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Abstract

The main aim of this paper is to present a new solution for simultaneous shape and size optimization of double-layer grids. In order 

to find the optimum design, Enhanced Colliding Bodies Optimization method is applied to the optimum design of the most common 

examples of double-layer grids, while both material and geometrical nonlinearity are taken into account. The small and big sizes of 

span length are considered for each type of square grids. The algorithm gets the minimum weight grid by finding the best nodal 

location in z-direction (height of the structure) and the suitable selection from the list of tube sections available in American Institute 

of Steel Construction Load and Resistance Factor Design, simultaneously. All examples are optimized with strength and displacement 

constraints. The numerical results demonstrate the efficiency and robustness of the presented method for solving real-world practical 

double-layer grids.
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1 Introduction
Spatial structures became well-known not only because 
of their aesthetically pleasing layout and greater reserves 
of strength compared to conventional structures but also 
because of their simple and fast construction. The contin-
uous repetition of the basic component reduces produc-
tion time and cost; assembly on site is quick and easy and 
the replacement of damaged elements and future expan-
sion of the construction presents no real problem. Space 
trusses are three-dimensional structures that are highly 
statically indeterminate, creating an optimum distribution 
of stress that uses less material with greater rigidity and 
load-carrying capacity. Double-layer grids are well-suited 
for covering assembly halls, exhibition pavilions, swim-
ming pools, churches, bridge decks, and many different 
types of industrial buildings where large unobstructed 
areas are needed. Double-layer grids are successfully built 
at a lower expense than conventional comparable sys-
tems, offering additional benefits at the same time, such 
as greater rigidity, ease of construction and the ability to 
cover larger areas. These kinds of grids can be considered 
as logical extensions of single-layer grid frameworks, con-
sisting of two or more sets of parallel beams that intersect 

at right or oblique angles and are loaded by forces perpen-
dicular to the plane of the framework. For clear spans of up 
to 10 m, single-layer grids are used. Double layer grids are 
more suitable for larger spans and provide a cost-effective 
solution for spans up to 100 m. Double-layer grids consist 
of two plane grids (which are not necessarily of the same 
layout) comprising the top and bottom layers, parallel to 
each other, linked by vertical or inclined "web" diagonal 
members. Single-layer grids are mostly under the action 
of flexural moments, while double-layer grid component 
members are almost exclusively under the action of axial 
forces. The elimination of bending moments results in 
the complete use of the strength of all the elements [1, 2]. 
Double-layer grids have a larger number of structural ele-
ments and the use of optimization techniques has a major 
impact on the economy and the effective design of such 
systems [3]. Recently added meta-heuristic algorithms 
have been developed for the optimal design of real-life 
systems and models with complex configurations and a 
large number of elements [4]. It is necessary to determine 
the depth between the top and bottom layers before any 
work can proceed on the analysis of a double-layer grid. 
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While this parameter appears sufficiently simple to deter-
mine, it will still play an important role in the roof design 
economy. This parameter is determined by many factors, 
such as the form of double-layer grid, the distance between 
the supports, the cladding of the roof and the proprietary 
system used. The depth is standardized for some of the 
proprietary systems. The depth of double-layer grids is 
usually determined by practical experience. Figures on 
this parameter are suggested in some of the articles and 
handbooks and one may consider the variation to be quite 
broad. The span-depth ratio, for instance, ranges between 
12.5 and 25, or even more. The span-depth ratio is defined 
by span in the earlier edition of the Specifications for the 
Design and Construction of Space Trusses published in 
China [5]. These figures have been obtained by analyz-
ing the parameters used in many design projects. A dou-
ble-layer grid design handbook also provides graphs for 
determining the upper and lower bounds of the dimen-
sions and depth of the module [6]. The optimum values 
are in good agreement with those acquired from experi-
ence for short and medium spans. It is remarkable that the 
span-depth ratio should decline with the span, yet there 
is a growing inclination from experience, which gives 
unreasonably large values over long spans. In the design, 
there are practically unlimited possibilities for geometry 
selection. Thus, it is best to determine this parameter by 
structural optimization. Some studies are carried out for 
double layer grids in the case of shape and size optimiza-
tion. For example, Kaveh and Ilchi Ghazaan [7] applied 
CBO, ECBO, VPS, MDVC-UVPS for size optimization 
of large-scale double-layer grids. Ermopoulos achieved 
the optimum height of double-layer grids at the stage of 
preliminary design [8]. Kaveh and Talatahari [9] applied 
the BB-BC algorithm for the size optimization of space 
trusses. Kaveh et al. [10] examined different algorithms 
in the case of shape and size optimization of double-layer 
grids. Kaveh and Moradveisi [11] applied CBO and ECBO 
for shape and size optimization of two commonly used 
double-layer grids. Kaveh and Bakhshpoori [12] presented 
an effective algorithm and solved benchmark structural 
optimization problems. Kazemzadeh Azad et al. [13] used 
a guided stochastic search technique for discrete sizing 
optimization of steel trusses. Kaveh and Moradveisi [14] 
applied nonlinear effects in the optimal design of dou-
ble-layer grids. Kaveh et al. [15] performed the PRSSOA 
algorithm for the size optimization of a 1016-bar dou-
ble-layer grids, but a more comprehensive study of the 
problem of simultaneous shape and size optimization is 

still required. The objective of the size optimization of 
skeletal structures is to minimize structure weight W by 
finding the optimal cross-sectional areas Ai of members. 
The aim of shape optimization of skeletal structures is to 
find the best state of nodal coordinates to minimize the 
structure weight W, in this process, the x and y coordinates 
of the joints will remain constant and the z coordinate of the 
nodes is varied. In previous studies finding the best height 
of the structure (shape optimization) needed numerous 
independent Runs (for each value of the height design vec-
tor one independent Run was needed, then all results were 
compared to find the best height of the structure) [10, 11]. 
This method is highly time-consuming especially when 
nonlinearity is taken into account, while in this paper this 
process is carried out by algorithm in just one independent 
Run and all constraints exerted on both problems of shape 
and size optimization must be satisfied, simultaneously. 
Every example is solved 5 times independently due to the 
stochastic essence of the algorithm. If the processing time 
is measured in terms of CPU time of a PC with the pro-
cessor of Intel® CoreTM i7-3612 QM @ 2.1 GHz equipped 
with 6 GBs of RAM, this presented method decreases the 
computational time from nearly 50 days non-stop Runs 
to 1 day and 9 hours for solving one complete example 
of the optimal design of large-scale nonlinear structures. 
This research concerned with economical comparison of 
two widely used double-layer grid configurations, namely 
diagonal on diagonal grid and two-way on two-way grid. 
At first two double-layer grids of different span sizes are 
investigated to verify the robustness of the present tech-
nique in finding optimal solutions for these kinds of design 
problems using different optimization algorithms. Then 
six numerical examples of span sizes of 12 m × 12 m and 
30 m × 30 m are considered as small and big size grids. 
These grids are optimized to challenge the ECBO in 
designing real-world double-layer grids including their 
nonlinear behavior.

The paper is structured as follows: Section 2 recalls the 
optimal design of double-layer grids. Section 3 describes 
the optimization algorithm. Section 4 examines the pro-
posed method of simultaneous shape and size optimiza-
tion versus the previous methods of shape and size optimi-
zation using different optimization algorithms. Nonlinear 
behavior and structural models are discussed in Section 5 
and Section 6, respectively. Optimization results are pre-
sented and discussed in Section 7. Finally, the last section 
concludes the paper.
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2 Optimal design of double-layer grids
The design variables are the depth between the top and 
bottom layers and the cross-sectional areas of the bar ele-
ments. The permissible cross-sections are selected from 
the list of steel pipe sections from AISC-LRFD [16].  
These pipe sections are shown in Table 1. The ST, EST, 

and DEST abbreviations stand for standard weight, extra 
strong, and double-extra strong, respectively. The pur-
pose of the grid optimization problem is to find a set of 
design variables that result in a minimum double-layer 
grid weight while satisfying certain constraints. This can 
be defined as:

Table 1 The steel pipe sections taken from AISC-LRFD

Type Nominal diameter (in) Weight per ft (lb) Area (in2) I (in4) Gyration radius (in) J (in4)

1 ST ½ 0.85 0.25 0.017 0.261 0.034

2 EST ½ 1.09 0.32 0.02 0.25 0.04

3 ST ¾ 1.13 0.333 0.037 0.334 0.074

4 EST ¾ 1.47 0.433 0.045 0.321 0.09

5 ST 1 1.68 0.494 0.087 0.421 0.175

6 EST 1 2.17 0.639 0.106 0.407 0.211

7 ST 1 ¼ 2.27 0.669 0.195 0.54 0.389

8 ST 1 ½ 2.72 0.799 0.31 0.623 0.62

9 EST 1 ¼ 3.00 0.881 0.242 0.524 0.484

10 ST 2 3.65 1.07 0.666 0.787 1.33

11 EST 1 ½ 3.63 1.07 0.391 0.605 0.782

12 EST 2 5.02 1.48 0.868 0.766 1.74

13 ST 2 ½ 5.79 1.7 1.53 0.947 3.06

14 ST 3 7.58 2.23 3.02 1.16 6.03

15 EST 2 ½ 7.66 2.25 1.92 0.924 3.85

16 DEST 2 9.03 2.66 1.31 0.703 2.62

17 ST 3 ½ 9.11 2.68 4.79 1.34 9.58

18 EST 3 10.25 3.02 3.89 1.14 8.13

19 ST 4 10.79 3.17 7.23 1.51 14.5

20 EST 3 ½ 12.50 3.68 6.28 1.31 12.6

21 DEST 2 ½ 13.69 4.03 2.87 0.844 5.74

22 ST 5 14.62 4.3 15.2 1.88 30.3

23 EST 4 14.98 4.41 9.61 1.48 19.2

24 DEST 3 18.58 5.47 5.99 1.05 12

25 ST 6 18.97 5.58 28.1 2.25 56.3

26 EST 5 20.78 6.11 20.7 1.84 41.3

27 DEST 4 27.54 8.1 15.3 1.37 30.6

28 ST 8 28.55 8.4 72.5 2.94 145

29 EST 6 28.57 8.4 40.5 2.19 81

30 DEST 5 38.59 11.3 33.6 1.72 67.3

31 ST 10 40.48 11.9 161 3.67 321

32 EST 8 43.39 12.8 106 2.88 211

33 ST 12 49.56 14.6 279 4.38 559

34 DEST 6 53.16 15.6 66.3 2.06 133

35 EST 10 54.74 16.1 212 3.63 424

36 EST 12 65.42 19.2 362 4.33 723

37 DEST 8 72.42 21.3 162 2.76 324

ST = Standard weight, EST = Extra strong, DEST = Double extra strong 
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where {X} is the vector containing the design variables 
for size optimization; ng is the number of design groups; 
D is the set of cross-sectional areas available for groups 
according to Table 1; h is the height of the double-layer 
grid which is known as the only shape variable; H is the 
height design vector which contains the discrete variables 
for the purpose of practical design; W({X}) indicates the 
weight of the structure; nm(i) is the number of members 
for the ith group; ρj and Lj signify the density of the mate-
rial and the length for the jth member of the ith group, 
respectively;

The constraint conditions for grid structures are 
described briefly in the following: 
Displacement constraints:

δ δi max i nn≤ = …, , , , .1 2  (2)

Tension member constraints:
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Compression member constraints:

Slenderness ratio constraints: 
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Where δi and δi
max are the displacement and allowable 

displacement for the ith node; nn is the number of nodes; 
Pu is the required strength (tension or compression); Pr is 
the nominal axial strength (tension or compression); Fy 
and Fu are the minimum specified yield stress and min-
imum specified tensile strength, respectively; Fcr is the 
critical stress; Ag and Ae are the gross cross-sectional and 
the effective net cross-sectional area of a member, respec-
tively. K is effective length factor taken equal to 1; L is the 

length of member; and r is the radius of gyration. Æt and 
Æc are the resistance factors for tension and compression 
members, respectively.

For the purpose of handling the constraints, the penalty 
approach is used. In this method, the objective of the opti-
mization is redefined by introducing the cost function as:
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where v represents the sum of the violations of the design 
constraints; vi

d, vi
σ and vi

λ are respectively constraint vio-
lations for displacement, stress and slenderness ratio. The 
constants 1 and 2 are penalty function exponents that 
are selected considering the exploration and exploitation 
rate of the search space. In this case 1 is set to unity; and 
2 is chosen in such a way that it diminishes the penalties 
and is calculated by:

∈ = + ×2 1 5 1 5. . .
iter
itermax

 (7)

As the shape and size optimization is carried out simul-
taneously, both of the design vectors should have the same 
size, because the probability of choosing each value of 
design vectors should be identical by algorithm. Thus, the 
size of the height design vector (Shape Optimization) is 
equal to the number of cross-section areas existing in 
Table 1 (Size Optimization). Therefore, the range of dis-
crete heights from [0.5, 2.3] and from [2, 3.8] intervals 
with 0.05 m increment is considered for small and big span 
size of double-layer grids to achieve the optimum height, 
respectively.

3 Enhanced colliding bodies optimization algorithm
Colliding bodies optimization (CBO) is a physics-inspired 
efficient meta-heuristic algorithm which is introduced 
by Kaveh and Mahdavi [17]. CBO with simple formula-
tion and no necessity for parameter tuning can deal with 
complex problems without extensive mathematical com-
putations. It is broadly used in various fields of optimi-
zation problems. The CBO imitates a 1-dimensional col-
lision between two colliding bodies (CBs) from physics. 
Inspired by these laws, each CB collides separately with 
its pair and updates its new velocity based on momen-
tum and energy conservation law for the 1-dimensional 
collision. The exploitation phase of CBO is weak due to 
the lack of memory to save the best-so-far solution in its 

(4)
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formulation. In order to improve the performance of CBO, 
enhanced colliding bodies optimization (ECBO) is intro-
duced using memory to save some of the best solutions 
and utilizes a mechanism to escape from local optima [18].

3.1 A concise description and formulation of the main 
algorithm (CBO)
In CBO, each agent solution being considered as an object 
or body with mass known as a Colliding Body (CB). 
These massed objects consist of two main groups equally; 
namely stationary and moving objects, these two bodies 
collide with each other as illustrated in Fig. 1. This colli-
sion is done for two purposes: (I) to ameliorate the posi-
tions of moving objects and (II) to shift stationary objects 
to better positions. After the collision, the new positions of 
colliding bodies are updated based on their new velocities 
using the collision laws governed by the laws of momen-
tum and energy [17]. The conservation of the total momen-
tum in an isolated system demands that the total momen-
tum before the collision is the same as the total momentum 
after the collision provided that there are no net external 
forces acting upon the objects. CBO begins with an initial 
population of 2n parent individuals generated by a random 
initialization. Afterward, CBs are classified in ascending 
order in accordance with the value of the objective func-
tion as depicted in Fig. 2.

The summary of the CBO procedure can describe as 
follows:

The value of the body mass for each CB is defined as:

m
fit k

fit i

k nk

i

n
=

( )

( )

= …

=∑

1

1
1 2 2

1

, , , , ,  (8)

where fit(i) illustrates the objective function value of the ith 
CB and 2n is the number of population size. CBs are clas-
sified in ascending order according to their objective func-
tion values. The arranged CBs are equally divided into two 
groups: (I) stationary group, (II) moving group (Fig. 2). 
Moving objects move to collide stationary objects in order 
to improve their positions and push stationary objects 
towards better positions. Before the collision, the velocity 
of the stationary objects is zero and for the moving objects 
this value is equal to the change of the body position as:

v i ni = = …0 1, , , ,  (9)

v x x i n n ni i n i= − = + + …− , , , , ,1 2 2  (10)

where xi and vi are the position and velocity vector of the ith 
CB in this group, respectively; xi–n is the ith CB pair posi-
tion of xi in previous group. The velocity of each stationary 
and moving CBs after the collision (vi') are assessed by:
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Where ε is an index serves as the coefficient of resti-
tution (COR) to control exploration and exploitation rate. 
iter and itermax are the actual iteration number and the 
maximum number of iterations for the optimization pro-
cess, respectively.

Fig. 1 The collision between two bodies, (a) before the collision,  
(b) same time collision and (c) after collision

Fig. 2 The classified CBs in an ascending order and the collision 
mating process
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The new positions of each stationary and moving CBs 
are evaluated by the following formulas.

x x rand v i ni
new

i i= + = …


', , , , ,1 2  (14)

x x rand v i n ni
new

i n i= + = + …− 

', , , ,1 2  (15)

where xi
new, xi and vi' are the new position, old position and 

the velocity after the collision of the ith CB, respectively. 
rand is a random vector uniformly distributed in the range 
of [-1,1] and the sign "⸰" denotes an element-by-element 
multiplication.

3.2 Pseudo-code of the ECBO algorithm
The enhanced colliding bodies optimization algorithm 
(ECBO) is introduced in order to get more and faster  
reliable solutions [19]. This algorithm has a memory that 
saves a number of best-so-far solutions to improve CBO 
performance. Additionally, a mechanism is defined to ran-
domly change some components of CBO to escape from 
local minima and prevent premature convergence. The 
following steps are outlined to introduce ECBO algorithm.

3.2.1 Initialization
Step 1: The initial location vectors of all CBs are created 
randomly in search space.

x x random x x i ni
0 1 2 3= + −( ) = …min max min

, , , , , ,  (16)

where xi
0 is the initial solution vector of the ith CB. xmin 

and xmax are the minimum and the maximum permissible 
variables vectors; and random is a random vector with an 
interval of [0,1] for each component.

3.2.2 Search
Step 1: To obtain the value of mass for each CB Eq. (8) is 
evaluated.

Step 2: In this step, some historically best CB vectors 
and their mass and objective function values are saved to 
Colliding Memory (CM). The population is updated by 
adding the solution vectors which are saved in CM and the 
same number of current worst CB are deleted. This mech-
anism can improve the performance of the algorithm with-
out increasing the computational cost.

Step 3: CBs are classified in ascending order in accor-
dance with the value of the objective function. In order to 
select the pairs of CBs for collision, they are equally divided 
into two groups: (I) stationary group, (II) moving group.

Step 4: The velocity of stationary objects before the 
collision is zero (Eq. (9)). Moreover, moving bodies move 

toward stationary objects and their velocities before the 
collision are evaluated by Eq. (10).

Step 5: After the collision, the velocities of stationary 
and moving bodies are determined by Eqs. (11) and (12), 
respectively.

Step 6: The new position of each CB is evaluated by 
Eqs. (14) or (15).

Step 7: In ECBO a stochastic approach is used to 
improve the exploration capabilities of the standard CBO 
and to prevent premature convergence. A parameter such 
as Pro within (0, 1) is introduced to specify whether a com-
ponent of each CB must be changed or not. For each col-
liding body, Pro is compared with rni(i = 1, 2, …, n) which 
is a random number uniformly distributed within (0, 1). 
If rni < Pro, one dimension of ith CB is randomly selected 
and its value is regenerated by

x x random x xij j j j= + −( ), , ,. ,min max min  (17)

where xij is the jth variable of the ith CB. xj,min and xj,max  
are the minimum and maximum limits of the jth variable. 
The value of Pro in this paper set to 0.3.

3.2.3 Terminating condition check
Step 1: After a predefined maximum number of objective 
function evaluations, the optimization process is termi-
nated. If this is not accomplished go to Step 2 for a new 
iteration round.

4 Verification of the proposed method using different 
optimization algorithms
In this section, two double-layer grids of small and big 
sizes with different configurations are optimized to show 
the capability of the proposed method (Simultaneous 
shape and size optimization) versus previous method 
(Shape and size optimization) using different algorithms. 
The spans of 15 m × 15 m and 40 m × 40 m with certain 
bays of equal length in two directions are considered as 
small and big size grids. The connections are assumed to 
be ball-jointed [20], and top layer joints are subjected to 
concentrated vertical loads corresponding to a uniformly 
distributed load of 200 kg/m2. The optimization algorithm 
is coded in MATLAB and the structures are analyzed 
using the direct stiffness method. The element group-
ing and details about their constraints and the algorithm 
parameters setting are the same as those of [11]. The struc-
tures are briefly explained in the following, and the results 
are presented. 
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4.1 A 15 m × 15 m Diagonal on diagonal grid
The diagonal on diagonal grid containing 528 members 
and 145 nodes is considered as a small size double-layer 
grid as shown in Fig. 3. Bottom layer is simply supported 
at the corner nodes. The best results were achieved by the 
third grouping pattern provided in [11]. Thus, this group-
ing pattern is selected to optimize the structure using the 
proposed method. The best weights and their related opti-
mum heights obtained by different algorithms are listed 
in Table 2. As illustrated, ECBO could find the lightest 
design compared to other utilized algorithms through 
the proposed method and its optimum height is equal to 
1.55 m. Moreover, comparing the results of ECBO by 
those of the considered methods shows the ability of this 
technique in designing double-layer grids. Table 3 lists the 
optimal designs found by different methods. It is appar-
ent from the table that ECBO does not use any extra 
strong section while utilizing this technique. As shown in 
Table 3, the final designs satisfy both stress and displace-
ment constraints. The total computational cost for solving 
one complete example obtained by ECBO for the previous 
work was equal to 2 hours and 10 minutes, while this time 
is equal to 7 minutes for the present work. 

4.2 A 40 m × 40 m two-way on two-way grid
Fig. 4 shows the 3D view of a 40 m × 40 m two-way on 
two-way grid. This large span grid has 800 members and 
221 nodes. At two parallel sides of the grid, the bottom 
layer is simply supported as mid-edge. The third grouping 

pattern leads to 24 design variables for this type of grid 
and by considering height of the structure as a design 
variable, the total number of design variables is equal 
to 25. Table 4 demonstrates the efficiency of algorithms, Fig. 3 Schematic of a 15 m × 15 m diagonal on diagonal grid

Table 2 Performance comparison of the 15 m × 15 m diagonal on diagonal grid for the third grouping pattern

Kaveh et al [10] Kaveh and Moradveisi [11] Present work

Algorithms CS HBB-BC HPSACO CBO ECBO ECBO

Best weight (kg) 4180.124 5643.173 5270.756 3917.503 3794.836 3786.665

Optimum height (m) 1.5 1 1.5 1.5 1.5 1.55

Table 3 Optimum design of the 15 m × 15 m diagonal on diagonal grid

Design Variables

Optimum section (designations)

Kaveh and Moradveisi [11] Present work

CBO ECBO ECBO

1 A1 ST (1 ½) ST (1 ½) ST (1 ½)

2 A2 ST (2) ST (2) ST (2)

3 A3 ST (1 ¼) ST (1 ¼) ST (1 ¼)

4 A4 ST (1) ST (1) ST (1)

5 A5 ST (½) ST (½) ST (½)

6 A6 ST (½) ST (½) ST (½)

7 A7 ST (½) EST (½) ST (½)

8 A8 ST (3) ST (2 ½) ST (2 ½)

9 A9 ST (1) ST (1 ¼) ST (1 ¼)

10 A10 ST (1 ¼) ST (1 ¼) ST (1 ¼)

11 A11 EST (1 ½) ST (1 ½) ST (1 ½)

12 A12 EST (1 ½) EST (1 ½) ST (1 ½)

13 A13 EST (1 ½) EST (1 ½) ST (1 ½)

14 A14 ST (2) ST (2) ST (2)

15 A15 ST (1) ST (1) ST (1)

16 A16 ST (1) ST (1) ST (1)

17 A17 ST (1) ST (1) ST (1)

18 A18 ST (1) ST (1) ST (1)

19 A19 ST (1) ST (1) ST (1)

20 Optimum height (m) 1.5 1.5 1.55

Max Stress Ratio 0.9980 0.9956 0.9832

Max Displacement Ratio 0.9246 0.9955 0.9907

Best weight (kg) 3917.5032 3794.8357 3786.6645

Fig. 4 Schematic of a 40 m × 40 m Two-way on two-way grid
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where the best-obtained weight is hatched for each case. 
Concerning the result of low weight designs, ECBO 
weight is 1343.19 kg (2.3 %) lighter than the best design 
of the previous works utilizing the proposed method while 
its optimum height is equal to 3.35 m. Table 5 indicates the 
best design vectors and the corresponding weights for dif-
ferent methods. This table shows the better performance 
of the present technique in terms of low weight design. 
As can be seen, none of the optimum designs violate the 
constraints. The overall computational cost for solving 
one complete example obtained by ECBO for the previous 
work was 3 hours and 42 minutes, whereas this time for 
the present work is equal to 11 minutes. 

5 Nonlinear behavior of the grids
Studies show that some trusses show nonlinear behavior 
even in the usual loading range [21, 22]. Therefore, neglect-
ing nonlinear effects in structural design optimization can 
lead to the uneconomic design and for this reason in the 
case of nonlinear optimization, geometrical and material 
nonlinearity effects are taken into account. Thus, a 3-D 
uniaxial Co-rotational truss element is utilized to model 
structural elements. This finite element has plasticity and 
large deflection capabilities. In order to select the material 
a uniaxial bilinear steel material with kinematic hardening 
exist in OpenSees [23] platform is considered as shown in 
Fig. 5. The strain-hardening ratio that is the ratio between 
the post-yield tangent and elastic tangent is equal to 0.01. In 
the nonlinear structural analysis process, instead of the lin-
ear strain, a nonlinear one is used. Since the strains are non-
linear functions of the displacements or when the stresses 
reach values exceeding the yield stress of the material, the 
stress to strain relationship is nonlinear. In these cases, the 
stiffness is dependent on the displacements and the strains. 
Obviously, the solution of the displacements can not be 
obtained in a single step. Instead, the analysis is carried 
out by the incremental method combined with some iter-
ative equilibrium corrections at every step [24, 25]. In the 
process of optimization, structure requires multiple non-
linear analyses to achieve the optimal design. Algorithm is 
coded in MATLAB and it generates the design variables. 
The data should be transferred to Opensees for analyses 

and the results should be returned to MATLAB. Thus, the 
challenge is to connect OpenSees with MATLAB. This is 
done through the interface code provided in MATLAB, 
automatically allowing them to work together in a loop. 

6 Structural models
In this section, two widely used configurations of double- 
layer grids namely two-way on two-way and diagonal on 
diagonal grids are considered [1]. Two spans of 12 m × 12 m 
and 30 m × 30 m with certain bays of equal length in two 

Table 4 Performance comparison of the 40 m × 40 m two-way on two-way grid for the third grouping pattern

Kaveh et al [10] Kaveh and Moradveisi [11] Present work

Algorithms CS HBB-BC HPSACO CBO ECBO ECBO

Best weight (kg) 58474.360 79576.315 79390.971 67247.606 58142.691 56799.4996

Optimum height (m) 3 3 3 3 3 3.35

Table 5 Optimum design of the 40 m × 40 m two-way on two-way grid

Design Variables

Optimum section (designations)

Kaveh and Moradveisi [11] Present work

CBO ECBO ECBO

1 A1 ST (5) ST (4) ST (4)

2 A2 ST (6) EST (5) ST (5)

3 A3 ST (3 ½) DEST (2) ST (1 ¼)

4 A4 ST (5) ST (4) ST (3)

5 A5 ST (3 ½) ST (3) EST (3)

6 A6 ST (2 ½) ST (1 ¼) EST (1 ½)

7 A7 EST (1 ½) EST (2) DEST (2)

8 A8 ST (2 ½) EST (1 ½) ST (3)

9 A9 EST (1 ½) ST (3) ST (3)

10 A10 ST (2 ½) EST (3 ½) DEST (2 ½)

11 A11 ST (6) ST (8) ST (6)

12 A12 ST (5) ST (4) ST (4)

13 A13 ST (6) ST (5) ST (6)

14 A14 ST (6) ST (5) ST (5)

15 A15 ST (6) EST (5) ST (6)

16 A16 ST (6) EST (5) ST (5)

17 A17 ST (8) DEST (4) ST (5)

18 A18 ST (6) ST (8) ST (6)

19 A19 DEST (8) ST (8) ST (6)

20 A20 ST (5) ST (4) ST (5)

21 A21 ST (5) ST (4) ST (4)

22 A22 ST (3 ½) ST (3 ½) ST (3)

23 A23 ST (3 ½) ST (2 ½) ST (2 ½)

24 A24 ST (3 ½) ST (2 ½) ST (2 ½)

25 Optimum height (m) 3 3 3.35

Max Stress Ratio 0.9443 0.9973 0.9999

Max Displacement Ratio 0.9736 0.9993 0.9316

Best weight (kg) 67247.606 58142.6912 56799.4996
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directions are respectively considered as small and big 
size grids. The bottom layer at the corner nodes is sim-
ply supported. One of the important issues for large-scale 
structures is the monotony of the distribution of stiffness 
in the vicinity of the structure. When a part of the struc-
ture contains elements with low cross-sections due to low 
axial forces and small displacements and instead, another 
portion includes elements with high cross-sections, then 
the monotony of distribution of the stiffness will not be 
attained. Therefore, in order to achieve a uniform distri-
bution of stiffness in the entire structure, members are 
divided into several groups according to two symmetry 
lines of configuration. Thus, a square-like fashion around 
the central node is considered to arrange all elements at 
the top and bottom layer and also diagonal members into 
different groups. Only a quarter of the grids appear in fig-
ures due to symmetry.

7 Numerical examples
All double-layer grid connections are considered to be 
ball-jointed with no moment or torsional resistance and 
the concentrated vertical loads transmitted from the uni-
formly distributed load of 200 kg/m2 are applied to the 
top layer joints according to their load-bearing areas. 
Strength and slenderness limitations (Eqs. (3–5)) based 
on AISC-LRFD provisions as stated earlier and all nodes 
in the vertical direction were subject to displacement lim-
itations of span/360. The modulus of elasticity, the yield 
stress and the tangent modulus of elasticity are consid-
ered as 200 kN/mm2 (29000 ksi), 248.2 MPa (36 ksi) and  
2 kN/mm2 (290 ksi), respectively. For the ECBO algo-
rithm, a population size (n) of 30 individuals is utilized 
and the size of colliding memory (CM) is considered n/10 

that is taken as 3. The maximum number of optimization 
iterations is set as 9000 analyses for all examples. In all 
issues, CBs are permitted to choose discrete values of the 
height design vector, and also select from the allowable 
list of cross-sections, simultaneously (real numbers are 
rounded to the nearest integer in each iteration).

7.1 A 12 m × 12 m double-layer square grid
A double-layer grid of 12 m × 12 m span is classified as 
a small-size grid. The first common type is two-way on 
two-way grid containing 392 members and 113 nodes as 
shown in Fig. 6. The second one is diagonal on diago-
nal grid with 528 members and 145 nodes as illustrated 
in Fig. 7. Fig. 8 demonstrate the element grouping with 
15 and 17 design variables for two-way on two-way and 
diagonal on diagonal grids, respectively. Consequently, 
there are two shape-size optimization problems with 16 
and 18 variables (height of the structure is also considered 
as a design variable). The results find by ECBO are sum-
marized in Table 6. ECBO achieves the lightest design for 

Fig. 5 The stress-strain relationship of a uniaxial bilinear steel material

(a) Plan view

(b) 3D view

(c) Side view
Fig. 6 Schematic of a 12 m × 12 m two-way on two-way grid



1016|Kaveh and Moradveisi
Period. Polytech. Civ. Eng., 64(4), pp. 1007–1025, 2020

two-way on two-way grid that is 361.47 kg (11 %) lighter 
than diagonal on diagonal grid and it can be mentioned 
that two-way on two-way grid is a cost-effective choice 
for covering small span cases. The numerical results 
indicate that the best height for both types is equal to 1 
m. Stress ratio and displacement ratio evaluated at the 
best design optimized by ECBO are shown in Fig. 9 and 

Fig. 10, respectively. The maximum stress ratios for the 
best design of ECBO are 99.90 % and 99.97 % while the 
maximum displacement ratios are 87.87 % and 95.20 % 
for two-way on two-way and diagonal on diagonal grids, 
respectively. Convergence histories are depicted in 
Fig. 11. It is apparent from this figure that if the height of 
the structure is considered as a design variable the diago-
nal on diagonal grid with a larger number of members can 

(b) 3D view

(c) Side view
Fig. 7 Schematic of a 12 m × 12 m diagonal on diagonal grid

(a)

Table 6 Optimal design of the 12 m × 12 m double-layer grids via 
ECBO algorithm

Design Variables
Optimum section (designations)

Two-way on two-
way grid

Diagonal on 
diagonal grid

1 A1 ST (2) ST (2)

2 A2 ST (¾) ST (1)

3 A3 ST (2) EST (1 ½)

4 A4 ST (1 ¼) ST (2)

5 A5 ST (1 ½) ST (2)

6 A6 ST (2) EST (1 ½)

7 A7 ST (1 ¼) ST (1)

8 A8 ST (1) ST (¾)

9 A9 ST (1 ½) ST (¾)

10 A10 ST (2) ST (¾)

11 A11 ST (¾) ST (¾)

12 A12 ST (1) ST (2)

13 A13 ST (¾) ST (1 ½)

14 A14 ST (¾) ST (1)

15 A15 ST (¾) ST (½)

16 A16 N/A EST (¾)

17 A17 N/A ST (½)

18 Optimum Height (m) 1 1

Max Stress Ratio 0.9990 0.9997

Max Displacement Ratio 0.8787 0.9520

Best Weight (kg) 2925.76 3287.24

Fig. 8 Element grouping of the 1 2m × 12 m (a) Two-way on two-way grid, (b) Diagonal on diagonal grid

(b)

(a) Plan view
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(a)

Fig. 9 The stress ratios for the best design of 12 m × 12m double-layer square grids (a) Two-way on two-way grid (b) Diagonal on diagonal grid

(b)

(a)

(b)
Fig. 10 The displacement ratios for the best design of 12 m × 12 m double-layer square grids (a) Two-way on two-way grid (b) Diagonal on diagonal grid
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also be a proper form for small span cases double-layer 
grids. Generally, the crucial difference between rectangu-
lar and diagonal grids is that the former the beams are of 
changing length (L) and for this reason, if all the beams 
have equal cross-sectional areas and the same axial stiff-
ness (EA), their relative stiffness (EA/L) changes signifi-
cantly. The diagonal grid is composed of beams that form 
an oblique angle with the walls. Hence, this form is often 
used in small span cases because its greater rigidity con-
tributes to a substantial decline in deflections, and without 
regard to the number and intricacy of the joints is often 
preferred by architects and engineers due to convenience 
and attractive features.

7.2 A 12 m × 12 m square on larger square grid
The second example provides a comparison between two 
types of the 12 m × 12 m square on larger square dou-
ble-layer grids. The square on larger square grid is the type 
of grid that has some internal openings in the middle of 
the structure created by omitting some inner square pyra-
mids alternatively to form larger grids in the bottom layer. 
This change will reduce the total number of members and 
consequently the weight. It is also visually appealing as 
the extra openness of the space grids network provides a 
magnificent architectural effect. Skylights can be installed 
within the openings. This kind of system is usually suit-
able for the structures under the normal range of loads. 
For better comparison, the framing patterns are similar 
to that of usual types discussed in the previous section. 

Fig. 11 Convergence curves for the 12 m × 12 m double-layer grids

(b)

(c)
Fig. 12 Schematic of a 12 m × 12 m two-way on larger two-way grid

(a)
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Fig. 12 shows the schematic of the two-way on larger two-
way grid. This structure has 360 members and 109 nodes 
as the first type. The second type is diagonal on larger 
diagonal grid has 432 members and 133 nodes shown in 
Fig. 13. For the purpose of practical design, the uniformly 
distributed load of 200 kg/m2 is transmitted to the concen-
trated vertical loads in the proportion of their load-bearing 
area assigned to the nodes of the top grid.

For clarity and in order to better understand which bot-
tom layer elements are eliminated, Fig. 14 illustrates the 
only bottom layer element grouping and both the top and 
diagonal layer element grouping are following the pattern 
shown in Fig. 8. The cross-sectional areas of the mem-
bers of two-way on larger two-way grid are divided into 
14 groups and all 432 members of diagonal on larger diag-
onal grid are categorized into 18 groups. By consider-
ing height of the structure as a design variable the total 

number of design variables is equal to 15 and 19 variables 
for two-way on larger two-way grid and diagonal on larger 
diagonal grid, respectively. Table 7 compare the optimi-
zation results for both types. The optimum weights found 
by the algorithm are equal to 2860.07 kg and 3005.50 kg 
for two-way on larger two-way grid and diagonal on larger 
diagonal grid, respectively. Results show that two-way on 
larger two-way grid is 145.43 kg (4.84 %) lighter than diag-
onal on larger diagonal grid. The optimum height obtained 
by ECBO is equal to 1.15 m and 1.05 m for two-way on 
larger two-way grid and diagonal on larger diagonal grid, 
respectively. Fig. 15 provides the convergence diagrams of 
the ECBO in 9000 analyses. Investigation of the conver-
gence curves in Fig. 15 provide the fact that if the height 
of the structure is flexible to choose the diagonal on larger 
diagonal grid is also suitable form for covering small 
span length even with larger number of members. Figs. 16 
and 17 demonstrate the existing stress and displacement 
ratios for the best design of ECBO algorithm.

(b)

(c)
Fig. 13 Schematic of a 12 m × 12 m diagonal on larger diagonal grid

(a)

(a)

(b)
Fig. 14 Element grouping of the 12 m × 12 m bottom layer (a) Two-way 

on larger two-way grid, (b) Diagonal on larger diagonal grid
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7.3 A 30 m × 30 m double-layer square grid
Optimal design of a 30 m × 30 m large-scale pin-jointed 
double-layer grids is considered as the last example. 
Fig. 18 shows the geometric details of the two-way on 
two-way grid as the first common type has 968 members 
and 265 nodes. Latter type is diagonal on diagonal grid 
with 1520 members and 401 nodes illustrated in Fig. 19. 
According to the symmetry, the element grouping of a 
quarter of the grids is shown in Fig. 20. The cross-sec-
tional areas of members are divided into 23 and 27 design 
variable groups for two-way on two-way and diagonal on 
diagonal grid, respectively. By considering the range of 
discrete heights from [2, 3.8] interval with 0.05 m incre-
ment there are two shape-size optimization problems 
with 24 and 28 variables. Table 8 demonstrates the best 
designs and their corresponding weights for two types 
of double-layer grids. The optimum design obtained by 
the ECBO algorithm is weighted 41904.34 kg for two-
way on two-way grid which is 8.5 percent lighter than the 
weight is hatched for diagonal on diagonal grid is taken 
as 45796.86 kg. It can be inferred that two-way on two-
way grid is a more affordable form for covering big span 
cases. The optimum height achieved by ECBO is equal to 
2.65 m and 2.4 m for two-way on two-way grid and diag-
onal on diagonal grid, respectively. The convergence rates 
of the best result found by the proposed method are pro-
vided in Fig. 21. Figs. 22 and 23 show the stress ratio and 
displacement ratio evaluated at the best design optimized 

Table 7 Optimal design of the 12 m × 12 m square on larger square 
double-layer grids via ECBO algorithm

Design Variables
Optimum section (designations)

Two-way on  
two-way grid

Diagonal on 
diagonal grid

1 A1 EST (1 ½) ST (2)

2 A2 ST (¾) ST (1)

3 A3 ST (2) EST (1 ½)

4 A4 ST (1 ¼) ST (2)

5 A5 ST (1 ¼) ST (2)

6 A6 ST (2) EST (1 ½)

7 A7 ST (1 ¼) ST (1)

8 A8 ST (1) ST (1)

9 A9 ST (1) EST (¾)

10 A10 EST (1 ½) ST (¾)

11 A11 ST (¾) ST (¾)

12 A12 ST (¾) ST (2)

13 A13 ST (1 ½) ST (¾)

14 A14 EST (1) EST (1 ½)

15 A15 N/A ST (1 ¼)

16 A16 N/A ST (1)

17 A17 N/A EST (½)

18 A18 N/A ST (½)

19 Optimum Height (m) 1.15 1.05

Max Stress Ratio 0.9989 0.9984

Max Displacement Ratio 0.7755 0.9886

Best Weight (kg) 2860.07 3005.50

Fig. 15 Convergence curves for the 12 m × 12 m square on larger square double-layer grids
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(a) (b)
Fig. 16 The stress ratios for the best design of 12 m × 12 m square on larger square double-layer grids (a) Two-way on larger two-way grid (b) 

Diagonal on larger diagonal grid

(a)

(b)
Fig. 17 The displacement ratios for the best design of 12 m × 12 m square on larger square double-layer grids (a) Two-way on larger two-way grid (b) 

Diagonal on larger diagonal grid
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by ECBO, respectively. The maximum stress ratios are 
99.86 % and 98.88 % while the maximum displacement 
ratios are 96.91 % and 99.26 % for the two-way on two-
way and diagonal on diagonal grids, respectively.

8 Discussions and conclusions
The configuration of the double-layer grids is a signifi-
cant factor to be scheduled, which affects both the bearing 
capacity and the weight of the structure. The depth between 
the top and bottom layers has a noticeable effect upon it. 
Optimization of large-scale structures with numerous 
design variables is known as one of the difficult and com-
plex optimization problems, especially when considering 
the nonlinearity. In this paper, simultaneous shape and size 

optimization of two-way on two-way, diagonal on diag-
onal, two-way on larger two-way and diagonal on larger 
diagonal double-layer grids with different span length as 
small and large sizes using ECBO algorithm are exam-
ined. These grids are subject to the strength and stability 
constraints of the AISC-LRFD specifications and the dis-
placement limitations. Firstly, a comparative study of two 
double-layer grids of different sizes and configurations is 
performed. Results show that simultaneous shape and size 
optimization has a considerable impact on the weight of the 
structure and the optimum height can achieve greater rela-
tive stiffness for the grids. Varying the length of the diag-
onal members leads to substantial reduction in the deflec-
tions. Secondly, six numerical examples are investigated. 
In all examples, during the optimization process, both 
material and geometrical nonlinearity effects are consid-
ered. In all the cases, diagonal on diagonal grid with more 

(b)

(c)
Fig. 18 Schematic of a 30 m × 30 m two-way on two-way grid

(b)

(c)
Fig. 19 Schematic of a 30 m × 30 m diagonal on diagonal grid

(a)

(a)
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connections and members results in heavier design than 
those of other grids. It is worthwhile to mention that if the 
depth between the top and bottom layer is flexible to choose 
diagonal on diagonal grid is also a suitable form for cover-
ing small span cases because of its greater rigidity, conve-
nience and appealing features. The square on larger square 
and square on square grids have the lightest designs. The 
results of applying examples clearly indicate that the pro-
posed approach is an efficient and robust tool for designing 
large-scale problems and performs well at finding the opti-
mum height of double-layer grids. This method has supe-
riority compared to the other time-consuming methods in 
terms of reliability and solution accuracy. 

For the spans larger than 100 m it is necessary to incor-
porate triple-layer grids to avoid long members. Future 
studies can deal with the design of triple-layer grids 

utilizing the proposed method while challenging newly 
developed metaheuristic algorithms. Also, different types 
of connections can be considered and compared during 
the optimization process. The future work can also utilize 
optimal analysis and swift analysis for optimal design of 
double layer grid using symmetry and regularity of these 
structures, Kaveh [26] and Kaveh et al. [27].
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Table 8 Optimal design of the 30 m × 30 m double-layer grids via 
ECBO algorithm

Design Variables
Optimum section (designations)

Two-way on  
two-way grid

Diagonal on 
diagonal grid

1 A1 EST (4) EST (4)

2 A2 ST (1) EST (1 ½)

3 A3 ST (4) ST (3 ½ )

4 A4 EST (2 ½) ST (3 ½ )

5 A5 ST (3 ½) ST(5)

6 A6 EST (3) ST(6)

7 A7 ST(5) ST(10)

8 A8 ST (5) EST (3 ½)

9 A9 EST (3 ½) ST (2 ½)

10 A10 ST (2 ½) ST (2)

11 A11 ST (2) ST (2)

12 A12 ST (2) ST (1 ½)

13 A13 EST (2) EST (1 ½)

14 A14 ST (5) ST (2)

15 A15 ST (2) ST (2)

16 A16 ST (1) EST (1 ½)

17 A17 EST (2) ST (3 ½ )

18 A18 ST (3) ST (6)

19 A19 ST (1 ¼) ST (4)

20 A20 ST (1 ½) ST (2 ½)

21 A21 ST (2 ½) ST (2 ½)

22 A22 ST (2 ½) EST (1 ½)

23 A23 EST (4) ST (2 ½)

24 A24 N/A EST (2)

25 A25 N/A ST (3)

26 A26 N/A EST (2)

27 A27 N/A ST (3)

28 Optimum Height (m) 2.65 2.4

Max Stress Ratio 0.9986 0.9888

Max Displacement Ratio 0.9691 0.9926

Best Weight (kg) 41904.34 45796.86

(a)

(b)
Fig. 20 Element grouping of the 30 m × 30 m (a) Two-way on two-way 

grid, (b) Diagonal on diagonal grid
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Fig. 21 Convergence curves for the 30 m × 30 m double-layer grids

(a) (b)
Fig. 22 The stress ratios for the best design of 30 m × 30 m double-layer grids (a) Two-way on two-way grid (b) Diagonal on diagonal grid

(a) (b)
Fig. 23 The displacement ratios for the best design of 30 m × 30 m double-layer grids (a) Two-way on two-way grid (b) Diagonal on diagonal grid
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