
fall below predefined bounds, iteration stops, and the last 
parameter vector β is taken as the solution.

Fig. 10 is the flow chart depicting the development of 
the proposed Feed-forward backpropagation ANN model.

8 Results and discussions
The configuration of wind flow around the building mod-
els for 120°, and 180° wind incidence angles are shown in 
Figs.  11(a) and 11(b) respectively to represent the shape 
effects on the formation of wake region under both orthog-
onal and skew wind angle of attack. The chaotic nature of 
the turbulent wind flow and vortex generation in the wake 
region is apparent from the streamlines. As M-1 is symmet-
ric, the streamlines are also symmetric concerning the verti-
cal axis under 180° wind incidence angle. Whereas, M-2 and 
M-3 being asymmetric in plan shape are subjected to much 
more chaotic streamlines even under 180° wind angle. The 
governing frequency of the vortex shedding is the cause of 
the shaking of the building with increased amplitude. 

As discussed earlier, the external surface pressure 
coefficients, Cpe (Average Face value) are obtained from 
numerical simulation for different faces of the building. 

The numerical simulation data are utilized to form FFT 
polynomials to predict the mean wind pressure for each 
face. The constant parameters of the polynomials for mean 
pressure coefficient Cpe for three building models are pre-
sented in Table 2. The precision of the fitted FFT polyno-
mials are justified with sum squared error (SSE), R2 value 
and root mean square error (RMSE). All the error mea-
surements are hence plotted in Figs. 12(a)–(c). Fig. 12(a) 
represents that SSE for all the fitted models is less than 0.1 
indicating the acceptability of the polynomials. The max-
imum value of SSE, including all building models, is less 
than 0.09. Again it is evident from Fig. 12(b) that the R2 
values for all polynomials lie between 0.95 and 1, which 
is well within acceptable limit for fitting any data. In fact, 
in all cases R2 value is more than 0.97., which is extremely 
good. Also, the RMSE values, as shown in Figs. 12(c), var-
ies from 0.04 to 0.12, is within the permissible limit for all 
cases. Hence, all the predicted Fourier series expansion 
could be applied for predicting mean pressure coefficient 
on different faces of the building models for any particular 
wind incidence angle varying from 0° to 330°.

After FFT polynomials are developed, ANN is fur-
ther utilized to carry out a more comprehensive and reli-
able study. As discussed in the preceding section, the mean 
squared error (MSE) is diminished in each case to keep 

Fig. 10 The flow chart of the development of the FFBP network
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Table 2 Constants of Fourier polynomials for pressure coefficients

Face Model ω
Constants

a0 a1 b1 a2 b2

A

M-1 0.01552 -0.1311 0.7642 -0.2811 0.3563 -0.3065

M-2 0.01468 -0.1885 0.6456 -0.2349 0.3331 -0.3113

M-3 0.01521 -0.2558 0.6853 -0.1506 0.3539 -0.2046

B

M-1 0.01647 -0.0526 0.6623 -0.3852 0.1761 -0.3670

M-2 0.01806 -0.1063 0.6487 -0.1056 0.3599 -0.1710

M-3 0.01882 -0.1486 0.6894 -0.0074 0.4652 -0.0407

C

M-1 0.01695 -0.1249 0.6331 -0.2319 0.2834 -0.2530

M-2 0.01867 -0.1360 0.6423 -0.0392 0.3281 -0.1522

M-3 0.01885 -0.1820 0.6398 -0.0134 0.4729 0.0228

D

M-1 0.01856 -0.3552 0.1840 -0.4107 -0.3528 -0.2842

M-2 0.01845 -0.3138 0.1603 -0.5218 -0.3968 -0.2183

M-3 0.01879 -0.4419 0.1761 -0.4699 -0.2441 -0.3578

E

M-1 0.01279 -0.3189 -0.6744 0.4152 0.5908 0.0867

M-2 0.01356 -0.1342 -0.6604 0.2347 0.4100 -0.0741

M-3 0.01584 -0.0917 -0.7250 -0.2267 0.3244 0.2842

F

M-1 0.01184 -0.4926 -0.6450 0.7515 0.6681 -0.0578

M-2 0.0135 -0.1601 -0.6929 0.2875 0.3995 -0.0654

M-3 0.0164 -0.1059 -0.6947 -0.3240 0.2324 0.3735

G

M-1 0.02293 -0.2740 -0.2792 -0.5067 -0.1422 0.3949

M-2 0.0225 -0.3045 -0.3616 -0.4459 -0.0051 0.4148

M-3 0.027 -0.2587 -0.0435 -0.7873 -0.3382 0.0911

H

M-1 0.016 -0.1139 -0.3061 0.6364 -0.3300 -0.2287

M-2 0.02061 -0.1567 -0.2239 0.5808 -0.2669 -0.2668

M-3 0.01934 -0.1113 -0.1679 0.7529 -0.3162 -0.1062

I
M-1 0.01662 -0.08492 -0.3681 0.6001 -0.2468 -0.2835

M-2 0.0206 -0.0922 -0.2818 0.6385 -0.2413 -0.2610

J
M-1 0.02013 -0.3067 -0.0618 0.4613 -0.3885 -0.1512

M-2 0.02025 -0.3378 -0.0046 0.4840 -0.3420 -0.1010

K
M-1 0.01834 -0.2416 0.4702 0.2793 0.2366 0.3186

M-2 0.01707 -0.2933 0.3742 0.2261 0.1395 0.3423

L
M-1 0.01734 -0.1409 0.6193 0.2697 0.3152 0.2939

M-2 0.01455 -0.2956 0.4871 0.1795 0.2170 0.2732

the output value as close as possible to the target value. In 
this ANN study, the neural network comprises of one input 
layer, one hidden layer with three neurons and one output 
layer. As we know, the Regression (R) value indicates the 
quality of relationship among output and targets and varies 
from 0 to 1. R-value of 0 and 1 stipulates chaotic and close 
relationship, respectively, among outputs and targets. The 
networks are initially trained with 500 epochs and incre-
mentally increased with 100 more in each step unless the 
desired degree of accuracy is achieved. The flow chart for 
the training of ANN is already shown in Fig. 10. Finally, 
the networks are trained for deficient error, i.e., R-value 
is kept above 0.99 in each case. The percentage of the 

numerical simulation data utilized for the training and test-
ing purposes of networks are 70 % and 30 % respectively. 

The prepared networks can foresee the pressure coef-
ficients and are plotted individually along with results 
of CFD and FFT for common faces like Face A, Face D, 
Face E and Face G in Figs. 13(a)–(d) respectively. The 95 % 
prediction bounds of the FFT are also plotted in the same 
figures. Prediction bounds are often termed as confidence 
bounds as it exemplifies the confidence interval for a pre-
dicted response. In other words, the prediction bounds 
indicate that there is a 95  % chance that a new obser-
vation is enclosed within the lower and upper bounds.  
As the response Cpe is having a single predetermined 
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M-1 M-2
(a) 120° Wind Angle

M-3

M-1 M-2
(b) 180° Wind Angle

Fig. 11 Wind streamlines around the building models

M-3

M-1 M-2
(a) SSE

M-3

M-1 M-2
(b) R2

M-3

M-1 M-2
(c) RMSE

Fig. 12 Error measurements of the FFT polynomials

M-3
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predictor value, non-simultaneous prediction bounds with 
a 95 % confidence level have been considered. The non- 
simultaneous prediction bounds for a new observation at 
the predictor value x are given by,

P y t s xSxU L
T

,
,= ± +2 	 (10)

where s2 is the mean squared error, t is computed as the 
inverse of Student's T cumulative distribution function, 
S is the covariance matrix of the coefficient estimates, 
(XTX)–1s2 and x is a row vector of the Jacobian estimated at 
a particular predictor value.

From these comparative plots, it is evident that the 
results obtained from ANN are matching with good agree-
ment with the results of both CFD and FFT. Therefore, 
ANN can be adequately trained to predict wind pressure 
coefficients. Later comparative plots for ANN predictions 
are face-wise plotted for all the building models to under-
stand the shape effect.

The error histograms for Face B, Face C, Face E and 
Face F are shown in Figs. 14(a)–(d) to justify the accuracy 
of the trained networks. It is observed from the error his-
tograms that the percentage of error is usually not more 
than 2 %. There are very few instances when the error is 
3–5 % but never more than 5 %. The error percentage is 
justified considering the randomness of responses during 
wind-structure interaction under wind storm and a num-
ber of variables involved in the responses. 

Relevant standards for evaluation of wind loads do not 
include the pressure coefficients for cross-shaped build-
ings. Therefore, no guidelines are available, and special-
ized literature is the only source of information as far as 
the evaluation of wind loads with sufficient precision is 
a concern. So, in this article, an attempt is made to provide 
the general trend of variation of pressure coefficients on 
different building surfaces of tall cross-shaped buildings. 
For a more comprehensive study, in addition to the three 
parametric models already introduced, six other models 
(M-4 to M-9) are considered (Fig. 15). The height of all the 
building models is considered as 500 mm. 

 Artificial Neural Networks are trained for all nine 
parametric models using the methodology already dis-
cussed in the preceding sections. The trained networks are 
plotted for different faces corresponding to different d/b 
and h/b values (Refer Fig. 1) to show the trend of pressure 
coefficients due to change in shape for cross-plan shaped 
buildings keeping the same plan area. By altering the 
position and the length of the horizontal limbs on oppo-
site sides, nine parametric models are generated as shown 
in Table 1 and Fig. 15. ANN predictions of mean pressure 

coefficients are presented. Figs.  16(a-l), gives the ANN 
predictions of Cpe for different d/b values corresponding 
to a constant value of h/b = 5. Whereas, Figs. 17(a-l) and 
Figs. 18(a)–(h) represents the ANN predictions of Cpe for 
different d/b values corresponding to a constant value of 
h/b = 3.33 and h/b = 2.5, respectively. Any Intermediate 
values may be suitably interpolated.

9 Conclusions
This particular study is concentrated on wind-induced 
responses of cross-plan shaped tall buildings. The requ- 
ired design parameters for the structure, like mean wind 
pressures coefficients on different building faces are 
obtained for different wind incidence angle varying from 
0° to 330° at an increment of 30°. The study is initially 
conducted with three parametric models using CFD, and 
then results are compared with Fourier expansion polyno-
mials and Artificial Neural Network. After observing rea-
sonably good agreement among results of CFD, FFT and 
ANN, Artificial Neural Networks are trained for another 
six models. The trends of Cpe with the variation of location 
and length of the horizontal limbs on opposite sides are 
presented. Following conclusions can be drawn from this 
specific study:

1.	 Computational fluid dynamics can be used for gener-
ating reliable wind response data. 

2.	From the wind streamlines or flow patterns, it is 
observed that there is a vortex generation in the 
wake region. These wake region vortices cause sig-
nificant deflection of structures.

3.	 FFT polynomials using Fourier expansion with only 
two numbers of terms can be efficiently fitted for 
predicting wind response. The error measurement 
using SSE, R2 and RMSE indicates the applicability 
of the polynomials.

4.	 In this study, the predicted values from ANN models 
and the desired values of the Cpe are nearly overlying 
each other, indicating that the developed ANN mod-
els are satisfactory to estimate the wind responses. 
Hence a significant conclusion of this study is the via-
bility of ANN for acquiring wind-induced responses 
along with experimental and CFD studies.

5.	 This threefold study making predictions for deter-
mining the responses of cross-plan shaped tall build-
ings subjected to wind storm covering all possible 
wind incidence angles can be beneficial in the actual 
design against wind load. The outcomes of this study 
can considerably reduce the resources, labor and 
analysis time for the building designers. 
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M-1 M-2
(a) Face A

M-3

M-1 M-2
(b) Face D

M-3

M-1 M-2
(c) Face E

M-3

M-1 M-2
(d) Face G

Fig. 13 The plot of Pressure coefficients obtained using CFD, FFT and ANN

M-3
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M-1 M-2
(a) Face B

M-3

M-1 M-2
(b) Face C

M-3

M-1 M-2
(b) Face E

M-3

M-1 M-2
(d) Face F

Fig. 14 Error histograms of different ANN predictions of pressure coefficients

M-3
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(a) M-4 d
b

h
b

= =





1 31 5. , (b) M-5 d

b
h
b

= =





0 88 3 33. , . (c) M-6 d

b
h
b
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




0 66 2 5. , .

(d) M-7 d
b

h
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




1 5, (e) M-8 d

b
h
b

= =





0 66 3 33. , .

Fig. 15 Definition of the building surfaces and dimensions of six additional models for the comprehensive study (All units are in mm)
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b

h
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




0 5 2 5. , .
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(a) Face A (b) Face B (c) Face C

(d) Face D (e) Face E (f) Face F

(g) Face G (h) Face H (i) Face I

(j) Face J (k) Face K
Fig. 16 Trends of ANN predictions among the parametric models of h/b = 5

(l) Face L
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(a) Face A (b) Face B (c) Face C

(d) Face D (e) Face E (f) Face F

(g) Face G (h) Face H (i) Face I

(j) Face J (k) Face K
Fig. 17 Trends of ANN predictions among the parametric models of h/b = 3.33

(l) Face L



Paul and Dalui
Period. Polytech. Civ. Eng., 64(4), pp. 1124–1143, 2020|1141

(a) Face A (b) Face B (c) Face C

(d) Face D (e) Face E (f) Face F

(g) Face G (h) Face H

Fig. 18 Trends of ANN predictions among the parametric models of h/b = 2.5
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