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Abstract

In this research, two energy-based techniques, called Lagrange multiplier and conversion matrix, are applied to involve crack parameters 

into the non-linear finite element relations of Euler-Bernoulli beams made of functionally graded materials. The two techniques, which 

divide a cracked element into three parts, are implemented to enrich the secant and tangent stiffness matrices. The Lagrange multiplier 

technique is originally proposed according to the establishment of a modified total potential energy equation by adding continuity 

conditions equations of the crack point. The limitation of the conversion matrix in involving the relevant non-linear equations is the 

main motivation in representing the Lagrange multiplier. The presented Lagrange multiplier is a problem-solving technique in the 

cracked structures, where both geometrical nonlinearity and material inhomogeneity areas are considered in the analysis like the 

post-buckling problem of cracked functionally graded material columns. Accordingly, some case-studies regarding the post-buckling 

analysis of cracked functionally graded material columns under mechanical and thermal loads are used to evaluate the results.
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1 Introduction
The numerical methods -especially the finite element 
method (FEM)- are extensively used to evaluate the sta-
bility of cracked structures. The modeling of the crack in 
the framework of the FEM is carried out through different 
tools like the rotational spring, discrete cracked element, 
enriched element, etc. The concepts of the stress intensity 
factor, the energy release rate, and the crack opening dis-
placement are commonly used to analyze problems includ-
ing the crack. An effective tool to incorporate cracks in 
structures, which was firstly applied by Irwin  [1], is the 
rotational spring model. Ricci and Viola  [2] developed 
a theoretical method to compute the stress intensity factors 
of cracked Timoshenko beams. The vibration of the Euler-
Bernoulli beam including a single crack was investigated 
by using a modified line-spring model in  [3]. Static and 
dynamic analysis of cracked concrete beams was experi-
mentally performed using the FEM by Mazaheri et al. [4]. 
Okamura et  al.  [5] investigated the buckling of cracked 
columns by extracting the relationship between the stress 
intensity factor and compliance. Skrinar [6] carried out the 
bending, free vibration and buckling analysis of beams by 

using FEM and a simplified crack model. Moreover, Biondi 
and Caddemi  [7] investigated uniform Euler-Bernoulli 
beams with discontinuities. They modeled discontinu-
ities as singularities of the flexural stiffness. The XFEM 
as a powerful and reliable method is successfully utilized 
in the analysis of cracked structures. A relevant research 
work can be found in [8]. 

Functionally graded materials (FGMs) are special com-
posites in which the material properties change from one 
side to another continuously. These materials have exten-
sive usage in engineering applications especially in aero-
space, electronics, and biomedical industry. Thermal buck-
ling analysis of functionally graded Euler-Bernoulli beams 
with temperature-dependent properties was investigated 
by Chen et al. [9]. Thermal buckling of functionally graded 
piezoelectric Timoshenko beams with different boundary 
conditions was theoretically investigated by Nasirzadeh 
et  al.  [10]. Darvizeh et  al.  [11] carried out the mechan-
ical and thermal post-buckling analyses for the FGM 
Euler-Bernoulli beams. The nonlinear static response of 
FGM beams was investigated through an exact solution 
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based on shear deformation theory in [12]. The non-linear 
thermal buckling analysis of FGM Timoshenko beams 
under non-uniform temperature distribution was studied 
by Paul and Das [13] in which the effect of the volume frac-
tion and length-thickness ratio on the post-buckling behav-
ior was evaluated.

Due to the significant role of the crack in reducing the sta-
bility of structures, it is important to investigate the buck-
ling and post-buckling behaviors of cracked FGM struc-
tures. The elastic buckling of Timoshenko FGM beams 
including open edge crack modeled by the elastic rota-
tional spring was studied through an analytical approach 
by Ke et al. [14]. Song et al. [15] investigated the thermal 
buckling and post-buckling of edge-cracked functionally 
graded multilayer graphene nanocomposite beams on an 
elastic foundation. The post-buckling analysis of bi-direc-
tional functionally graded imperfect beams was performed 
using GDQM and Newton-Raphson iteration based on 
a novel third-order shear deformation theory in [16].

One of the proper techniques to satisfy boundary and 
continuity conditions is Lagrange Multiplier (LM) which 
is successfully used in fracture and contact mechanics. 
Abraham and Brandon [17] utilized sub-structure normal 
modes in the vibration analysis of cantilever beams includ-
ing the transverse crack. They employed the LM technique 
to enforce the continuity conditions in the cracked zone. 
Bordas et al. [18] represented a three-dimensional mesh-
free method to investigate the initiation, propagation, and 
growth of cracks. They used the extrinsic enrichment 
approach and LM technique in the static and dynamic 
analysis of non-linear materials. Sun et al. [19] developed 
the multi-scale lattice method for the mesoscopic crack 
growth simulation of concrete structures. Here Lagrange 
multipliers λ is used to connect the trans-scale boundary 
between macro-scale and meso-scale regions. Moreover, 
Bruno et  al. [20] proposed the LM technique to analyze 
mixed-mode delamination of laminated composites based 
on fracture and contact mechanics. Liu et al. [21] applied 
the LM technique to ensure the compatibility on the inter-
face of crack tip region and outer region without crack. 
Luciano et al. [22] proposed variational formulations to 
solve the problem of bending and buckling of Timoshenko 
nano-beams in which Lagrange multipliers were used in 
the numerical analyses. 

A novel technique, which was recently represented to 
derive the stiffness matrix of the crack element, is called the 
Conversion Matrix (CM) in which the tangent and secant 
stiffness matrices are enriched through the crack properties. 

Alijani et al. [23] introduced the CM technique in the static 
analysis of cracked Euler–Bernoulli beams resting on an 
elastic foundation. Moreover, a one-dimensional finite ele-
ment model using the CM technique was proposed to inves-
tigate the nonlinear behavior of cracked beams in [24].

The principal objective of this research is to present 
a new LM technique in the FE solution of cracked FGM 
column by considering the Euler-Bernoulli beam the-
ory and the rotational spring model. The LM technique 
is originally implemented for the mechanical and ther-
mal post-buckling analysis. Moreover, The CM technique 
which has been already introduced to involve the crack 
in the beam, see [25], is briefly reviewed. The main dif-
ference between the two techniques is highlighted where 
the geometrical nonlinearity and material inhomogeneity 
should be considered in the analysis. The limitation in the 
CM leads to neglecting the nonlinear terms and inhomo-
geneity in the continuity equations, while this deficiency 
has been remedied in the LM. Some case studies in the 
post-buckling analysis are used to investigate the results 
of two techniques. The Influence of crack depth, end con-
ditions, load types, and material properties of the cracked 
FGM column is also investigated.

2 Problem formulation
A technique into the framework of the one-dimensional 
FEM is introduced to analyze the time-independent prob-
lems of open-edge cracked FGM beams. This technique 
is implemented based on the LM technique to analyze 
the non-linear buckling. Moreover, a review regarding 
the CM technique is presented to obtain the post-buck-
ling path. The modeling of the crack in the FGM column, 
Linearization, stiffness matrix, and loading conditions are 
explained in-details for these two techniques.

2.1 Modeling of crack
Fig. 1 shows a cracked FGM column with L, h, b as length, 
height, and width, respectively. The longitudinal axis 
which passes through the centroid of the cross-section is 
considered x and Young's modulus changes in z direction 
according to exponential law as follows:

E z E e z� � � 0
� ,	 (1)

in which E0 and β are Young's modulus at mid-plane (z = 0) 
and constant relevant to gradual variation of material 
properties, respectively. In this study, the material prop-
erties are assumed at room temperature and temperature- 
independent [26]. FGM column is made from two materials 
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with index notations of "1" and "2" in which the crack is 
incorporated in the hand side of the index "1" shown in 
Fig.  1(a). A rotational spring is used to model the crack 
located in X0 position illustrated in Fig. 1(b). The rotational 
spring stiffness factor is realized by the material and geo-
metric characteristics of the crack.

The stiffness factor of the rotational spring, Kt is obtained 
by calculating spring flexibility factor Ĝ as follows

	 (2)

The flexibility factor G which corresponds to the crack 
parameter can be found from Broek's approximation [27] as 

	 (3)

where M is the bending moment at the cracked section, 
kI is the stress intensity factor (SIF) associated with the 
opening mode I and E is Young's modulus at the crack 
tip  [28]. The stress intensity factor kI can be computed 
from the data represented by Erdogan and Wu [29] as

k
M h
h

FI � � �6

2

� �
� ,	 (4)

in which the crack depth ratio is ξ = a/h and ξ ≤ 0.7. Also, 
the expressions of F(ξ) are calculated based on the men-
tioned results in [30]. Those have been specified for the 
different ratios of E2/E1

 = 0.2, 1 and 5 as in Eq. (5) [28], 
Eq. (6) and Eq. (7), respectively

F � � � �

� �

� � � � �

� � �

1177 980 2409 170 1947 830

770 54 146 776 4

7 6 5

4 3

. . .

. . .. . .742 2 752 1 91
2� �� �

	
(5)

F � � � �

� �

� � � � � �

�

1031 750 2395 830 2124 310

909 375 192 451

7 6 5

4 3

. . .

. . �� � �21 667 1 662 1 15
2

. . .� �
	 (6)

F � � � �

� �

� � � � � �

� � �

211 706 545 139 535 236

267 910 72 627 12

7 6 5

4 3

. . .

. . .5511 0 859 0 65
2� �� �. .

	 (7)

Substituting Eq. (4) into Eq. (3) results in the determi-
nation of the flexibility factor as in Eq. (8) [14] 

	 (8)

in which ξ ̄is the given crack depth ratio. 

2.2 Non-linear finite element analysis
One-dimensional elements are utilized to discretize the 
column for the finite element analysis. Moreover, longitu-
dinal and transverse displacements in an element are inter-
polated by using Lagrangian and Hermitian shape func-
tions, respectively, based on nodal displacements. Secant 
and tangent stiffness matrices are derived by inserting 
kinematic and constitutive relations into the total potential 
energy equation. 

� �� �U ,	 (9)

in which, Π, U and Ω are the total potential energy of col-
umn, the strain energy and the potential energy of external 
forces, respectively. Two mechanical and thermal forces 
are separately applied to the FGM column in which forces 
are considered as incremental loadings in order to solve 
the post-buckling problem.

2.2.1 FE analysis for FGM columns
The kinematic and constitutive equations of the Euler-
Bernoulli beam are, respectively.

� � �x NL� �0 	 (10)

� � � �x NL xE z� � � � �0 	 (11)

Young's modulus in the FGM beam is considered as a 
function of z direction based on Eq. (1). A common form 
of the kinematic equation in the FE analysis is

�0
2

2 0�
�
�

�
�
�

� �� � �
u
x
z w
x

zu bB B u B u, 	 (12) 

� �NL NL
w
x

A�
�
�

�
�
�

�
�
� � �

1

2

1

2

1

2

2

 B u. 	 (13)

K Gt =1/ ̂

1

2

2 2
2�� �

� �
�

� k

E a
M dG

da
I

,
̂

G
F

E h h
d�

�� � � �
� ��

0

2 2

2

72 1� � � � �

�
�̂

(b)
Fig. 1 Schematic description for crack modeling of metal-ceramic FGM 
beam under axial loading: a) open edge crack, b) modeling of crack with 

rotational spring

(a)
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The tangent stiffness matrix is obtained as [30]

K K N NT � � �0 1 2
,	 (14)

in which K0, N1, and N2 are the matrices of independent, 
linearly dependent, and quadratically dependent upon the 
displacement vector, respectively. Those can be computed 
for the FGM beams as

	 (15)

	 (16)

	 (17)

G̃  and BNL can be derived by considering θ = G̃u, BNL = ÃG̃  
and Eq. (13). The stretching (Â), bending (D̂) and stretching- 
bending coupling (B̂ ) stiffnesses are determined [28] as

	 (18)

The material variation in z direction leads to the change 
of the neutral axis position. h0 is the distance between the 
neutral axis and the centroid of the cross-section area as 
shown in Fig. 2.

	 (19)

where E w
xu NL� ��

�
�

�
�
� �

�
�

B B u1

2

2

2
and � . The distance h0 can be 

simplified in the start of loading and before buckling as 
h B

A0 =
̂

̂  in which the curvature, κ, is zero. Accordingly, 
compressive axial load produces a moment in the end 

supports of FGM columns due to stretching-bending cou-
pling stiffness. Moreover, increasing axial load causes that 
the neutral axis changes with respect to the curvature. 

2.2.2 Mechanical loading
The variation of the total potential energy in the mechani-
cal loading can be obtained as follows  

� � � �� � �u R u FT T
ext ,	 (20)

in which R, Fext and η are the internal force, the external 
load vector and load level, respectively. It can be rewritten 
for the Euler-Bernoulli beam discretized by ne elements as

� �� � � �� � �
�

�

� �b dzdx
e

n
le

h

h

x x
T

ext
e

1

0

2

2



u F .	 (21)

The operator, È, denotes an assembly process. 
Accordingly, the internal force, R, is derived from the 

first term on the right side of Eq. (21) as

R B B� �� �
�

�

� �b dzdx
e

n
le

h

h

NL
T

x
e

1

0

2

2

0


� 	 (22)

The Taylor series expansion is used to solve the non-
linear equilibrium equation using the iterative Newton- 
Raphson algorithm as

� � � � � �� � �u u u u u� �� � � � � � � � � �, , , .D Re ,	 (23)

where u̅ is an already known displacement vector and Re 
is the residuum of the Taylor series which is neglected 
to obtain the linear equation system based on an itera-
tive solution. DδΠ denotes the gradient vector of δΠ at u̅. 
Also, ΔδΠ is used to simplify the notation of the direc-
tional derivative in the Taylor series expansion as

� � �� � �� � � �D u u, . .	 (24)

Therefore, the linearization of the virtual work yields

� � �� �� � .	 (25) 

By considering

� � �
�

� �� u K uT
Te

ne

1

,	 (26)

and by inserting Eqs. (20) and (26) into Eq. (25), the equi-
librium equation system is derived as 

K u R FT exte

ne � � � �� �
�

�
1

.	 (27)

The displacement increments  can be computed by the 
load control algorithm in the given load level η̅.
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Fig. 2 Variation of strain through thickness
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2.2.3 Thermal loading
A literature review on the thermal post-buckling subject using 
the FEM shows that the solution of the nonlinear thermal 
equilibrium equation is performed through two techniques: 
A) employing a direct iterative procedure without the lin-
earization of the equation and without the determination of 
the tangent stiffness matrix [31], B) the linearization of the 
equilibrium equation and the determination of the tangent 
stiffness matrix [32]. Relations and results in this research 
work have been represented based on the second one. 
In both techniques, the combined Newton-Raphson/Arc-
length procedure has been applied to solve the nonlinear eq- 
uation. The arc-length will generally be advantageous where 
bifurcation or limit points occur [33]. In the load control and 
the displacement control, the load level or the displacement 
level are kept constant and iterations are performed until 
a state of equilibrium is reached  [34]. The total potential 
energy by considering thermal loading is obtained as [35]

� � �
�

�

� �b dzdx
e

n
le

h

h

x x x th
e

1

0

2

2
1

2


( )� � � � ,	 (28)

where the thermal stress can be found as

� �th E z z T� � � � ��0 .	 (29)

The variation of the total potential energy is

� � �� � � �u R u FT T
thT0 ,	 (30)

in which the thermal force vector is obtained by inserting 
Eq. (29) into Eq. (28) as

F B B
e

ne
th

le

h

h

NL
Tb E z z dzdx� �� � � � � �

�

�

� �1

0

2

2

0


� .	 (31)

Since the thermal force vector, F̅ th, is including both 
displacement and load terms, the load control fail to solve 
such equilibrium equation. If the term including the dis-
placement in the thermal force vector (BNL) is neglected, 
the load control can be successfully used. By considering 
the nonlinear term of BNL, the linearization of the variation 
of the potential energy is performed as follows 

� �

� �

� �

� �

u u u

u u u

� � � � � �� �� � � �� �
� �� � � � �� � � �

, ,

, . , .

0 0 0

0 0 0

T T T

D T D T TT Re� � �
	 (32) 

 Considering the equilibrium state, an incremental iter-
ative solution is proposed to determine the updated dis-
placement corresponding to thermal load as 

D T D T T

T

� �

�

� �

�

u u u

u

, . , .

, ,

�� � � � �� � � �� �
� � �� �

0 0 0

0

	 (33)

in which the first term can be explained as

D T T
Te

ne� �� u u u K u, .�� � �� �
�0
1

.	 (34)

The tangent stiffness matrix is obtained as

K K N N KT th� � � �0 1 2 ,	 (35)

where

K G G
e

th

l

h

h

T
thb dzdx� � �

�0
2

2

 � .	 (36)

The second term of Eq. (33) can be recast with

D T T TT
th� �� u u F, .�� � � �� � � � � �� �0 0 0

.	 (37)

Substituting Eqs. (30), (34) and (37) into Eq. (33) gives

K u F R FT th the

n
T Te � � � �� � � � � �� �

� 0 0
1

.	 (38)

The matrix form to use the arc-length algorithm is pre-
sented as 

K F

f

u R FTe

n
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e
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f
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��
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��
� �

� ��
�1
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0

,


��

��

�
�
�

��
,	 (39)

where the constraint equation function and its gradient 
(i.e. f and f T, respectively) can be found in [34]. Two tem-
perature distributions of uniform and linear tabulated in 
Table  1 are considered to perform the thermal buckling 
analysis.

2.3 Incorporating crack in the beam element
The most significant part of the finite element analysis 
of a beam including the crack is related to cracked ele-
ments. A cracked element in the beam is divided into three 
sub-elements as shown in Fig. 3

These sub-elements are connected to each other using 
the following five continuity conditions at x = x0 as follows

u u u ueL eR� � �2 3 ,	 (40)

w w w weL eR� � �2 3
,	 (41)

Table 1 Temperature distribution

Type of thermal loading Temperature (T)

Uniform

Linear

T T Tc m= =

T T T T z
hm c m� � � ��

�
�

�

�
�( )

1

2
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� ��
�� �

�w
BEb D b

K
weL

t
eR

� �̂ ̂
	 (42)

M M BEb D b BEb D beL eR eL eR
� � �� � � �� �� �� �̂ ̂ ̂ ̂ 	 (43)

	 (44)

The expanded form of Eqs. (42) to (44) can be found in 
"Appendix A". The stiffness matrices for a cracked element 
are enriched by considering crack characteristics and conti-
nuity conditions. Two techniques of LM and CM are intro-
duced to insert crack parameters into the stiffness matrices. 
The substantial difference between the two techniques is 
highlighted when the influence of the material inhomoge-
neity is studied in a structure like a beam made of FGM.

2.4  Lagrange Multiplier technique 
The LM technique is applied to derive the finite element 
parameters of the cracked element. This technique is effect- 
ive and useful in solving nonlinear problems where insert-
ing geometrical non-linearity relations and material inho-
mogeneity into continuity conditions yields a set of compli-
cated equations. Since continuity conditions in the present 
research have a nonlinear nature, using the CM technique 
instead of the LM one results in error in the analysis. 
In other words, the CM technique is implemented by ignor-
ing the geometrically nonlinear term, 1

2

2�
�

�
�
�

�
�
�

w
x

, in continu-
ity conditions. While in the LM technique, the five con-
tinuity conditions are added to the total potential energy 
as fully constrained conditions without any simplification. 
A plan is considered to derive the enriched stiffness matri-
ces in which the main equation is the total potential energy. 
The crack parameters are involved through inserting conti-
nuity conditions into the potential energy as follows

� �crack L R spring crackU U U

H H H H H

� � � �

� � � � �� � � � �1 1 2 2 3 3 4 4 5 5

	 (45)

in which UL, UR and Uspring are strain energies of left and 
right-hand-side sub-elements and the rotational spring, 
respectively, and the potential energy of external forces is 
denoted by Ωcrack. Also, Lagrange multipliers, λ1 to λ5, are 
related to five continuity equations. H1 to H2 are defined as 
the constraints of continuity in a cracked element, which 
are obtained according to Eqs. (40) to (44).

H u u1 2 3� � 	 (46)

H w w2 2 3� � 	 (47)

H a w b c d u e w f g u3 3 2 3 2
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	 (50)

Coefficients of Eqs. (46) to (50) are determined by 
inserting the shape functions into Eqs. (40) to (44) as 
follows

	 (51)

The variation of Eq. (45) yields the equilibrium equa-
tion of the cracked element whose secant stiffness matrix 
can be specified as
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The linearization of the equilibrium equation is per-
formed by using the increment of Eq. (52) as follows:
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which gives the tangent stiffness matrix of the cracked 
element.

In order to obtain the tangent stiffness matrix of the 
cracked element in non-linear finite element analysis. The 
procedure represented in Eqs. (54) to (60) is applied to 
recast the ith term of Eq. (53) in the form of �u K u uT

Ti � �� .
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The tangent stiffness matrix of the cracked element 
is determined by the sum of matrices obtained from 
"Appendix B".

K K K K K KT crack TL TR spring T T. � � � � ���1 5 	 (61)

2.5 Conversion Matrix technique 
The CM technique is implemented within the finite ele-
ment framework based on a conversion in which the dis-
placements of the middle nodes are written in terms of the 
displacements of basic nodes. A simplification in CM tech-
nique is considered to derive relations. Accordingly, the 
nonlinear part of the kinematic equation in the continuity 
conditions is neglected. A basic characteristic of the CM is 
related to the order of degrees of freedom for the cracked 
element, as the order is without changing in the CM, unlike 
the LM. In other words, cracked elements in the CM and 
the LM have 6 and 17 degrees of freedom, respectively. 
Two conversion matrices, CL and CR, are introduced to 
derive the enriched stiffness matrices. The  cracked ele-
ment is divided into three parts including two sub-elements 
and a rotational spring. The strain energies corresponding 
to each part are determined in terms of displacements of 
the basic nodes (first and fourth) as shown in Fig. 3. If the 
nonlinear terms of the continuity conditions are ignored, 
a  linear relation is established between displacements of 
the middle nodes (second and third nodes) and the basic 
nodes. Therefore, in the CM, Eqs. (42) to (44) are simplified 
by neglecting the nonlinear part as follows
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The strain energy of the cracked element is considered 
as the sum of energies of the three parts.

U U U Ucrack L R spring� � � 	 (66)

The increment of strain energy variation is
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The components of ΔδUcrack can be written as follows
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The conversion matrices can be derived as 
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Inserting Eqs. (69) and (68) into Eq. (67) yields
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Therefore, the tangent stiffness matrix for the cracked 
element can be extracted as follows

K K K KT crack TL TR spring. � � � ,	 (71)

in which 

K C k CTL L
T
TL L= ,	 (72)

K C k CTR R
T
TR R= ,	 (73)

K C Cspring spring
T

t springK= ,	 (74)

and CL, CR and CSpring can be found in [25].

3 Results and discussion
Table 2 shows the material properties of the metal-ceramic 
FGM beam used as a case study in mechanical and thermal 
post-buckling analysis, in which length, height, and width 
are considered as L = 2 m, h = 0.1 m and b = 0.1 m, respec-
tively. Two sets of boundary conditions including clamped-
clamped(C-C) and simply supported-simply supported 
(SS-SS) are considered. In thermal loading, two types of 
uniform and linear temperature distribution are assumed.

Table 3 compares the critical buckling load values for the 
intact FGM column calculated using the analytical and FEM. 
An eigen-value solution is performed in the FE analysis.

The convergence of the linear buckling analysis, as 
shown in Fig. 4(a), explains that desired results are even 
obtained with 10 elements. In other words, the difference 
almost 0.5 % is observed between the minimum and max-
imum critical buckling loads. Fig. 4(b) demonstrates that 
after about 51 elements, the change in critical buckling 
magnitude is negligible, so this element number is adopted 
for other analyses in this paper. 

In Fig. 4(b), the convergence of FEM results in the 
non-linear buckling analysis is investigated for the C-C 
FGM beam containing crack incorporated in the middle of 
the beam with a/h = 0.5. 

Table 2 Material properties of FGM beam

Properties
Materials

Aluminum Alumina

Young's Modulus 
(GPa) Ec = 350 Em = 70

Thermal Expansion 
Coefficient (/°C) αc = 7.4 × 10–6 αm = 23 × 10–6

Table 3 Critical buckling load using analytical and FE methods

Pcr × 106(Intact column)

B.C SS-SS C-C

Method FEM

Analytical

FEM

Analytical

Pure 
metal 1.4394 1.4393 5.7576 5.7573

E2/E1
 = 

0.2 and 5 3.1578 3.1575 12.633 12.630

Pure 
ceramic 7.1970 7.1966 28.788 28.786
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Fig. 5 displays the comparison of two CM and LM tech-
niques in the post-buckling analysis of the FGM cracked 
column. Fig. 5(a) shows the pre- and post-buckling behav-
ior of the column under uniform thermal load in two crack 
depths in which close accordance between two techniques 
is observed. On the other hand in mechanical loading 
shown in Fig. 5(b), a clear difference is recognized due to 
neglecting the non-linear part in the continuity conditions. 
Indeed, applying the non-linear term in continuity condi-
tions of the LM technique leads to higher level of stiffness 
of the structure which can be obviously seen in Fig. 5(b). 
The representation of a straight-forward fact about the dif-
ference and the closeness of the two techniques is difficult 
due to the simultaneous effects and interaction of some 
parameters listed as

•	 Complexity of the non-linear problem
•	 Modelling of the crack through the rotational spring
•	 Loading conditions (Mechanical load, uniform and 

linear thermal loads)
•	 Interaction between the equivalent spring stiffness 

factor and the non-linear part of continuity conditions. 
Fig. 6 shows the effect of Young's modulus ratio on the 

mechanical post-buckling behavior of cracked FGM beam 
for SS-SS and C-C boundary conditions. A similar trend is 
seen in two boundary conditions as illustrated in Figs. 6(a) 
and 6(b). The critical buckling load used to normalize 
the force axis in this figure is determined according to 
the critical buckling load of the intact column of the pure 
metal. The comparison of curves shows that the buckling 
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load capacity increases when a metal column is replaced 
by FGM one (in which E2/E1 = 0.2 with Ec = E1, Em = E2). 
According to these curves, the buckling load capacity in 
E2/E1 = 5 increases in comparison with E2/E1 = 0.2. The 
reason for this is that the crack locates in the metal side 
when E2/E1 = 5 in which the higher value is obtained for 
the stiffness factor of the rotational spring. 

Fig. 7 illustrates the post-buckling behavior of the 
SS-SS cracked FGM column with E2/E1 = 0.2 in different 
crack depths in which the influence of uniform thermal 
and mechanical loads is investigated in Figs. 7(a) and (b), 
respectively.

According to Fig. 7, the crack decreases the buckling 
load capacity. In Fig. 7(a), the post-buckling curve is plot-
ted to evaluate the crack depth effect. It shows that the crack 
depth of 0.6 decreases the buckling load capacity more than 

50 %. An investigation in Fig. 7(b) yields similar results 
in which the decrease of the buckling load capacity nearly 
18 % and 60 % is observed for crack depths of 0.3 and 0.6, 
respectively. As shown in Figs. 7(a) and 7(b), increasing the 
crack depth from 0.3 to 0.6 leads to the significant reduc-
tion of the buckling load capacity in comparison with the 
case that the crack depth increases from 0 to 0.3. This point 
is due to the nonlinear relationship between the crack depth 
and the critical buckling load. 

A comparison between Fig. 7(a) and Fig. 8(a) shows that 
the uniform temperature distribution makes more defor-
mation than the linear one. The main reason for this is that 
all points of the column in the uniform distribution reach 
the same temperature (maximum), unlike the linear type. 
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Fig. 8 shows that a certain critical buckling point for the 
FGM column can be found when the column is assumed 
intact with C-C end conditions. Also, a lateral deformation 
without any perturbation occurs in FGM columns due to 
the presence of the crack and stretching-bending coupling 
stiffness in inhomogeneous materials.

Figs. 9 and 10 depict the effect of Young's modulus ratio 
on the thermal post-buckling behavior of SS-SS and C-C 
cracked FGM columns under thermal loading with uni-
form and linear temperature distribution, respectively. 
Graphs show that the minimum to maximum thermal 
buckling load-bearing capacity belongs to pure metal, 
E2/E1  =  0.2, E2/E1  =  5 and pure ceramic, respectively. 
Furthermore, the load-bearing capacity of C-C end condi-
tions is nearly two times more than SS-SS. In the uniform 

temperature distribution as shown in Fig. 9, a certain crit-
ical buckling point can be detected for cracked isotro-
pic columns. On the other hand, based on Figs. 9 and 10 
(i.e.,  two types of thermal loading), a specified critical 
buckling load cannot be seen in cracked FGM columns. In 
addition, there is no obvious critical buckling load in the 
linear temperature distribution for all cracked columns as 
illustrated in Figs. 8 and 10. 

4 Conclusions
Two techniques called LM and CM were represented to 
involve crack characteristics into relations of the FGM 
Euler-Bernoulli beam. They were utilized in the post-buck-
ling analysis of cracked FGM columns. Moreover, their 
advantages and disadvantages were compared from two 
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aspects of relations and results. These techniques were 
developed into the framework of the FEM to derive the 
enriched secant and tangent stiffness matrices. Due to 
the restriction of the CM technique in the fulfillment of 
continuity conditions, the LM technique is proposed. 
This restriction is related to geometrical nonlinearity and 
material inhomogeneity equations. The LM technique 

enables that these equations are imposed in the analysis 
of the cracked element. The LM implementation leads to 
the increase of degrees of freedom and the singularity in 
the matrices of the cracked element. The LM technique, 
despite a little more complexity, can be finely developed 
in various engineering problems due to flexibility and 
comprehensiveness.
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Fig. 10 Effect of material properties in post-buckling behavior of cracked FGM column with linear thermal loading condition for  

a/h = 0.5, X0/L = 0.5: a) SS-SS, b) C-C B.Cs

References
[1]	 Irwin, G. R. "Analysis of Stresses and Strains Near the End of a 

Crack Taversing a Plate", Transaction of ASME, Journal of Applied 
Mechanics, 24, pp. 361–364, 1957.

[2]	 Ricci, P., Viola, E. "Stress intensity factors for cracked T-sections and 
dynamic behaviour of T-beams", Engineering Fracture Mechanics, 
73(1), pp. 91–111, 2006.

	 https://doi.org/10.1016/j.engfracmech.2005.06.003
[3]	 Yokoyama, T., Chen, M.-C. "Vibration analysis of edge-cracked 

beams using a line-spring model", Engineering Fracture Mechanics, 
59(3), pp. 403–409, 1998.

	 https://doi.org/10.1016/S0013-7944(97)80283-4
[4]	 Mazaheri, H., Rahami, H., Kheyroddin, A. "Static and Dynamic 

Analysis of Cracked Concrete Beams Using Experimental Study and 
Finite Element Analysis", Periodica Polytechnica Civil Engineering, 
62(2), pp. 337–345, 2018.

	 https://doi.org/10.3311/PPci.11450 
[5]	 Okamura, H., Liu, H. W., Chu, C.-S., Liebowitz, H. "A cracked col-

umn under compression", Engineering Fracture Mechanics, 1, pp. 
547–564, 1969. 

	 https://doi.org/10.1016/0013-7944(69)90011-3
[6]	 Skrinar, M. "On the Application of the Simplified Crack Model 

in the Bending, Free Vibration and Buckling Analysis of Beams 
with Linear Variation of Widths", Periodica Polytechnica Civil 
Engineering, 63(2), pp. 423–431, 2019.

	 https://doi.org/10.3311/PPci.12698

[7]	 Biondi, B., Caddemi, S. "Closed form solutions of Euler–Bernoulli 
beams with singularities", International Journal of Solids and 
Structures, 42 (9–10), pp. 3027–3044, 2005.

	 https://doi.org/10.1016/j.ijsolstr.2004.09.048
[8]	 Mottaghian, F., Darvizeh, A., Alijani, A. "Extended Finite Element 

Method for Statics and Vibration Analyses on Cracked Bars and 
Beams", Journal of Solid Mechanics, 10(4), pp. 902–928, 2018. 
[online] Available at: http://jsm.iau-arak.ac.ir/article_545728.html

 [9]	 Chen, W.-R., Chun, S.-C., Chang, H. "Thermal Buckling Analysis 
of Functionally Graded Euler-Bernoulli Beams with Temperature-
dependent Properties", Journal of Applied and Computational 
Mechanics, 6(3), pp. 457–470, 2020.

	 https://doi.org/10.22055/jacm.2019.30449.1734
[10]	 Nasirzadeh, R., Behjat, B., Kharazi, M. "Finite element study on 

thermal buckling of functionally graded piezoelectric beams con-
sidering inverse effects", Journal of Theoretical and Applied 
Mechanics, 56(4), pp. 1097–1108, 2018.

	 https://doi.org/10.15632/jtam-pl.56.4.1097
[11]	 Darvizeh, M., Darvizeh, A., Ansari, R., Alijani, A. "Pre- and 

post-buckling analysis of functionally graded beams subjected to 
statically mechanical and thermal loads", Scientia Iranica, 22(3), pp. 
778–791, 2015. [online] Available at: http://scientiairanica.sharif.
edu/article_3671.html

https://doi.org/10.1016/j.engfracmech.2005.06.003
https://doi.org/10.1016/S0013-7944(97)80283-4
https://doi.org/10.3311/PPci.11450
https://doi.org/10.1016/0013-7944(69)90011-3
https://doi.org/10.3311/PPci.12698
https://doi.org/10.1016/j.ijsolstr.2004.09.048
http://jsm.iau-arak.ac.ir/article_545728.html
https://doi.org/10.22055/jacm.2019.30449.1734
https://doi.org/10.15632/jtam-pl.56.4.1097
http://scientiairanica.sharif.edu/article_3671.html
http://scientiairanica.sharif.edu/article_3671.html


96|Salmalian et al.
Period. Polytech. Civ. Eng., 65(1), pp. 84–98, 2021

[12]	 Ma, L. S., Lee, D. W. "Exact solutions for nonlinear static responses 
of a shear deformable FGM beam under an in-plane thermal load-
ing", European Journal of Mechanics-A/Solids, 31(1), pp. 13–20, 
2012.

	 https://doi.org/10.1016/j.euromechsol.2011.06.016 
[13]	 Paul, A., Das, D. "Non-linear thermal post-buckling analysis of 

FGM Timoshenko beam under non-uniform temperature rise across 
thickness", Engineering Science and Technology, an International 
Journal, 19(3), pp. 1608–1625, 2016.

	 https://doi.org/10.1016/j.jestch.2016.05.014
[14]	 Ke, L.-L, Yang, J., Kitipornchai, S., Xiang, Y. "Flexural Vibration 

and Elastic Buckling of a Cracked Timoshenko Beam Made of 
Functionally Graded Materials", Mechanics of Advanced Materials 
and Structures, 16(6), pp. 488–502, 2009.

	 https://doi.org/10.1080/15376490902781175
[15]	 Song, M., Chen, L., Yang, J., Zhu, W., Kitipornchai, S. "Thermal 

buckling and postbuckling of edge-cracked functionally graded 
multilayer graphene nanocomposite beams on an elastic foun-
dation", International Journal of Mechanical Sciences, 161–162, 
Article number: 105040, 2019.

	 https://doi.org/10.1016/j.ijmecsci.2019.105040
[16]	 Lei, J., He, Y., Li, Z., Guo, S., Liu, D. "Postbuckling analysis of 

bi-directional functionally graded imperfect beams based on a novel 
third-order shear deformation theory", Composite Structures, 209, 
pp. 811–829, 2019.

	 https://doi.org/10.1016/j.compstruct.2018.10.106
[17]	 Abraham, O. N. L., Brandon, J. A. "The Modelling of the Opening 

and Closure of a Crack", Journal of Vibration and Acoustics, 
117(3A), pp. 370–377, 1995.

	 https://doi.org/10.1115/1.2874463
[18]	 Bordas, S., Rabczuk, T., Zi, G. "Three-dimensional crack initia-

tion, propagation, branching and junction in non-linear materials 
by an extended meshfree method without asymptotic enrichment", 
Engineering Fracture Mechanics, 75(5), pp. 943–960, 2008.

	 https://doi.org/10.1016/j.engfracmech.2007.05.010
[19]	 Sun, B., Huang, X., Zheng, Y., Guo, L. "Multi-scale lattice method 

for mesoscopic crack growth simulation of concrete structures", 
Theoretical and Applied Fracture Mechanics, 106, Article number: 
102475, 2020.

	 https://doi.org/10.1016/j.tafmec.2020.102475
[20]	 Bruno, D., Greco, F., Lonetti, P. "A coupled interface-multilayer 

approach for mixed mode delamination and contact analysis in lam-
inated composites", International Journal of Solids and Structures, 
40(26), pp. 7245–7268, 2003.

	 https://doi.org/10.1016/j.ijsolstr.2003.09.006
[21]	 Liu, Z., Zheng, H., Sun, C. "A domain decomposition based method 

for two-dimensional linear elastic fractures", Engineering Analysis 
with Boundary Elements, 66, pp. 34–48, 2016.

	 https://doi.org/10.1016/j.enganabound.2016.01.015
[22]	 Luciano, R., Caporale, A., Darban, H., Bartolomeo, C. "Variational 

approaches for bending and buckling of non-local stress-driven 
Timoshenko nano-beams for smart materials", Mechanics Research 
Communications, 103, Article number: 103470, 2020.

	 https://doi.org/10.1016/j.mechrescom.2019.103470

[23]	 Alijani, A., Abadi, M. M., Darvizeh, A., Abadi, M. K. "Theoretical 
approaches for bending analysis of founded Euler–Bernoulli cracked 
beams", Archive of Applied Mechanics, 88, pp. 875–895, 2018.

	 https://doi.org/10.1007/s00419-018-1347-0
[24]	 Mottaghian, F., Darvizeh, A., Alijani, A. "A novel finite element 

model for large deformation analysis of cracked beams using 
classical and continuum-based approaches", Archive of Applied 
Mechanics, 89, pp. 195–230, 2019.

	 https://doi.org/10.1007/s00419-018-1460-0
[25]	 Alijani, A., Abadi, M. K., Razzaghi, J., Jamali, A. "Numerical analy-

sis of natural frequency and stress intensity factor in Euler–Bernoulli 
cracked beam", Acta Mechanica, 230, pp. 4391–4415, 2019.

	 https://doi.org/10.1007/s00707-019-02492-x
[26]	 Liew, K. M., Zhao, X., Lee, Y. Y. "Postbuckling responses of func-

tionally graded cylindrical shells under axial compression and ther-
mal loads", Composites Part B: Engineering, 43(3), pp. 1621–1630, 
2012.

	 https://doi.org/10.1016/j.compositesb.2011.06.004
[27]	 Broek, D. "Elementary Engineering Fracture Mechanics", Springer, 

Dordrecht, The Netherlands, 1986.
	 https://doi.org/10.1007/978-94-009-4333-9
[28]	 Ke, L.-L, Yang, J., Kitipornchai, S. "Postbuckling analysis of edge 

cracked functionally graded Timoshenko beams under end shorten-
ing", Composite Structures, 90(2), pp. 152–160, 2009.

	 https://doi.org/10.1016/j.compstruct.2009.03.003
[29]	 Erdogan, F., Wu, B. H. "The Surface Crack Problem for a Plate With 

Functionally Graded Properties", Journal of Applied Mechanics, 
64(3), pp. 449–456, 1997. 

	 https://doi.org/10.1115/1.2788914
[30]	 Wood, R. D., Schrefler, B. "Geometrically non-linear analysis -  

A correlation of finite element notations", International Journal for 
Numerical Methods in Engineering, 12(4), pp. 635–642, 1978.

	 https://doi.org/10.1002/nme.1620120408
[31]	 Panda, S. K., Singh, B. N. "Thermal post-buckling analysis of a 

laminated composite spherical shell panel embedded with shape 
memory alloy fibres using non-linear finite element method", 
Proceedings of the Institution of Mechanical Engineers, Part C: 
Journal of Mechanical Engineering Science, 224(4), pp. 757–769, 
2010.

	 https://doi.org/10.1243/09544062JMES1809
[32]	 Alijani, A., Darvizeh, M., Darvizeh, A., Ansari, R. "On nonlin-

ear thermal buckling analysis of cylindrical shells", Thin-Walled 
Structures, 95, pp. 170–182, 2015. 

	 https://doi.org/10.1016/j.tws.2015.06.013
[33]	 Wagner, W., Wriggers, P. "A simple method for the calculation of 

postcritical branches", Engineering Computations, 5(2), pp. 103–
109, 1988.

	 https://doi.org/10.1108/eb023727
[34]	 Wriggers, P. "Nonlinear Finite Element Methods", Springer, Berlin, 

Germany, 2008.
	 https://doi.org/10.1007/978-3-540-71001-1
[35]	 Ganesan, N., Kadoli, R. "Buckling and dynamic analysis of piezo-

thermoelastic composite cylindrical shell", Composite Structures, 
59(1), pp. 45–60, 2003.

	 https://doi.org/10.1016/S0263-8223(02)00230-1

https://doi.org/10.1016/j.euromechsol.2011.06.016
https://doi.org/10.1016/j.jestch.2016.05.014
https://doi.org/10.1080/15376490902781175
https://doi.org/10.1016/j.ijmecsci.2019.105040
https://doi.org/10.1016/j.compstruct.2018.10.106
https://doi.org/10.1115/1.2874463
https://doi.org/10.1016/j.engfracmech.2007.05.010
https://doi.org/10.1016/j.tafmec.2020.102475
https://doi.org/10.1016/j.ijsolstr.2003.09.006
https://doi.org/10.1016/j.enganabound.2016.01.015
https://doi.org/10.1016/j.mechrescom.2019.103470
https://doi.org/10.1007/s00419-018-1347-0
https://doi.org/10.1007/s00419-018-1460-0
https://doi.org/10.1007/s00707-019-02492-x
https://doi.org/10.1016/j.compositesb.2011.06.004
https://doi.org/10.1007/978-94-009-4333-9
https://doi.org/10.1016/j.compstruct.2009.03.003
https://doi.org/10.1115/1.2788914
https://doi.org/10.1002/nme.1620120408
https://doi.org/10.1243/09544062JMES1809
https://doi.org/10.1016/j.tws.2015.06.013
https://doi.org/10.1108/eb023727
https://doi.org/10.1007/978-3-540-71001-1
https://doi.org/10.1016/S0263-8223(02)00230-1


Salmalian et al.
Period. Polytech. Civ. Eng., 65(1), pp. 84–98, 2021|97

Appendix A
The expanded form of Eqs. (42) to (44)
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Appendix B
Matrices mentioned in Eq. (61) for a cracked element are 
symmetric with dimension (17 × 17). Non-zero components 
of these matrices are represented as follows
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Nomenclature
a crack depth

b width

CL(R) conversion matrix of Left (right) sub-element

CSpring conversion matrix related to rotational spring

E0 FGM Young's modulus in middle plane

E1 FGM Young's modulus of crack side

E2 FGM Young's modulus of intact side

Ec Young modulus of ceramic

Em Young modulus of metal

Fext external force vector

F̅ th thermal force vector

Ĝ flexibility due to crack

h height

Hi ith constraint related to continuity condition

kI stress intensity factor of crack opening mode 

kTL(TR) tangent stiffness matrix of left (right)  
sub-element in terms of displacements of 
middle nodes

K0 stiffness matrix of intact element

Kt spring stiffness factor of the rotational spring

Kspring stiffness matrix of rotational spring

KS.crack secant stiffness matrix of cracked element

Kth thermal stiffness matrix

KT tangent stiffness matrix

KTi tangent stiffness matrix corresponding to ith 
constraint

KT.crack tangent stiffness matrix of cracked element

KTL(TR) tangent stiffness matrix of left (right)  
sub-element in terms of displacements of basic 
nodes

L length 

M bending moment 

Tm metal temperature

Tc ceramic temperature
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u axial displacement field

ui axial displacement of ith node

ueL(eR) axial displacement field of left (right)  
sub-element

u nodal displacement vector

uL(R) nodal displacement vector of left(right)  
sub-element

U strain energy

UL(R) strain energy of left (right) sub-element

USpring strain energy of rotational spring

VeL(eR) shear force of left (right) sub-element

wi transverse displacement of ith node

w'eL(eR) slope field of left (right) sub-element  

x0 crack location in element

X0 crack location in column

αc thermal expansion coefficient of ceramic

αm thermal expansion coefficient of metal

β constant relevant to gradual variation of 
material properties

εx strain

ε0 linear strain

εNL non-linear strain

ξ crack depth ratio

η load level

λi ith Lagrange multiplier

υ poisson’s ratio

σx stress

σ0 linear stress

σNL non-linear stress

σth thermal stress tensor

Π total potential energy

Πcrack total potential energy of cracked element

ϕi slope of ith node

Ω potential energy of external forces

Ωcrack potential energy of external forces for cracked 
element

Δ0T change of temperature relative to the reference 
temperature
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