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Abstract

Forecasting of traffic flow in the traffic assignment model suffered to a wide range of uncertainties arising from different sources and 

exacerbating through sequential-stages of the travel demand model. Uncertainty quantification can provide insights into the level 

of confidence on the traffic assignment model outputs, and also identify the uncertainties of the input Origin-Destination matrix for 

enhancing the forecasting robustness of the travel demand model. 

In this paper, a systematic framework is proposed to quantify the uncertainties that lie in the Origin-Destination input matrix. Hence, 

this study mainly focuses on predicting the posterior distributions of uncertainty Origin-Destination pairs and correcting the biases of 

Origin-Destination pairs by using the inverse uncertainty quantification formulated through Least Squares Adjustment method. The 

posterior distributions are further used in the forward uncertainty quantification to quantify the forecast uncertainty of the traffic flow 

on a transport network. The results show the effectiveness of implementing the inverse uncertainty quantification framework in the 

traffic assignment model. And demonstrate the necessity of including uncertainty quantification of the input Origin-Destination matrix 

in future work of travel demand modelling.
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1 Introduction
Traffic assignment is a very critical part of transportation 
analysis. Traffic assignment models consider reconciling 
between travel demand and transportation supply to deliver 
an output, which describes the steady-state of a transportati- 
on system [1]. The traffic assignment model usually posses- 
ses inherent uncertainties caused by the parametric variability  
of the input data of the OD matrix [2, 3]. Propagating these 
uncertainties through the traffic assignment model on a trans- 
port network to the outputs is one aspect of the traffic flow 
uncertainty [4–6]. Beyond such propagation of OD pairs 
uncertainties, quantification of the output uncertainty is an 
essential requisite for the purpose of combine knowledge of 
uncertainty caused by the model structure with the uncerta- 
inty caused by the parametric variability of the OD pairs [7].

In general, the outputs of the traffic assignment mod-
els are very requisite for urban and transport planners to 
decisions related to transport policy and infrastructure 
expansion. Hence, simple estimates of traffic flow, even 
if they refer to the most probable values, are not adequate 

for an adequate and safe assessment due to the risks asso-
ciated with these decisions. Therefore, these planners 
have to give insight into the uncertainty margining the 
traffic assignment forecasts [8]. However, quantification 
of uncertainties enables the planners to know the possible 
range of future values for the traffic flows and the probabil-
ities associated with these possible outputs. Accordingly, 
Quantifying the uncertainty in traffic flows forecasts can 
lead to more reliable decisions [9].

Uncertainty quantification (UQ) is a technique used to 
quantify the uncertainty in the model output that arises 
from the stochastic behavior of the models' parameters. 
The UQ depends on assigning a distribution of possible 
values to each model parameter, instead of assuming fixed 
model parameters as in a deterministic model as illustrated 
in Fig. 1 [10]. UQ utilized both quantitative models' char-
acterization and reduction of uncertainties in the models' 
results. UQ widely used in stretching engineering applica-
tions and applied mathematics [11].
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UQ is a multidisciplinary technique with a broad base 
of applicable methods, including uncertainty propagation, 
statistical calibration, sensitivity analysis, and inverse 
analysis; thus, the UQ entered as a crucial ingredient in 
modelling workflow that aims to provide more practical 
information for the forecasting [1, 2]. A UQ enables us to 
model the naturally occurring variation in the input data 
(i.e. OD matrix) of the traffic assignment model. It also 
enhances our knowledge about the model by quantifying 
how the uncertain OD matrix influence on the traffic flow. 
Additionally, performing a UQ enable the transport plan-
ners to compare the outputs' variations of different meth-
ods of traffic assignment models. The challenge of UQ 
comes from the choice of uncertain input distributions: 
hence, it is necessary to advance our knowledge on prior 

distributions and justify the choice of them. This approach 
is usually referred to as inverse uncertainty quantification 
(Inverse-UQ).

Inverse-UQ aims to estimate the statistical parameters 
of uncertain inputs based on given observed data [3]. It is 
similar to parameter calibration in that both of them use 
the Bayesian inference theory to explore the posterior dis-
tributions using numerical techniques [4]. However, unlike 
parameter calibration, Inverse-UQ also captures the uncer-
tainty in its estimates rather than only determining point 
estimates of the best-fit input parameters [5]. In this paper, 
inverse methods based on Bayes' theorem has been used 
to characterize and estimate the statistical parameters of 
the input OD matrix of the traffic assignment model. Fig. 2 
shows the difference between the UQ and Inverse-UQ.
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Fig. 1 Illustration of uncertainty quantification of the traffic assignment model; (A) A traditional deterministic approach where each input variable 
has a chosen fixed value and the output of the model will be an attribute of single values; (B) uncertainty quantification approach of the traffic 

assignment model takes the distributions of the input variables into account, and the output of the model becomes a range of possible values 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Inverse Uncertainty Quantification (Inverse-UQ) 

Forward Uncertainty Quantification (Forward-UQ) 

Traffic 
assignment 

model 

Modelling of  
traffic flow data 

(Prediction) 

 Uncertainty of the input variables 
D 

O 𝑍𝑍1 𝑍𝑍𝑖𝑖 𝑍𝑍𝑛𝑛 

𝑍𝑍1 0 
𝑂𝑂𝑂𝑂(1,𝑖𝑖) ∓ 𝜎𝜎𝑂𝑂𝑂𝑂(1,𝑖𝑖)  

 

𝑂𝑂𝑂𝑂(1,𝑛𝑛) ∓ 𝜎𝜎𝑂𝑂𝑂𝑂(1,𝑛𝑛)  

 

𝑍𝑍𝑖𝑖 
𝑂𝑂𝑂𝑂(𝑖𝑖,1) ∓ 𝜎𝜎𝑂𝑂𝑂𝑂(𝑖𝑖,1)  

 
0 

𝑂𝑂𝑂𝑂(𝑖𝑖,𝑛𝑛) ∓ 𝜎𝜎𝑂𝑂𝑂𝑂(𝑖𝑖,𝑛𝑛)  

 

𝑍𝑍𝑛𝑛 
𝑂𝑂𝑂𝑂(𝑛𝑛,1) ∓ 𝜎𝜎𝑂𝑂𝑂𝑂(𝑛𝑛,1)  

 

𝑂𝑂𝑂𝑂(𝑛𝑛,1) ∓ 𝜎𝜎𝑂𝑂𝑂𝑂(𝑛𝑛,𝑖𝑖) 

 
0 

 

Observations of 
traffic flow data 

(Reality) 

Fig. 2 Illustration the difference between the Forward Uncertainty Quantification and the Inverse Uncertainty Quantification. The Forward 
Uncertainty Quantification approach of the traffic assignment model propagates the input uncertainties through the model to predicate the statistical 

parameters of the traffic flow data. The Inverse Uncertainty Quantification approach of the traffic assignment model characterizes the input 
uncertainties to predicate the statistical parameters of the input variables



Seger and Kisgyörgy
Period. Polytech. Civ. Eng., 64(4), pp. 1181–1201, 2020|1183

Inverse-UQ technique has gained growing attention 
in the field of modelling and simulation of the scientific 
problems, especially in the context of source estimation 
and calibration of model input parameters or variables [6]. 
The main object of Inverse-UQ; firstly, is to address the 
lack of input uncertainty information issues and seek 
statistical descriptions of the input variables. Secondly, 
proper identification of the statistical parameters for the 
input variables also yields an accurate estimation of model 
discrepancy outputs, which assists in discovering model 
deficiencies and provides guidance for future improve-
ment of the modelling process. Thirdly provides a better 
knowledge of the calibrated parameters to produce more 
reliable model predictions over a comprehensive domain 
of application [7, 8]. Given the fact that the exact solution 
of Inverse-UQ is very complex does not exist; therefore, 
numerical solutions usually employed to estimate the sta-
tistical space of the input parameters or variables [3, 9]. 
Thus, for this study, the Least Square adjustment method 
has been used to calibrate the variables of the OD matrix 
of the traffic assignment model.

Although many of the scientific articles handled the 
subject of uncertainty in transport models, the literature on 
quantifying uncertainty in the form of variances, standard 
deviations, confidence intervals, or other related measures 
is relatively limited [10]. Furthermore, the researchers who 
considered the quantification traffic forecasts focused on 
parameters of the model structure or inputs travel time and 
trip cost such as; Ashley [11], Lowe et al. [12], Kroes [13], 
Leurent [14, 15], de Jong et al. [16], Zhang and Pu [17], 
Perrakis et al. [18], Deng et al. [19], etc. While the problem 
of the posterior distribution of the input data of the traffic 
assignment model did not subject to extensive studies to 
know the parametric variability of OD pairs. 

The importance of this study lies in the obvious need to 
know the certainty and reliability of traffic forecast results. 
The input data represented by the OD matrix is one of the 
most significant sources of variation. Therefore, knowing 
the parametric variability of input OD pairs enables us to 
quantify the variability of traffic flow forecasting.

In this study, a new methodology is developed to explore 
posterior distributions of the input data (i.e. OD matrix) of 
a traffic assignment model by applying the inverse uncer-
tainty quantification (Inverse-UQ) technique. The key con-
tributions of this methodology present: (1) Calibrating the 
mean values of the OD pairs to reproduce the average-OD 
matrix. (2) Estimating the variance values of the OD pairs 

to create the variance-OD matrix. (3) Quantifying the 
uncertainty of the traffic assignment model using both the 
average-OD matrix and variance-OD matrix.

This paper is outlined as follows: Section 2 introduces 
a brief review of the mathematical background of inverse 
uncertainty quantification Inverse-UQ problem and least 
square adjustment LSA technique. Section 3 provides a 
detailed description of the methodology used to determine 
the statistical parameters of posterior distributions of the 
OD pairs. Section 4 shows the application results of this 
methodology in a study area and apply the results to quan-
tify the uncertainty of the traffic assignment model for the 
study area, followed by conclusions in Section 5.

2 Background
2.1 Forward uncertainty quantification
Explicit quantification of data and structural uncertain-
ties in conceptual modelling is a major scientific and engi-
neering challenge. In any modelling endeavor, reducing 
the total predictive uncertainty requires a robust quantita-
tive understanding of each of its sources [20]. Assessment 
of uncertainties is about covering all possible outcomes 
and their likelihoods, not just the "most likely" outcome. 
Probabilistic descriptions of model inputs make it possible 
to derive probability distributions of model outputs and 
system performance indices. A quantitative approach to 
uncertainty analysis, where probability distribution func-
tions are assigned to the uncertain variables, is the most 
appropriate way to deal with uncertainty [21]. 

Forward Uncertainty quantification (Forward-UQ) is the  
process of representing uncertainties in system inputs and 
parameters, then propagating the uncertainty through the 
model to predict the overall uncertainty in the model results. 
Forward-UQ tries to determine how likely specific outputs 
are if some aspects of the system are not precisely known. 
Moreover, Forward-UQ describes the stochastic behaviour 
of outputs of interest due to uncertain inputs [1, 22, 23].

Procedures of Forward-UQ can generally be catego-
rized as intrusive or non-intrusive. Intrusive Forward-UQ 
method requires reformulating the mathematical equa-
tions of the models describing the real system processes. 
Non-intrusive Forward-UQ method, on the other hand, use 
sets of simulation techniques where simulation elements 
ensemble is generated by sampling the uncertain inputs 
according to different sampling schemes. The impact of 
the input uncertainties can then be analyzed for the chosen 
model output quantities of interest [24, 25].
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This study will focus on the intrusive Forward-UQ 
method; this method requires to know the parametric 
variability of the input variables that describe statistics of 
uncertainty. The errors propagation technique widely used 
for the Forward-UQ problems, the basic formula for errors 
propagation technique as follows [26, 27]:

Let consider a model with a mathematical function:

y f x x xn= …( )1 2, , , ,  (1)

where: y is the model output, xn being a vector of n input 
stochastic variables. 

Each variable has an uncertainty represents by variance 
σx

2. So, the mathematical function with uncertainties will 
be as follows:

y f x x xy x x n xn+ = +( ) +( ) … +( )( )σ σ σ σ2

1

2

2

2 2

1 2
, , , , (2)

where σy
2 is the model uncertainty which, represents the 

variance in the model output. 
The output variance σy

2, with respect to the variances 
in variables x1, x2, …, xn can be approximated using partial 
derivatives.
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This function can be applied under all conditions and 
can be used straight once each partial derivative is found 
and mathematically evaluated [6, 27].

2.2 Inverse uncertainty quantification 
Inverse analysis can be used in the solution of uncertainty 
quantification problem in the mathematical and engineer-
ing sciences, because of the ability to solve challenges of 
the interactions between analysis, computation, probability, 
and statistics and the applicability in various complex math-
ematical models. In general, analysis of the inverse prob-
lems confronts mathematical models with observed data to 
derive the inputs needed to run the models; information of 
these inputs can then be used to develop control strategies 
based on forecasts. Both model and input data are usually 
suffering to uncertainty, as are the resulting conclusions 
and forecasts; as a result, any decisions or control strate-
gies based on predictions will be significantly improved if 
quantitative uncertainty is confirmed. In this context, the 
inverse uncertainty quantification (Inverse-UQ) is the pro-
cess to quantify the uncertainties of input parameters based 
on observed outputs data [3, 28, 29].

Inverse-UQ is widely used during the last decades for 
complex mathematical computerized models to calibrate 
the uncertainty input parameters or variables by using sta-
tistical inference between the results of the computations 
and the observed data. Ordinarily, the calibration process 
categorized into two types deterministic calibration and 
statistical calibration also called the Bayesian approach. 
The deterministic calibration determines the point esti-
mates of best-fit input parameters such that the discrepan-
cies between model output and observed data can be mini-
mized [3, 9]. While the statistical calibration or that is used 
in Inverse-UQ concern to calibrate the parameters or vari-
ables under uncertainty produces statistical descriptions 
like distributions. Inverse-UQ adopts the Bayesian infer-
ence theory to explore the posterior PDF for the parameters 
or variables. The advantage of calibration using Inverse-UQ 
is apparent in: firstly, information from observations is 
never adequately accurate to enable inference of the pre-
cise values of the input parameters or variables. Secondly, 
quantifying the correlations between the estimates. Finally, 
the observed data usually holds some degree of uncertainty, 
which should be considered during the inference process of 
calibration parameters or variables [6, 28].

The Bayesian inference theory used to determine the 
posterior PDF of the posterior PDF for the parameters or 
variables of any system model concern in the following 
compact form:

Y X Y X Vobs mod. .
,( ) = ( ) +  (4)

where Yobs. is a vector for the observations, Ymod. is a vec-
tor for the system model, X is a vector for the unknown 
model parameters or variables, and V is a vector for the 
model uncertainty. The precise calibration parameters or 
variables X which is defined as p(X | Yobs., Ymod.). According 
to Bayesian inference theory [30]:

p X Y Y p Y Y X p Xobs mod obs mod
| |

. . . .
, , . ,( ) ∝ ( ) ( )  (5)

where p(X) is the prior PDF of the parameter or variables, 
and p(Yobs., Ymod.|X)v is the likelihood function.  

The likelihood equation that quantifies the mismatch 
between the model outputs Ymod. and the observations Yobs. 
is applied to find the posterior distribution over X:

L X Y Y p Y Y Xobs mod obs mod
| |

. . . .
, , .( ) ≡ ( )  (6)

When the model uncertainty is assumed to fit Gaussian 
distribution, the likelihood L(X |Yobs., Ymod.) can be expressed 
as [30]:
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where σ2 is the variance of the errors. Error ε as indepen-
dent and identically distributed (i.i.d.) zero-mean Gaussian 
noise, whose variance is expected to be reported along 
with observed data. In most situations, analytical forms of 
p(X |Yobs.,Ymod.) do not exist; therefore numerical solutions 
usually used to explore the input parameters or variables 
space and estimate p(X |Yobs.,Ymod.). 

2.3 Least Squares Adjustment
Least Squares Adjustment (LSA) is a numerical technique 
employed to solve an overdetermined system of equations 
based on the principle of the Least Squares (LS) technique 
to minimizes the sum of the squares of differences between 
the observation and estimate [31, 32]. The LS method is 
the efficient and soundest analytical technique for esti-
mating parameters from a set of data [33]. The parame-
ters determined by this method are normally distributed 
about the true parameter's value with the least possible 
standard deviations. The accuracy of an estimated param-
eter expresses the degree of closeness to its real value. 
Plus, the precision of the estimated parameter expresses 
the degree of closeness between the estimated parameter. 
The precision of adjusted parameters is given usually by 
the variance or standard deviation [34].

The principle of the LS is the estimation of unknown 
parameters, given a set of observations, satisfying min-
imizes the sum of the squares of the residuals [33, 34]. 
These residuals can be expressed mathematically as:

i

n

iV
=
∑
1

2
is minimum,  (8)

where Vi is the set of residuals V vi
j

m

j=
=
∑
1

2 , and n is the number 
of parameters. vi is expressed as:

vi i
obs

i
mod= −y y

. .
.  (9)

The observed values of the model system:

yi
obs f X.

,= ( )  (10)

where X = x1, x2,…, xm the set of estimated parameters, m 
is the number of parameters in the model.

And the approximate values of the model system:

yi
mod f X.

,= ( )°  (11)

Where X ° = x1
°, x2

°,…, xm
° is the set of approximate val-

ues of the unknown parameters.

The set of estimated parameters:

X X W X c= +° . ,  (12)

where X c = x1
c, x2

c,…, xm
c is the set of the correction to be 

determined by LSA, and W  = w1, w2,…, wm is the weight of 
the parameters.

The relation between the system model and its residual 
to the estimated parameters and its residuals is given by:

yi
mod

i
cv f X WX.
.+ = +( )°  (13)

The function f(X° + WX c) can be fragmented using 
Taylor's series and truncating at the first order to:

yi
mod

i
cv f X W f

X
X.
.+ = ( ) + ∂

∂
°  (14)

Thus, the relation between the residual system model 
and the set of the correction is given by:

v W f
X
Xi
c=

∂
∂

.  (15)

3 Methodology
In this paper, a new methodology is developed to quantify 
the traffic flow uncertainty of the traffic assignment model. 
The proposed methodology consists of two sequential pro-
cesses: The first is the inverse uncertainty quantification. 
And the second is the forward uncertainty quantification. 
The Inverse-UQ process aims for discovering the statisti-
cal parameters of the posterior distribution of the OD pairs 
using the Least Squares Adjustment method (LSA). While 
the Forward-UQ process uses the posterior distribution of 
the OD pairs to quantify the traffic flow forecasts. Fig. 3 
illustrates the methodology processes.

3.1 Inverse-UQ Process
For this process, the Inverse-UQ technique has been 
used to the statistical parameters of the posterior dis-
tribution of input OD pairs of traffic assignment mod-
els. Inverse-UQ was formulated depending on the LSA 
method. The Inverse-UQ Process consists of three stages: 
(i) input stage; (ii) calibration stage; (iii) calculation stage. 
The relationships connecting these stages of the method-
ology are presented in Fig. 4, and the mathematical and 
logical computations of this methodology are illustrated in  
(Appendix A - Algorithm 1).

3.1.1 Data stage 
The required data for this stage consists of four main compo-
nents: Firstly, is collecting traffic flow data (qobs.). Secondly, 
it is defining the base travel demand matrix (ODbase). Thirdly 
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⋮ ⋮ ⋮ 

11:00-12:00 PM 26.49 ± 2.91 26.49 ± 5.63 

 

Chart showing results of the Forward-UQ Table showing results of the Forward-UQ 

Forward 
UQ 

process 

Fig. 3 A flowchart illustrates the methodology process
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is specifying the sample size of observations hours (N). 
Fourth is establishing a benchmark to define the accuracy 
limit of the results; So, the Minimum Residual Sum of 
Squares (Min. RSS) had adopted. Where the RSS is a mea-
sure of the difference between the data and an estimation 
model. A small RSS indicates a close fit of the calibrated 
OD pairs to the real data. 

3.1.2 Calibration stage 
In this stage, a MATLAB code has been written and linked 
with the Component Object Model (COM) of VISUM soft- 
ware. This code was executed according to the number of 
samples (N). Given observed traffic flow (qobs.), the Inverse- 
UQ technique based on LSA has been used to calibrate the 
input base OD matrix (ODbase). The critical components of 
the calibration processes are as the following steps:

 

Fig. 4 A flowchart illustrates the methodology stages and the relationship between the stage's components



1188|Seger and Kisgyörgy
Period. Polytech. Civ. Eng., 64(4), pp. 1181–1201, 2020

• Assume the calibrated OD matrix (ODclb.) equal to 
base OD matrix (ODbase) for each observed sample.  
OD ODp P

clb
p P
base

= ==1 1,

.

,

• Finding the calculated traffic flow (ODcal.), by using 
the input base OD matrix (ODbase) through the traffic 
assignment model in VISUM software.

• Find the residual sum of squares (RSS).

RSS q q
l

L

l
obs

l
cal= −( )

=
∑
1

2
. .  (16)

• Compare the RSS with Min.RSS. If RSS less than 
or equal Min.RSS that means the input OD matrix 
is accurate; therefore, the calibration process is not 
required. Otherwise, the input OD matrix needs to 
calibrate.

• Find the residual for each link on the transport 
network.

v q ql l
obs

l
cal= −. .  (17)

Where vl is the residual of the traffic flow for a link (l).
• Find the weight of each OD pair in every link (wp

l). 

w q
ODp

l l
obs

l p
clb=
.

.β *
 (18)

• Where βl is the ink choice probabilities set (i.e. the 
proportion of the travel demand of the link choice 
set l).

• Find the correction factor of each OD pair in every 
link (Cp

l), using the LSA method by the partial deriv-
ative for each input OD pairs in a set of link choice 
of the traffic assignment model.

C v
wp

l l

p
l=  (19)

• Find the correction factor of each OD pair (Cp).

C
C

Lp
l

L
p
l

=







=∑ 1

�
 (20)

• Find the calibrated OD pair (ODp
clb.).

OD OD Cp
clb

p
clb

p
. .= +  (21)

• Repeat steps 2 to 8.
The calibration process will continue until all the 

observed samples are performing.

3.1.3 Calculation stage 
The results of the calibration stages are used to estab-
lish the average-OD matrix (ODave.) and the variance-OD 
matrix (ODvar.).

The average-OD matrix:

OD
OD

N
ave

p

P
i

N
p
clb

.

.

=









=

=∑
∑

1

1  (22)

The variance-OD matrix:

OD
OD OD

N
var

p

P
i

N
p
clb

p
ave

.

. .

=
−( )








=

=∑
∑

1

1

2

 (23)

3.2 Forward-UQ Process
The obtained average-OD matrix (ODave.) and vari-
ance-OD matrix (ODvar.) from the Inverse-UQ process will 
be used in the Forward-UQ process in order to quantify 
the future traffic flow forecasts. The Forward-UQ process 
consists of two steps: The first is the reconfiguration of the 
OD matrix, and the second is the quantification of the traf-
fic flow forecasts. The mathematical computations of this 
methodology are illustrated in Appendix A-Algorithm 2.

3.2.1 Reconfiguration the OD matrix
Both of the average-OD matrix (ODave.) and the variance- 
OD matrix (ODvar.) are utilized to configure the maximum 
probable-OD matrix (ODmax.pob.) and minimum probable- 
OD matrix (ODmin.pob.) according to different confidence 
intervals (CI). For this study, two confidence intervals (CI) 
were adopted: 68 % and 95 %. The CI = 68 % comparable 
to 1 00 2

. × σ , on the other hand, the CI = 95 % compara-
ble to 1 96 2

. × σ . 
The max. probable OD matrix within (68 % CI):

OD OD ODmax prob CI ave var. .@ . .
.

= = + ×68
1 00

%  (24)

The min. probable OD matrix within (68 % CI):

OD OD ODmin prob CI ave var. .@ . .
.

= = − ×68
1 00

%  (25)

The max. probable OD matrix within (95 % CI):

OD OD ODmax prob CI ave var. .@ . .
.

= = + ×95
1 96

%  (26)

The min. probable OD matrix within (95 % CI):

OD OD ODmin prob CI ave var. .@ . .
.

= = − ×95
1 96

%  (27)

The bias of every base-OD pair:  

η = −OD ODbase ave.  (28)

3.2.2 Quantification the traffic flow forecasts
Finally, quantifying the traffic flow in each link on the trans-
port network, using the errors propagation theory, by finding 
the average traffic flow (ql

ave.) and the probable flow (ql
prob.).
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The average traffic flow (ql
ave.):

q f ODl
ave

TO D
ave. .� � .= ( )→  (29)

The max. probable traffic flow value of at CI = 68 %:

q f ODl
max prob CI

TO D
max prob CI. .@@ % . .@ %=

→
== ( )68 68  (30)

The min. probable traffic flow value of at CI = 68 %:

q f ODl
min prob CI

TO D
min prob CI. .@ . .@=

→
== ( )68 68% %  (31)

The max. probable traffic flow value of at CI = 95 %:

q f ODl
max prob CI

TO D
max prob CI. .@ . .@=

→
== ( )95 95% %  (32)

The min. probable traffic flow value of at CI = 95 %:

q f ODl
min prob CI

TO D
min prob CI. .@ . .@=

→
== ( )95 95% %  (33)

Where fTO→D is a traffic assignment model.
Moreover, for the validation purpose of the accuracy 

of methodology results, the estimated traffic flow by 
this methodology (ql

est.) could be compared with the real 
observed traffic flow (ql

obs.). 
The estimated traffic flow (ql

est.):

q f ODl
est

TO D
clb. . .= ( )→  (34)

4 Case study
The proposed methodology was implemented in Ajka town 
located in Hungary. The Ajka town consists of 25 zones 
(22 internal zones and 3 external zones), 26 nodes, and 
56 links. Fig. 5 shows the transportation network and the 
traffic analysis zones of Ajka.

The inputs data for this study case include base-OD 
matrix as shown in (Appendix B), the traffic flow obser-
vation period continued for 100 days for all transportation 
links (i.e. sample size N = 100), and the min.RSS ≤ 1 was 
picked. The final result of the calibration process is repre-
sented into two matrices; the first is the average-OD matrix 
(ODave.) which is created by applying Eq. (22), as shown in 
(Appendix B), and the second is the variance-OD matrix 
(ODvar.) which is created by applying Eq. (23), as shown in 
(Appendix B). These two matrices providing full informa-
tion about the probability distributions for all OD pairs by 
giving the mean (μ) and the variance (σ2) for each one.

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Study area (Ajka, Hungary), shows the transport network and 
traffic analysis zones
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Fig. 6 Traffic flow (q02) [vph] at the time (8:00–9:00 AM) during the observed period
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For this paper, the application of the proposed meth-
odology is presented for one link only; the chosen link is 
(l02), this link summarises the traffic assignment pattern of 
other links in this case study. Fig. 6 shows the traffic flow 
(q02) at the time (8:00–9:00 AM) during observed periods. 

The link choice set of link #2 (02) has involved 17 OD 
pairs, and the link choice probabilities set is 1.00 for all pairs. 

02 04 01 05 01 06 01 07 01 11 01

12 01 16

= − − − − −

− −

{ , , , , ,

,

OD OD OD OD OD

OD OD 001 04 02 06 02 07 02

11 02 12 02 16 02 04 0

, , , ,

, , ,

OD OD OD

OD OD OD OD
− − −

− − − − 33 05 03

11 03 12 03

, ,

, }.

OD

OD OD
−

− −

 (35)

The result of the calibration process for the set (02) 
illustrated in (Appendix C), which shows the scatter-plots 
of the calibrated OD pairs (ODclb.) vs. the observed traffic 
flow (q2

obs.) surrounded by 68 % and 95 % confidence inter-
vals boundaries, and (Appendix D), which shows proba-
bility distributions of the OD pairs of the set . For exam-
ple, Fig. 7 shows the result of the calibration process for 
the OD pair from zone 06 to zone 01 (OD06–01). The right 
side shows the probability distribution (OD06–01), and the 
left side shows the scatter-plots of the calibrated OD pair 
ODclb06 01−( ).  vs. the observed traffic flow (q2

obs.), surrounded 
by 68 % and 95 % confidence intervals boundaries.

To provide reliable insight into the accuracy of the cal-
ibration process, the observed traffic flow (q2

obs.) with the 
estimated traffic flow (q2

est.) was compared by the traffic 
assignment model via VISUM software using the cali-
brated OD matrix (ODclb.). The comparison was repeated 
100 times, according to the number of observations 
(N). Fig. 8 presents the comparison result, the right-side 

showing the probability distributions of both observed 
traffic flow (q2

obs.) and estimated traffic flow (q2
est.), a sig-

nificant matching between them can be seen. Moreover, 
the right-side indicating the cross-validation of observed 
traffic flow (q2

obs.) and estimated traffic flow (q2
est.), which 

gives R2 = 0.9994.
For the sake of simplicity, the statistical parameters of 

the 02 set with their analytical conclusions are illustrated 
in Table 1, which includes the base-OD pairs (ODbase), the 
distribution parameters of OD pairs: average-OD pairs 
(ODave.) and variances-OD pairs (ODvar.). As well as, bias 
() calculations of the base-OD pairs (ODbase) compared to 
the average-OD pairs (ODave.), and the probable-OD pairs 
(ODprob.), under two confidence intervals 68 % and 95 % 
respectively. In this case study, it can be noticed that the 
most base-OD pairs (ODbase) were having a negative bias 
from the average-OD values (ODave.), except OD11–01 and 
OD11–03 which they had a positive bias.

Finally, the traffic flow uncertainty was quantified by 
including the variations of the OD pairs of the set (02), by 
finding the probable traffic flow (q2

prob.) in two confidence 
intervals (68 % and 95 %) for 24 hours. The results of the 
UQ were illustrated with details in Fig. 9 and Table 2.

5 Conclusions
This paper introduces a practical methodology based on 
the UQ framework for quantifying the traffic flow uncer-
tainty of a traffic assignment model. The main aim of this 
paper is to explorer the uncertainties of the OD matrix and 
estimate their parameters, which cause a variation and 
uncertainty in the traffic flow of the traffic assignment 
model. The framework implemented in this methodology 

 

 

 

 

 

            
            

  

  

  

  

  

  

   

  
  
  

  

                       
                       

            
            

 

    

   

    

   

    

   

    

   

    

   

 
  

  
  

Fig. 7 shows the result of the calibration process for the (OD06–01). The right side shows the probability distribution, and the left side shows the scatter-
plots of the calibrated OD pair ODclb06 01−( ).  vs. the observed traffic flow (q2

obs.) surrounded by the (68 % and 95 %) confidence intervals boundaries
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Fig. 8 Illustrating the comparison between the observed traffic flow (q2
obs.) and estimated traffic flow (q2

est.). The right-side shows probability 
distributions of them and the left-side shows the cross-validation between them

Table 1 Illustrated the statistical parameters of the 02 set

Link choice set 
(02)

Base travel 
demand (ODbase)

[vph]

Average travel 
demand (ODave.)

[vph]

Travel demand 
variances (ODvar.)

[vph]

Bias (η)
[vph]

Probable travel 
demand ODCI

pob
=( )68%

.

[vph]

Probable travel 
demand ODCI

pob
=( )95%

.

[vph]

OD04–01 6.81 7.50 0.664 -0.69 7.50 ± 0.815 7.50 ± 1.597

OD05–01 0.49 0.54 0.003 -0.05 0.54 ± 0.055 0.54 ± 0.107

OD06–01 6.33 6.75 0.509 -0.42 6.75 ± 0.713 6.75 ± 1.398

OD07–01 3.89 4.63 0.305 -0.74 4.63 ± 0.552 4.63 ± 1.082

OD11–01 8.76 8.69 0.755 +0.07 8.69 ± 0.869 8.69 ± 1.703

OD12–01 5.84 7.01 0.552 -1.17 7.01 ± 0.743 7.01 ± 1.456

OD16–01 2.92 3.12 0.139 -0.20 3.12 ± 0.373 3.12 ± 0.731

OD04–02 0.74 0.80 0.008 -0.06 0.80 ± 0.089 0.80 ± 0.175

OD06–02 0.69 0.74 0.006 -0.05 0.74 ± 0.077 0.74 ± 0.152

OD07–02 0.42 0.50 0.004 -0.08 0.50 ± 0.063 0.50 ± 0.124

OD11–02 0.95 0.96 0.010 -0.01 0.96 ± 0.100 0.96 ± 0.196

OD12–02 0.63 0.77 0.007 -0.14 0.77 ± 0.084 0.77 ± 0.164

OD16–02 0.32 0.34 0.002 -0.02 0.34 ± 0.045 0.34 ± 0.088

OD04–03 6.45 7.33 0.617 -0.88 7.33 ± 0.785 7.33 ± 1.540

OD05–03 0.46 0.52 0.003 -0.06 0.52 ± 0.055 0.52 ± 0.107

OD11–03 8.29 8.27 0.694 +0.02 8.27 ± 0.833 8.27 ± 1.633

OD12–03 5.53 5.97 0.403 -0.44 5.97 ± 0.635 5.97 ± 1.244

principally depends on the Inverse-UQ technique based on 
the least-squares adjustment (LSA) method, that used to cal-
ibrate and estimate the distribution parameters (mean and 
variance) of all elements of the OD matrix. Accordingly, 
the key contributions of our proposed methodology pres-
ent: (1) Calibration of the mean values of the OD pairs to 
reproduce an average-OD matrix. (2) Estimation of the 
variances of the OD pairs to create a variance-OD matrix. 
(3) Quantifying the uncertainty of the traffic assignment 
model using both average-OD and variance-OD matrices.

The methodology was then applied successfully in a 
case study (Ajka, Hungary). The inputs of the base-OD 
matrix and the observed traffic flow were used in the 
Inverse-UQ framework to estimate the posterior distribu-
tions of OD pairs. Then, the posterior distributions were 
employed in Forward-UQ to quantify the traffic flow 
uncertainty for all links on the transport network. Hence, 
using this methodology is strongly advised because it 
enables the decision-makers to expect the variations in 
traffic flow forecasting.
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Fig. 9 shows the average traffic flow and the probable traffic flow at 68 % and 95 % confidence interval in link #2.

Table 2 Illustrated the average traffic flow and the probable traffic flow at 68 % and 95 % confidence interval in link #2

Time Average traffic flow (q2
ave.) 

[vph]
68 % CI 95 % CI

Probable traffic flow (q2
prob.) [vph] Probable traffic flow (q2

prob.) [vph]

12:00–01:00 AM 24.78 24.78 ± 2.64 24.78 ± 5.19

01:00–02:00 AM 11.78 11.78 ± 1.36 11.78 ± 2.57

02:00–03:00 AM 5.51 5.51 ± 0.99 5.51 ± 1.05

03:00–04:00 AM 6.14 6.14 ± 0.86 6.14 ± 1.29

04:00–05:00 AM 15.40 15.40 ± 1.65 15.40 ± 2.63

05:00–06:00 AM 28.77 28.77 ± 3.37 28.77 ± 6.09

06:00–07:00 AM 45.88 45.88 ± 4.79 45.88 ± 9.71

07:00–08:00 AM 51.96 51.96 ± 5.51 51.96 ± 10.98

08:00–09:00 AM 64.44 64.44 ± 6.89 64.44 ± 13.80

09:00–10:00 AM 61.78 61.78 ± 6.60 61.78 ± 12.94

10:00–11:00 AM 53.08 53.08 ± 5.67 53.08 ± 11.02

11:00–12:00 AM 42.39 42.39 ± 4.53 42.39 ± 8.80

12:00–01:00 PM 38.85 38.85 ± 4.05 38.85 ± 8.19

01:00–02:00 PM 41.52 41.52 ± 4.54 41.52 ± 8.55

02:00–03:00 PM 45.23 45.23 ± 4.63 45.23 ± 9.67

03:00–04:00 PM 47.24 47.24 ± 5.15 47.24 ± 9.79

04:00–05:00 PM 50.74 50.74 ± 5.26 50.74 ± 10.83

05:00–06:00 PM 51.69 51.69 ± 5.32 51.69 ± 11.01

06:00–07:00 PM 41.48 41.48 ± 4.43 41.48 ± 8.69

07:00–08:00 PM 39.56 39.56 ± 4.35 39.56 ± 8.05

08:00–09:00 AM 32.28 32.28 ± 3.65 32.28 ± 6.96

09:00–10:00 PM 30.71 30.71 ± 3.21 30.71 ± 6.33

10:00–11:00 PM 28.98 28.98 ± 3.16 28.98 ± 6.17

11:00–12:00 PM 26.49 26.49 ± 2.91 26.49 ± 5.63
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In this paper, the statistical parameters: mean and vari-
ance were handled to characterize the OD pairs uncertain-
ties; this is justified for normal distribution only. However, 
for other distributions, higher-order statistics parameters 

are needed to improve the characterization. How to make 
use of higher-order statistics to enhance the quality of UQ 
will be a significant future research direction.
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Appendix A
Algorithm 1 Inverse-UQ process

Data stage:

 Zone definition.

 Origin definition.

 Destination definition. 

 Number of OD pairs.

 Observed values of OD matrix.

 Observed traffic flow.

 Number of links.

 Link choice set.

 Link choice probabilites set.

 Traffic assignment model.

 Samples size.

 Minimum residual sum of squares. 

Calibration process stage:

01: For i = 1 do N do 

02:     

03:     
 Run VISUM.

04:      
 Find the residual sum of squares.

05:      While RSS > Min.RSS

06:           For l = 1 do L do

07:                  
 Find the residual.

08:                 For p = 1 do P do

09:                       
 Find the weight of the OD pairs for each link.

10:                 end for 

11:           end for

12:           For p = 1 do P do

13: 
 Find the average weight of the OD pairs.

14: 
 Find the calibrated OD pairs.

15:           end for

16: 
 Run VISUM.

17:
 Find the residual sum of squares.

18:      next

19: end for

Results stage:

20:  Find the average OD matrix.

21: 
 Find the variance OD matrix.

22: End
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Algorithm 2 Forward-UQ process

Data:

 Zone definition.

 Origin definition.

 Destination definition.

 Number of OD pairs.

 Traffic assignment model.

 Average-OD matrix.

 Variances-OD matrix.

Reconfiguration:

01: For J = 1 to n do

02:        For J = 1 to n do

03:                  Find the max. probable OD matrix @ CI = 68 %.

04:               
 Find the min. probable OD matrix @ CI = 68 %.

05:                 Find the max. probable OD matrix @ CI = 95 %.

06:               
 Find the min. probable OD matrix @ CI = 95 %.

07:        end for

08: end for

Quantification:

09:
 Run VISUM to find the average traffic flow.

10:
 Run VISUM to find the max. probable traffic flow @ CI = 68 %.

11:
 Run VISUM to find the min. probable traffic flow @ CI = 68 %.

12:
 Run VISUM to find the max. probable traffic flow @ CI = 95 %.

13:
 Run VISUM to find the min. probable traffic flow @ CI = 95 %.

14: End
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Appendix B

Table 3 The base-OD matrix

     D
 O Z 01 Z 02 Z 03 Z 04 Z 05 Z 06 Z 07 Z 08 Z 09 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15 Z 16 Z 17 Z 18 Z 19 Z 20 Z 21 Z 22 Z 23 Z 24 Z 25

Z-01 0.0 30.1 263.2 7.2 0.6 6.7 4.1 5.6 8.2 6.1 9.2 6.1 5.6 5.6 3.6 3.1 3.6 3.6 6.1 6.1 3.6 3.1 13.8 9.7 7.2

Z-02 9.1 0.0 8.6 0.2 0.0 0.2 0.1 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.5 0.3 0.2

Z-03 268.6 29.1 0.0 6.9 0.6 6.4 4.0 5.4 7.9 5.9 8.9 5.9 5.4 5.4 3.5 3.0 3.5 3.5 5.9 5.9 3.5 3.0 13.4 9.4 6.9

Z-04 6.8 0.7 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-05 0.5 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-06 6.3 0.7 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-07 3.9 0.4 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-08 5.4 0.6 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-09 7.8 0.8 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-10 5.8 0.6 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-11 8.8 0.9 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-12 5.8 0.6 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-13 5.4 0.6 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-14 5.4 0.6 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-15 3.4 0.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-16 2.9 0.3 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-17 3.4 0.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-18 3.4 0.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-19 5.8 0.6 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-20 5.8 0.6 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-21 3.4 0.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-22 2.9 0.3 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-23 13.1 1.4 12.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-24 9.2 1.0 8.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-25 6.8 0.7 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4 The average-OD matrix 

     D
 O Z 01 Z 02 Z 03 Z 04 Z 05 Z 06 Z 07 Z 08 Z 09 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15 Z 16 Z 17 Z 18 Z 19 Z 20 Z 21 Z 22 Z 23 Z 24 Z 25

Z-01 0.0 31.6 292.6 9.3 0.8 7.6 4.4 5.6 9.3 7.2 9.8 7.4 6.2 6.9 3.9 3.5 3.3 3.3 11.9 5.8 7.2 3.4 14.5 11.5 7.2

Z-02 11.8 0.0 9.6 0.3 0.0 0.2 0.1 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.4 0.2 0.2 0.1 0.5 0.5 0.3

Z-03 301.1 32.7 0.0 8.6 0.7 7.0 4.1 6.3 7.8 6.2 9.7 6.7 6.1 5.9 3.9 3.9 3.5 3.9 7.0 6.7 0.8 3.0 15.0 10.5 7.8

Z-04 7.5 0.8 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-05 0.5 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-06 6.8 0.7 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-07 4.6 0.5 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-08 5.8 0.6 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-09 8.5 0.9 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-10 6.7 0.7 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-11 8.7 1.0 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-12 7.0 0.8 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-13 5.9 0.6 5.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-14 6.0 0.6 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-15 3.8 0.4 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-16 3.1 0.3 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-17 3.5 1.5 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-18 3.3 0.4 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-19 3.1 0.2 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-20 5.8 0.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-21 5.3 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-22 3.3 0.4 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-23 17.0 1.4 13.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-24 9.5 1.0 9.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z-25 6.8 0.8 7.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 5 The variance-OD matrix

     D
 O Z 01 Z 02 Z 03 Z 04 Z 05 Z 06 Z 07 Z 08 Z 09 Z 10 Z 11 Z 12 Z 13 Z 14 Z 15 Z 16 Z 17 Z 18 Z 19 Z 20 Z 21 Z 22 Z 23 Z 24 Z 25

Z-01 0.00 10.86 981.5 0.95 0.01 0.76 0.22 0.37 1.05 0.76 1.18 0.64 0.48 0.57 0.19 0.19 0.14 0.33 1.91 0.44 1.02 0.13 2.29 1.48 0.00

Z-02 1.65 0.00 1.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-03 1035 12.31 0.00 0.86 0.01 0.60 0.22 0.57 0.73 0.49 1.17 0.51 0.46 0.41 0.19 0.23 0.14 0.18 0.65 0.51 0.14 0.00 2.60 1.26 0.69

Z-04 0.66 0.01 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-06 0.51 0.01 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-07 0.31 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-08 0.39 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-09 0.89 0.01 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-10 0.64 0.01 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-11 0.75 0.01 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-12 0.55 0.01 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-13 0.42 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-14 0.37 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-15 0.17 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-16 0.14 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-17 0.13 0.24 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-18 0.13 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-19 0.25 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-20 0.46 0.01 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-21 0.58 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-22 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-23 3.42 0.00 2.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-24 1.02 0.01 1.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z-25 0.00 0.01 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix C

 

            
       

  

  

  

  

  

  

   

  
 

                       
                       

            
       

  

  

  

  

  

  

   

  
 

                       
                       

                 
       

  

  

  

  

  

  

   

  
 

                       
                       

            
       

  

  

  

  

  

  

   

  
 

                       
                       

            
       

  

  

  

  

  

  

   

  
 

                       
                       

                           
       

  

  

  

  

  

  

   

  
 

                       
                       

                           
       

  

  

  

  

  

  

   

  
 

                       
                       

                             
       

  

  

  

  

  

  

   

  
 

                       
                       

                           
       

  

  

  

  

  

  

   

  
 

                       
                       

                           
       

  

  

  

  

  

  

   

  
 

                       
                       

                             
       

  

  

  

  

  

  

   

  
 

                       
                       

            
       

  

  

  

  

  

  

   

  
 

                       
                       

                             
       

  

  

  

  

  

  

   

  
 

                       
                       

                 
       

  

  

  

  

  

  

   

  
 

                       
                       

            
       

  

  

  

  

  

  

   

  
 

                       
                       

Fig. 10 Scatter-plots of the calibrated OD pairs (ODclb.) [vph] vs. the observed traffic flow (q2
obs.) [vph] surrounded by 68 % and 95 % confidence 

intervals boundaries
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Appendix D

 

                             
       

 

 

 

 

 

 

 

 
  

  
  

            
       

 

    

   

    

   

    

   

    

   

    

   

 
  

  
  

            
       

 

   

   

   

   

   

   

   

 
  

  
  

                 
       

 

    

   

    

   

    

   

    

   

    

   
 
  

  
  

            
       

 

    

   

    

   

    

   

    

   

    

 
  

  
  

            
       

 

   

   

   

   

   

   

   

   

   

 
  

  
  

                           
       

 

   

 

   

 

   

 

   

 

 
  

  
  

                           
       

 

   

 

   

 

   

 

   

 

   

 
  

  
  

                           
       

 

   

 

   

 

   

 

   

 

   

 
  

  
  

                           
       

 

   

 

   

 

   

 

   

 

 
  

  
  

                             
       

 

 

 

 

 

 

 

 

 

 
  

  
  

            
       

 

    

   

    

   

    

   

    

   

 
  

  
  

                             
       

 

 

 

 

 

 

 

 
  

  
  

                 
       

 

    

   

    

   

    

   

    

   

    

   

 
  

  
  

            
       

 

    

   

    

   

    

   

    

   

    

   

 
  

  
  

Fig. 11 Probability distributions of the OD pairs flows [vph] of the set 02


