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Abstract

Vibration control devices have recently been used in structures subjected to wind and earthquake excitations. The optimal design 

problems of the passive control device and the feedback gain matrix of the controller for the seismic-excited structures are some 

attractive problems for researches to develop optimization algorithms with the advancement in terms of simplicity, accuracy, speed, 

and efficacy. In this paper, a new modified teaching–learning-based optimization (TLBO) algorithm, known as MTLBO, is proposed for 

the problems. For some benchmark optimization functions and constrained engineering problems, the validity, efficacy, and reliability 

of the MTLBO are firstly assessed and compared to other optimization algorithms in the literature. The undertaken statistical indicate 

that the MTLBO performs better and reliable than some other algorithms studied here. The performance of the MTLBO will then be 

explored for two passive and active structural control problems. It is concluded that the MTLBO algorithm is capable of giving better 

results than conventional TLBO. Hence, its utilization as a simple, fast, and powerful optimization tool to solve particular engineering 

optimization problems is recommended.

Keywords

optimization, TLBO, modified TLBO, engineering optimization, structural control optimization

1 Introduction
Vibration control devices have been successfully used 
for vibration mitigation of buildings and bridges against 
dynamic loads such as strong winds and, earthquakes. The 
optimal tuning of the parameters of the passive control 
device, supplemented to the structures, has a direct effect 
on the seismic responses of the structures. Some research-
ers attempt to utilize or develop meta-heuristic optimiza-
tion algorithms in this regard. Etedali et al. [1] utilized a 
cuckoo search (CS) optimization algorithm for the optimal 
design of friction tuned mass damper (FTMD). Fahimi 
Farzam and Kaveh [2] utilized colliding bodies optimiza-
tion (CBO) for optimum design of TMD in the frequency 
domain. Ghasemi et al. [3] used an improved ideal gas mol-
ecules movements (IGMM) in SMA dampers for vibration 
control of Jacket-type offshore structures. The optimal 
design of rotational friction dampers using particle swarm 
optimization (PSO) is studied in [4]. Kaveh et al. [5] com-
pared the H2 and H∞ norm of roof displacement transfer 
function as the objective functions for optimum design of 
TMD under near-fault and far-fault earthquake motions. 

A robust optimum design of tuned mass damper inerter 
(TMDI) is also proposed by Kaveh et al. [6]. The design 
of controllers has a key role in the successful implementa-
tion of the smart structures to tune the control force of the 
actuator. Some optimization algorithms such as GA [7], 
IGMM [8], CSS [9], and gases Brownian motion optimi-
zation [10] have recently given attention to the optimal 
design of controllers in the seismic-excited structures.

There are different optimization algorithms inspired by 
the swarm intelligence and evolutionary computations in 
the literature. Some of these algorithms include GA, PSO, 
search and rescue (SAR) and ideal gas molecular move-
ment (IGMM). The GA has been inspired by Darwin's 
evolution theory focusing on the survival of the fittest [11]. 
PSO imitates the behavior of a bird flock or fish to search 
for food [12]. SAR imitates the explorations which were 
carried out by humans during search and rescue oper-
ations [13] and IGMM is inspired by the movements of 
gas molecules [14]. Recently, some new optimization 
algorithms such as Echolocation Search Algorithm [15], 
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enhanced artificial coronary circulation system [16], natu-
ral forest regeneration [17], hybrid invasive weed optimi-
zation-shuffled frog-leaping [18], quantum evolutionary 
algorithm [19] and search and rescue optimization algo-
rithm [20], have been also proposed for civil engineering 
optimization problems.

Recently, Rao et al. [21] have developed a new optimi-
zation algorithm called Teaching-Learning-based optimi-
zation (TLBO) in which the focus is on the concept of the 
scenario of classroom teaching. The TLBO works based on 
the effect of a teacher on the performance of learners in the 
classroom. This performance can be measured by the grades 
achieved by the learner. In this philosophy, the teacher, as a 
knowledge supplier, is the person who can lead the student 
to obtain better results. A better teacher makes learners 
achieve better results. The superiority of the TLBO algo-
rithm to other optimization algorithms is reported in [22]. 
The advantages of TLBO in terms of better understand-
ing, easy implementation, and the need for a small num-
ber of parameters to operate have made it one of the most 
commonly used optimization algorithms. Recently, Nayak 
et al. [23] proposed an effective approach integration of the 
Taguchi method (TM), Adaptive neuro-fuzzy inference 
system (ANFIS) and TLBO for CNC turning optimization 
of S45C carbon steel. Dang et al. [24] also utilized a TLBO 
algorithm for solving a multi-objective optimization design 
for a new linear compliant mechanism.

In the present paper, a new modification on the basic 
TLBO, known as MTLBO, is proposed. For this purpose, 
an extra term is added to basic TLBO in the both teacher 
phase and learner phase to speed up the convergence rate, 
a descriptive detail of which is given later in this study. 
The performance of the proposed MTLBO algorithm is 
investigated in comparison with PSO, DE, and ABC for 
different benchmark optimization functions followed by 
its application on some engineering benchmark optimiza-
tion problems. To the best knowledge of the authors, no 
up-to-date study is found to utilize the TLBO in structural 
control problems. Hence, this paper also applies the new 
modification of the basic TLBO for two structural control 
problems. For this purpose, the optimal design problems 
of TMD device as a passive control device and optimal 
tuning of the feedback gain matrix of the controller in an 
active tendon system for a seismic-excited structure are 
addressed in this study.

The remainder of the paper is organized as follows: 
Section 2 gives a brief description of TLBO. The MTLBO 
algorithm is proposed in Section 3. Section 4 is divided into 

three subsections. Considering the benchmark optimiza-
tion functions, the performance of the proposed MTLBO 
algorithm is compared with some other optimization algo-
rithms in the first subsection. In the second subsection, 
examples of engineering benchmark problems are solved 
using MTLBO and its performance is compared to TLBO 
and other optimization techniques. The proposed MTLBO 
algorithm is applied to two structural control problems in 
the third subsection. Finally, the conclusion of the present 
paper is reported in Section 5.

2 Teaching-Learning-Based Optimization (TLBO) 
In a population-based method such as TLBO, a series of 
solutions have been used for progress to get the global 
solution. TLBO is based on the effect of a teacher on the 
performance of learners in the class. TLBO algorithm 
consists of two main phases including the teacher phase 
and learner phase. The teacher phase refers to the occur-
rence of the learning process due to teacher role while the 
learner Phase deals with the happening of learning as a 
result of interactions between learners. Rao has explained 
the basic steps of TLBO. The teacher phase refers to the 
occurrence of the learning process due to teacher role 
while the learner Phase deals with the happening of learn-
ing as a result of interactions between learners. The basic 
phases of the TLBO are as follows [22].

2.1 Teacher phase 
As can be seen from Fig. 1, a good teacher can improve 
the mean value of the scores obtained by the learners from 
MA to MB. A good teacher is a person who promotes the 
knowledge of learners. In practice, it is evident that the 

Fig. 1 Model for the distribution of marks obtained for a group of 
learners [22]
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teacher can improve the mean score of the class partially 
so that the extent depends on the overall ability of the class 
members and so factors are involved.

It is assumed that the mean value of the score and the 
teacher at the ith iteration are denoted by Mi and Ti, respec-
tively. In the teacher phase, Ti will try to enhance the value 
of the mean Mi to its own level, so that the new mean is 
denoted by Mnew. Depending on the difference between 
existing mean and Mnew, the solution can be updated using 
the following equation: 

Difference Mean r M T Mi i new F i_ � �� � , (1)

where TF refers to the teaching factor which attempts to 
change the mean value. Also, ri refers to a random number in 
the interval [0, 1]. The value of TF is set as either 1 or 2. The 
following equation is used to modify the existing solution:

X X Difference Meannew i old i i, , _� �  (2)

2.2 Learner phase
The promotion of learners in the learning process is done 
in two various ways: Learning from the teacher and the 
interactions among learners. The interaction among learn-
ers occurs through discussions, presentations, formal com-
munications, etc. In other words, a learner can learn new 
things when a knowledgeable learner gives more informa-
tion about a certain subject. The modification of learner 
can be expressed as Algorithm 1.

3 Modified Teaching-Learning-Based Optimization 
(MTLBO)
In this Section, a new modified TLBO algorithm is intro-
duced. For this aim, two extra terms in the both teacher 
and learner phases of the conventional TLBO algorithm 
are added. An optimization algorithm includes explora-
tion and exploitation phases. In the exploration phase, the 

entire answer space is searched and it is finally found the 
region that includes the best solutions. In the exploitation 
phase, the region that was found in the exploration phase 
is searched. In fact, in the exploitation phase, the search-
ing operation is done more precisely in the smaller region. 
The conventional TLBO and the proposed MTLBO have 
both phases in the teacher and learner phases, respectively. 
However, a new term is added to the teacher phase which 
results in more space is sought for finding a better solu-
tion than the conventional TLBO. Moreover, in the learner 
phase, for a more detailed search and increase the speed of 
finding the best solution, changes or mobility in the search 
space are decreased to half of the previous values that 
were happened in the conventional TLBO. It makes better 
exploitation in the search spaces and gets more diversity. 
The modification of the conventional TLBO algorithm is 
proposed as follows:

3.1 Teacher phase 
As previously mentioned, the conventional TLBO algo-
rithm in the teacher phase aims to bring the mean score 
closer to the teacher score. Therefore, in this phase, mobil-
ity is toward the best learner (teacher). In addition to the 
movement towards the best learner (teacher), established 
in the conventional TLBO algorithm, to increase the speed 
of students' learning, it is also proposed in the MTLBO 
algorithm that they get away from the worst learner for 
more space is sought for finding a better solution. For this 
purpose, in the MTLBO algorithm, at first, the students are 
arranged in the worst to the best (teacher) order. Based on 
the mentioned modification, an extra term can be added to 
the teacher phase of the TLBO. From a mathematical point 
of view, the modified teacher phase of the basic TLBO can 
be expressed as the following equation:

X X rand X T Mean

rand Mean X

new i old i Teacher F

Worst

, , ( )

,

� � � �

� �� �

*

*
 (3)

where XWorst is the worst grade among all the students. 
Accept Xnew, if it gives a better function value.

3.2 Learner phase
The conceptual analysis of the TLBO algorithm makes 
clear that as the learner learns more, the solution becomes 
better. The learning performance of the students can be 
enhanced via the reduction of changes or mobility in the 
search space to half of the previous values in the conven-
tional TLBO. In other words, it is proposed that only half 

Algorithm 1 Pseudocode of the learner phase - TLBO

For i = 1:nPop
Randomly select two learners Xi and Xj

where i ≠ j
If  f(Xi) < f(Xj)
X X r X Xnew i old i i i j, ,� � �� �

Else
X X r X Xnew i old i i j i, ,� � �� �

End If
End For
Accept Xnew if it gives a better function value.

Where nPop is the number of population.
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of the current solutions (dimensions) are changed in the 
MTLBO. It makes better exploitation in the search spaces 
and gets more diversity. The modified learner phase can be 
stated as Algorithm 2.

4 Numerical studies
The efficacy of the proposed MTLBO algorithm is compa- 
red with other evolutionary optimization algorithms includ-
ing GA, PSO, ABC, and DE algorithms for different basic 
benchmark optimization functions. Then, the performance 
of the MTLBO algorithm is compared with the basic TLBO 
algorithm for CEC-2005 benchmark optimization functions. 
In the end, the MTLBO is developed for the optimal design 
of TMD parameters and optimal tuning of the feedback gain 
matrix of the controller in an active tendon system.

4.1 Benchmark optimization function 
Six benchmark optimization functions as multimodal 
problems are chosen to test the ability of the global search 
of different optimization algorithms. The benchmark opti-
mization functions are summarized in Table 1.

4.1.1 Experiments A 
The efficacy of the MTLBO algorithm in comparison 
with OEA, HPSO-TVAC, CLPSO, APSO, OLPSO-L, 
OLPSO-G  for the benchmark optimization functions, 
defined in Table 1, are summarized in Table 2. For this 
purpose, the mean and the standard deviation (SD) crite-
ria are inserted in this table. The results of OEA, HPSO-
TVAC, CLPSO, and APSO, OLPSO-L, OLPSO-G are 
reported in [25]. For a fair comparison, the numbers of 
population (NPop) for TLBO and MTLBO are considered 
as 5 and the maximum iteration is considered as 5000. 10 
runs are assigned for these computations. The number of 
function evaluations (NFE) for each function is mentioned 
in the table. Also, the final performance of the MTLBO 
respect to other algorithms is reported in the last three 
rows of the Table in terms of worse, better and similar per-
formance. "−", "+", and "≈" denote that the performance 
of the corresponding algorithm is worse than, better than, 
and similar to that of MTLBO, respectively. NA is used 
for Not Available. The results show that the MTLBO per-
forms better than OEA, HPSO-TVAC, CLPSO, APSO, 
OLPSO-L and OLPSO-G for all test functions. For most 
problems, the results are given with less NFE than other 
algorithms. Similar results are given by the original TLBO 
and the MTLBO for the most test functions. 

Algorithm 2 Pseudocode of the learner phase - MTLBO

For i = 1:nPop
Randomly select two learners Xi and Xj

where i ≠ j
If  f(Xi) < f(Xj)
X X r X Xnew i old i i i j, ,� � �� �

Else
X X r X Xnew i old i i j i, ,� � �� �

End If
For k = 1:nVar
If rand < 0.5
X Xnew i k new i k2 1, , , ,=

X Xnew i k old i k2, , , ,=
End If
End For
End For
Accept Xnew 2 if it gives a better function value.

Where nVar is the number of variables.

Table 1 Benchmark test functions

Test function Formulation Search range Minimum value

Sphere [-100,100]D 0

Schwefel 2.22 [-10,10]D 0

Step [-100,100]D 0

Schwefel 1.2 [-100,100]D 0

Ackley [-32,32]D 0

Griewank [-600,600]D 0

f x xii

D
1

2

1
� � �

��
f x x xii

D
ii

D
2

1 1
� � � �

� �� �

f x xii

D
3

2

1
0 5� � � ��� ���� .

f x x jj

i

i

D
4

1

2

1
� � � �

�
��

�

�
���� ��

f x
D

x
D

xii

D
ii

D
5

2

1 1
20 0 2

1 1
2� � �� �

�

�
��

�

�
�� � � ��

�� �� �� exp . * exp cos ����
�

�
�� � �20 e
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iii

D i
i
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1

1
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�

�
�
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� �
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Table 2 Performance of MTLBO, OEA, HPSO-TVAC, CLPSO, APSO, OLPSO-L and OLPSO-G

Function OEA HPSO-TVAC CLPSO APSO OLPSO-L OLPSO-G TLBO MTLBO

Sphere
Mean

SD
NFE

2.48e-30(-)
1.128e-29

1.5*105

3.38e-41(-)
8.50e-41
1.5*105

1.89e-19(-)
1.49e-19
1.5*105

1.45e-150(-)
5.73e-150
1.5*105

1.11e-38(-)
1.28e-28
1.5*105

4.12e-54(-)
6.34e-54
1.5*105

4.9e-321
0

5*104

4.9e-321
0

5*104

Schwefel 
2.22

Mean
SD

NFE

2.07e-13(-)
2.44e-12
2.0*105

6.92e-23(-)
6.89e-23
2.0*105

1.01e-13(-)
6.54e-14
2.0*105

5.15e-84(-)
1.44e-83
2.0*105

7.67e-22(-)
5.63e-22
2.0*105

9.85e-30(-)
1.01e-29
2.0*105

4.9e-321
0

5*104

4.9e-321
0

5*104

Step
Mean

SD
NFE

0(~)
0

1.0*105

0(~)
0

1.0*105

0(~)
0

1.0*105

0(~)
0

1.0*105

NA
NA
NA

NA
NA
NA

0
0

5*104

0
0

5*104

Schwefel 
1.2

Mean
SD

NFE

5.43e-17(-)
1.68e-16
1.0*105

2.39(-)
3.71

1.0*105

2.57e-1(-)
6.64e-11
1.0*105

5.8e-15(-)
1.01e-14
1.0*105

0(~)
0

1.0*105

1.07(-)
0.99

1.0*105

1e-323
4.4238
5*104

9.2076e-281
0

5*104

Ackley
Mean

SD
NFE

5.34e-14(-)
2.94e-13
5.0*104

2.06e-10(-)
9.45e-10
5.0*104

2.01e-12(-)
9.22e-13
5.0*104

1.11e-14(-)
3.55e-15
5.0*104

4.14e-5(-)
0

5.0*104

7.98e-15(-)
2.03e-15
5.0*104

4.2633e-15
1.498e-15

5*104

3.5527e-15
0

5*104

Griewank
Mean

SD
NFE

1.32e-02(-)
1.56e-02

5*104

1.07e-02(-)
1.14e-02

5*104

6.45e-13(-)
2.07e-12

5*104

1.67e-02(-)
2.41e-02

5*104

0(~)
0

5*104

4.83e-03(-)
8.63e-03

5*104

0
0

5*104

0
0

5*104

+ 5 5 5 5 3 5 1

− 0 0 0 0 0 0 1

≈ 1 1 1 1 2 0 4

4.1.2 Experiments B
The experiments of this group compare the performance 
of the MTLBO algorithm with those given by SaDE, 
jDE, JADE, CoDE, EPSDE for the benchmark functions 
described in Table 1. The results of these algorithms 
are directly taken from [25]. The results are inserted in 
Table 3. A similar result is obtained for this experiment. 
The superiority of the MTLBO than other algorithms are 
observed.

4.1.3 Experiments C
The experiments of this group validate the performance 
of the MTLBO algorithm in comparison with CABC, 
GABC, RABC and IABC for solving the mentioned six 
benchmark optimization functions. The results of these 
algorithms are given by [25]. The corresponding results 
for each test function are shown in Table 4. Similar to 
the results in experiments A and B, it is found that the 
MTLBO performs better than other optimization algo-
rithms to find the best solution for the mentioned bench-
mark test functions.

4.1.4 CEC-2005 benchmark optimization functions
In Tables 2–4, the optimal result of each function is zero 
and it is concluded that both basic TLBO and the MTLBO 
give better performance than other algorithms in terms of 
mean and SD.

Also, it is found that the basic TLBO and MTLBO result 
in the same results in most benchmark optimization func-
tions. Considering different CEC-2005 benchmark optimi-
zation functions that have the non-zero optimal result, a 
comparison between the performance of the MTLBO and 
TLBO is interesting. Table 5 shows the CEC-2005 bench-
mark optimization functions. For a fair comparison, the 
number of runs is considered as 25 and the number of func-
tion evaluations is 10000*D where D is dimensionalities 
of the problems. Also, the population sizes for both TLBO 
and MTLBO are considered as 10. The average error for 25 
functions is indicated in Table 6. Also, the convergence rate 
diagrams for functions 1, 6, 11, 16, and 21 are illustrated in 
Fig. 2. In Table 6, it can be seen that the MTLBO has a 
less mean of error than conventional TLBO in all functions 
except functions 3 and 20. Furthermore, Fig. 2 shows that 
the MTLBO converges more quickly than the TLBO to the 
optimal solutions. Consequently, the MTLBO gives better 
performance and reliable results than the TLBO. 

4.2 Engineering optimization problems
The performance of the MTLBO algorithm is also verified 
for some engineering optimization problems. Four bench-
mark engineering problems are selected for this purpose 
and the penalty function method approach is utilized to 
handle the defined constraints for the problems as the fol-
lowing pseudo-cost function:
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Table 3 Performance of MTLBO, JADE, jDE, SaDE, CoDE, and EPSDE

Function SaDE jDE JADE CoDE EPSDE TLBO MTLBO

Sphere
Mean

SD
NFE

4.5e20(-)
1.9e-14
1.5*105

2.5e-28(-)
3.5e-28
1.5*105

1.8e-60(-)
8.4e-60
1.5*105

1.12e-31(-)
3.45-31
1.5*105

1.53e-85(-)
9.01e-86
1.5*105

4.9e-321
0

5*104

4.9e-321
0

5*104

Schwefel 
2.22

Mean
SD

NFE

1.9e14(-)
1.1e-14
2.0*105

1.5e-23(-)
1.0e-23
2.0*105

1.8e-25(-)
8.8e-25
2.0*105

1.22e-23(-)
3.90e-23
2.0*105

3.18e-54(-)
3.11e-54
2.0*105

4.9e-321
0

5*104

4.9e-321
0

5*104

Step
Mean

SD
NFE

9.3e+02(-)
1.8e+02
1.0*104

1.0e+03(-)
2.2e+02
1.0*104

2.9e+0(-)
1.2e+0
1.0*104

3.00e+00(-)
1.90E+00
1.0*104

0(~)
0

1.0*104

0
0

5*104

0
0

5*104

Schwefel 
1.2

Mean
SD

NFE

1.2e-03(-)
6.5e-04
1.0*105

1.5e-04(-)
2.0e-04
1.0*105

1.0e-04(-)
6.0e-05
1.0*105

1.21e-01(-)
3.89e-02
1.0*105

0(~)
0

1.0*105

1e-323
4.4238
5*104

9.2076e-281
0

5*104

Ackley
Mean

SD
NFE

2.7e-03(-)
5.1e-04
5.0*104

3.5e-04(-)
1.0e-04
5.0*104

8.2e-10(-)
6.9e-10
5.0*104

1.18e-04(-)
4.90e-04
5.0*104

1.94e-2(-)
8.90e-4
5.0*104

4.2633e-15
1.498e-15

5*104

3.5527e-15
0

5*104

Griewank
Mean

SD
NFE

7.8e-04(-)
1.2e-03
5.0*104

1.9e-05(-)
5.8e-05
5.0*104

9.9e-08(-)
6.0e-07
5.0*104

1.74e-07(-)
2.33e-07
5.0*104

5.36e-13(-)
4.77e-14
5.0*104

0
0

5*104

0
0

5*104

+ 6 6 6 6 4 1

− 0 0 0 0 0 1

≈ 0 0 0 0 2 4

Table 4 Performance of MTLBO, CABC, GABC, RABC, and IABC

Function CABC GABC RABC IABC TLBO MTLBO

Sphere
Mean

SD
NFE

2.3e-40(-)
1.7e-40
1.5*105

3.6e-63(-)
5.7e-63
1.5*105

9.1e-61(-)
2.1e-60
1.5*105

5.34e-178(-)
0

1.5*105

4.9e-321
0

5*104

4.9e-321
0

5*104

Schwefel 2.22
Mean

SD
NFE

3.5e-30(-)
4.8e-30
2.0*105

4.8e-45(-)
1.4e-45
2.0*105

3.2e-74(-)
2.0e-73
2.0*105

8.82e-127(-)
3.49e-126
2.0*105

4.9e-321
0

5*104

4.9e-321
0

5*104

Step
Mean

SD
NFE

0(~)
0

1.0*104

0(~)
0

1.0*104

0(~)
0

1.0*104

0(~)
0

1.0*104

0
0

5*104

0
0

5*104

Schwefel 1.2
Mean

SD
NFE

1.3e-00(-)
2.7e-00
1.0*105

1.5e-10(-)
2.7e-10
1.0*105

2.3e-02(-)
5.1e-01
1.0*105

0(~)
0

1.0*105

1e-323
4.4238
5*104

9.2076e-281
0

5*104

Ackley
Mean

SD
NFE

1.0e-05(-)
2.4e-06
5.0*104

1.8e-09(-)
7.7e-10
5.0*104

9.6e-07(-)
8.3e-07
5.0*104

3.87e-14(-)
8.52e-15
5.0*104

4.2633e-15
1.498e-15

5*104

3.5527e-15
0

5*104

Griewank
Mean

SD
NFE

1.2e-04(-)
4.6e-04
5.0*104

6.0e-13(-)
7.7e-13
5.0*104

8.7e-08(-)
2.1e-08
5.0*104

0(~)
0

5.0*104

0
0

5*104

0
0

5*104

+ 5 5 5 3 1

− 0 0 0 0 0

≈ 1 1 1 3 5
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Table 5 CEC-2005 Benchmark test functions

Function Name Search range D F_bias

f1 Shifted Sphere Function [-100,100]D 10 -450

f2 Shifted Schwefel's Problem 1.2 [-100,100]D 10 -450

f3 Shifted Rotated High Conditioned Elliptic Function [-100,100]D 10 -450

f4 Shifted Schwefel's Problem 1.2 with Noise in Fitness [-100,100]D 10 -450

f5 Schwefel's Problem 2.6 with Global Optimum on Bounds [-100,100]D 10 -310

f6 Shifted Rosenbrock's Function [-100,100]D 10 390

f7 Shifted Rotated Griewank's Function without Bounds [0,600]D 10 -180

f8 Shifted Rotated Ackley's Function with Global Optimum on Bounds [-32,32]D 10 -140

f9 Shifted Rastrigin's Function [-5,5]D 10 -330

f10 Shifted Rotated Rastrigin's Function [-5,5]D 10 -330

f11 Shifted Rotated Weierstrass Function [-0.5,0.5]D 10 90

f12 Schwefel's Problem 2.13 [-100,100]D 10 -460

f13 Expanded Extended Griewank's plus Rosenbrock's Function (F8F2) [-3,1]D 10 -130

f14 Expanded Rotated Extended Scaffe's  F6 [-100,100]D 10 -300

f15 Hybrid Composition Function 1 [-5,5]D 10 120

f16 Rotated Hybrid Composition Function 1 [-5,5]D 10 120

f17 Rotated Hybrid Composition Function 1 with Noise in Fitness [-5,5]D 10 120

f18 Rotated Hybrid Composition Function 2 [-5,5]D 10 10

f19 Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum [-5,5]D 10 10

f20 Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds [-5,5]D 10 10

f21 Rotated Hybrid Composition Function 3 [-5,5]D 10 360

f22 Rotated Hybrid Composition Function 3 with High Condition Number Matrix [-5,5]D 10 360

f23 Non-Continuous Rotated Hybrid Composition Function 3 [-5,5]D 10 360

f24 Rotated Hybrid Composition Function 4 [-5,5]D 10 260

f25 Rotated Hybrid Composition Function 4 without Bounds [-2,5]D 10 260

f X W X

max g X

cost

k

n

k
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�

�
�

�
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1

0

1

1

2� �

�

�
* * ,

, ,

 (4)

where, W({X}), gk({X}) and ϑ are the cost function, the 
constraint, and the total constraint violation of the optimi-
zation problem, respectively. The constants ε1 and ε2 are 
selected based on the exploration and exploitation rates 
of the search space. In the present work, ε1 = 1 and ε2 is 
changed from 1.5 to 3.

4.2.1 Tension/compression spring design
This problem aims to minimize the weight of the tension/
compression spring shown in Fig. 3. The problem has three 
design variables including the wire diameter (d), the mean 
diameter of coil (D), and the number of active coils (N). 
It is subjected to three nonlinear inequality constraints in 
terms of shear stress, surge frequency, and deflection and 
one linear inequality constraint as follows:

Minimze:
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f x x x x

g x x x
x

g

� � � �� �

� � � � �

3 2 1
2

1
2
3
3

1
4

2

1
71785

0

22
2
2

1 2

2 1
3

1
4

1
2

3

4

12566

1

5108
1 0

1
140 45

x x x x
x x x x

g x

� � � �

�� �
� � �

� � � �
. xx
x x

g x x x

x x

1

2
2
3

4
1 2

1 2

0

1 5
1 0

0 05 2 00 0 25 1 30

�

� � � �
� �

� � � �

.

. . , . .

where

,, . .and 2 00 15 003� �x

 (5)

The tension/compression spring design problem has 
been undergone under co-evolutionary DE (CDE) [26], 
ABC [27], CPSO [28] and HPSO [29]. The convergence 
histories of the original TLBO and MTLBO for the opti-
mization problem are shown in Fig. 4.
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Table 7 presents the details of the best solutions using 
the basic TLBO and MTLBO algorithms. The number 
of population for both TLBO and MTLBO is considered 
as 10. Table 8 also compared the statistical results of the 
considered algorithms with those given by the basic TLBO 
and MTLBO algorithms. Based on the values of the mean 
and the standard deviation (SD) inserted in Table 8, it can 
be found that the MTLBO has outperformed the other 
algorithm. With far fewer NFE adopted for the TLBO and 
MTLBO compared to other optimization algorithms, the 
best results are given for both optimization algorithms. 
It is worth noting that the performance of MTLBO is 
slightly better than the TLBO in terms of mean, worst and 
SD criteria.

4.2.2 Optimal design of welded beam
The purpose of the problem is to optimally design a 
welded beam under certain constraints having minimum 
cost. The welded beam structure is illustrated in Fig. 5. 

As illustrated in the figure, the beam A is welded to 
the member B. The optimization problem aims to find the 

minimum fabrication cost. The design variables are x1, x2, 
x3, x4. The constraints of the problem included shear stress 
(τ), bending stress of the beam (σ), buckling load on the bar 
(Pc), and the end deflection of the beam (δ). The optimiza-
tion problem can be formulated as:

Minimize: 

f x x x x x x� � � � �� �1 10471 0 04811 14 01
2
2 3 4 2. . .

Subject to:

g x x1 13600 0� � � � � � ��

g x x2 30000 0� � � � � � ��

g x x xx3 4 0� � � � �

g x x x x x4 1
2

3 4 20 10471 0 04811 14 5 0 0� � � � � � �� � � �. . .

g x x5 10 125 0� � � � �.

g x x6 0 25 0� � � � � � �� .

g x p xc7 6000 0� � � � � � �

Table 6 The average error for CEC-2005 benchmark functions

f1 f2 f3 f4 f5

MTLBO
Mean 1.0687e-13 1.6826e-13 124932.8983 6.3892e-13 1.0186e-12

SD 6.4227e-14 1.8672e-13 108160.5655 2.7488e-12 1.6671e-12

TLBO
Mean 3.2652e-10 1.8736e-10 83810.8999 113.9518 2.6713e-09

SD 1.346e-09 7.7548e-10 67935.8848 274.4984 8.7846e-09

f6 f7 f8 f9 f10

MTLBO
Mean 1.3562 1267.056 20.3426 5.333 16.2547

SD 2.0524 0.050043 0.084342 4.2976 6.8469

TLBO
Mean 908.7199 1267.2359 20.3597 24.7943 28.114

SD 3099.1562 0.29006 0.053297 8.8988 10.5799

f11 f12 f13 f14 f15

MTLBO
Mean 5.2802 1009.1863 0.62457 2.9711 285.8865

SD 1.0278 1656.0728 0.25276 0.39694 188.6135

TLBO
Mean 6.1983 2498.1546 1.219 3.0128 360.3644

SD 1.2389 3622.3764 0.62644 0.37674 188.7328

f1 f16 f17 f18 f19 f20

MTLBO
Mean 96.6802 156.4426 855.1239 280.7902 869.0538

SD 418.348 62.4886 108.6305 205.9564 1000.5878

TLBO
Mean 186.3049 171.4382 1003.8061 993.1936 132.8584

SD 96.3443 37.7033 102.8687 147.8207 97.9305

f21 f22 f23 f24 f25

MTLBO
Mean 138.2112 795.7579 976.1826 248 876.1210

SD 24.1749 43.795 227.2545 112.2497 133.3062

TLBO
Mean 183.1771 849.2694 1210.9344 478.4318 1027.7150

SD 68.1253 97.6388 160.8402 370.6494 97.3425



Hosseinaei et al.
Period. Polytech. Civ. Eng., 65(1), pp. 37–55, 2021|45

where:
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The welded beam optimization design problem has been 
investigated using the modified differential evolution algo-
rithm (COMDE) [32], ABC [27], hybrid PSO with differen-
tial evolution (PSO-DE) [33], co-evolutionary PSO (CPSO) 

Fig. 2 Convergence rate of the MTLBO and TLBO
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[28] and hybrid PSO (HPSO) [29]. Considering the number 
of population nPop = 10 for the basic TLBO and TLBO 
algorithms, the convergence graphs and optimal parame-
ters of the problem are shown in Fig. 6 and Table 9, respec-
tively. Furthermore, a compression among the statistical 
results of the considered algorithms with those given by 
the basic TLBO and MTLBO is indicated in Table 10.

Table 10 confirms the capability of the MTLBO, TLBO, 
and COMDE to find the optimal solution in all runs. It is 
evident that the MTLBO has lower values of SD than 
COMDE, but it has the same mean and NFE with COMDE. 
Considering a smaller NFE for the MTLBO than the other 
algorithms, it gives better performance than all other algo-
rithms according to the values of the mean and SD. Also, 
Fig. 6 shows that the MTLBO converges more rapidly than 
the original TLBO to the optimal solution.

4.2.3 A reinforced concrete beam design
Fig. 7 shows a simplified total cost optimization problem 
for A 30-ft simple reinforced concrete beam introduced 
by Amir and Hasegawa [34]. It is subjected to a live load 
of 2.0 klbf and a dead load (including the weight of the 

Fig. 5 The optimal design problem of the welded beam [31]

Table 8 The statistical results of the tension/compression spring 
optimization design problem

Method Best Mean Worst SD NFE

MTLBO 0.012666 0.012686 0.012754 1.9189e-05 20000

TLBO 0.012665 0.012696 0.012791 2.8982e-05 20000

ABC 0.012665 0.012709 NA 1.28 e-02 30000

CDE 0.0126702 0.012703 0.012790 2.7 e-05 240000

CPSO 0.0126747 0.012730 0.012924 5.20 e-05 200000

HPSO 0.0126652 0.012707 0.012719 1.58 e-05 81000

Fig. 4 Convergence graphs for tension/compression spring design 
problem

Fig. 3 The tension/compression spring design problem [30]

Table 7 Optimal solutions for the tension/compression spring design 
problem

Design 
variables x1 x2 x3

MTLBO 0.052351 0.372865 10.407740

TLBO 0.051565 0.353759 11.464504

ABC 0.051749 0.358179 11.203763

CDE 0.051609 0.354714 11.410831

CPSO 0.051728 0.357644 11.244543

HPSO 0.051706 0.357126 11.265083

Fig. 6 Convergence graphs for the optimal design of welded beam
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beam) of 1.0 klbf. The concrete compressive strength (Fc) 
and yield stress of the reinforcing steel (Fy) are considered 
as 5 ksi, and 50 ksi, respectively. The unit costs of con-
crete and steel are $0.02/in2/linear ft and $1.0/in2/linear ft, 
respectively. The design variables are the area of the rein-
forcement (As), the width of the beam (b), and the depth of 
the beam (h). The cross-sectional area of the bar as a dis-
crete variable is selected from the standard bar dimensions 
reported in [34], while the width of the concrete beam and 
the depth of the beam are respectively integer and contin-
uous design variables. The effective depth is considered 
as 0.8x2. The structure should meet the required strength 
according to ACI 318-77 building code as follows:

M A h
A
bh

M Mu s y
s y

c
a l� � � �

�

�
�

�

�
� � �0 9 0 8 1 0 0 59

0 8
1 4 1 7. . . .

.
. . .�

�
�

 (7)

In which Mu, Ma, and Ml are the moments of the beam 
under the flexural strength, dead load, and live load, respec-
tively. In this case, the values of Md and Ml are 1,350  kip-in 

2,700 kip-in, respectively. The depth to width ratio is 
restricted to 4 or less. The optimization problem can be 
defined as the following formulation:

Minimize:

Subject to:

f A b h A bh

g b h h
b

g A

s s

s

, , . .

,

� � � �
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2 9 0 6

4 01

2 ,, , . .b h A
b

A hs
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2
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The variables bound of the cross-sectional area of the 
reinforcing bar, the width of the beam and the depth of the 
beam are {6.0, 6.16, 6.32, 6.6, 7.0, 7.11, 7.2, 7.8, 7.9, 8.0, 
8.4} in2, {28, 29, 30, 31, …, 38, 39, 40} in and 5 ≤ h ≤ 10 in, 
respectively. The functions g1 and g2, are the constrained 
functions derived by Liebman et al. [36].

The problem has been also assessment through Hybrid 
discrete steepest descent and rotating coordinate direc-
tions methods (SD-RC) [34], Generalized Hopfield net-
work-based augmented Lagrange multiplier approach 
(GHN-ALM) [37], GHN based extended penalty approach 
(GHN-EP) [37], Adaptive hybrid GA with fuzzy logic con-
troller (FLC-AHGA) [38]. Fig. 8 indicates the convergence 
graphs for the optimal design of the reinforced concrete 
beam. Also, Table 11 presents the optimal solutions and the 
statistical results of the problem by the above-mentioned 

Table 9 Optimal solutions for the welded beam optimization design problem

Design variables x1 x2 x3 x4

MTLBO 0.2057296 3.4704886 9.0366239 0.2057296

TLBO 0.2057296 3.4704886 9.0366239 0.2057296

COMDE NA NA NA NA

ABC 0.20573 3.470489 9.036624 0.20573

PSO-DE 0.2057296 3.4704886 9.036 6239 0.2057296

CPSO 0.202369 3.544214 9.04821 0.205723

HPSO 0.20573 3.470489 9.036624 0.20573
  NA is used for not available.

Table 10 The statistical results of the welded beam optimization design problem

Method Best Mean Worst SD NFE

MTLBO 1.7248523 1.7248523 1.7248523 1.1362e-15 20000

TLBO 1.7248523 1.7248523 1.7248523 2.5007e-14 20000

COMDE 1.7248523 1.7248523 1.7248523 1.60 e-12 20000

ABC 1.724852 1.741913 NA 3.1 e-02 30000

PSO-DE 1.724853 1.724858 1.724881 4.1 e-06 33000

CPSO 1.728024 1.748831 1.782143 1.29 e-02 200000

HPSO 1.724852 1.749040 1.814295 4.00 e-02 81000
  NA is used for not available.

Fig. 7 the reinforced concrete beam design problem [35]
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optimization algorithms. The number of population for 
the basic TLBO and MTLBO is adopted as 25. Table 11 
shows that the MTLBO with the lowest values of Mean, 
SD respect to other algorithms, provides an efficient, qual-
ified and robust method to find the optimal design of the 
reinforced concrete beam.

4.2.4 Ten-bar truss design using discrete variables 
Another example is the optimal design of a ten-bar truss, 
shown in Fig. 9. A set of 41 discrete values for possible 
cross-sectional areas of the members is selected as (1.62, 
1.80, 1.99, 2.13, 2.38, 2.62, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 
3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 
5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9, 
18.8, 19.9, 22.0, 22.9, 26.5, 30.0, and 33.5 in2). The maxi-
mum allowable stress of the truss members is restricted to 

±25 ksi while the maximum vertical and horizontal deflec-
tion of the nodes is ±2.0 in. The unit weight of the mate-
rial was 0.1 lb/in3 and its elasticity modulus is considered 
as 107 psi. GA (Mahfouz) [39], GA (Barbosa et al.) [40], 
ACO (Camp and Bichon) [41], and BB–BC (Camp) [42] 
has investigated the problem. Table 12 indicates the sta-
tistical results of considered algorithms along with details 
of the best solutions. It is found that the best design is 
given by the MTLBO algorithm in which the weight of 
truss was obtained as 5490.75 lb. The convergence graphs 
for the optimal design of the ten-bar truss design are also 
illustrated in Fig. 10. The mean weight of the best fea-
sible truss designs was 5490.74 lb which is resulted in a 
standard deviation of 0.13852 lb. after 50 runs of the algo-
rithm with the number of a population of 25. The number 
of truss analyses needed by the MTLBO algorithm to be 
converged was 7500. In comparison with GA, ACO, and 
BB–BC algorithms, the MTLBO algorithm requires less 
computational effort to find the optimal design. For the 
truss design problem with ten design variables, a compar-
ison between the results given by the MTLBO with those 
given for other algorithms is remarkable. The standard 
deviation of the MTLBO is 0.14, whereas the correspond-
ing values for other algorithms are about 23, 12 and 212, 
respectively. Therefore, it is concluded that the superiority 
of the MTLBO is evident for optimization problems with 
a large number of design variables.

4.3 Control optimization problems
Two structural control problems are addressed in this sec-
tion to validate the proposed MTLBO algorithm. The first 
problem is the optimal design of TMD as a passive control 
device for the seismic-excited structure. The second prob-
lem is to tune the feedback gain matrix of a controller in 
a structure equipped with an active tendon system (ATS).

Fig. 8 Convergence graphs for the optimal design of the reinforced 
concrete beam

Table 11 Optimal solutions and statistical results of the reinforced 
concrete beam design problem

Optimal solution of the 
design variable The statistical results

Method As b h Mean SD NFE

MTLBO 6.32 34 8.50 359.8099 1.0511 10000

TLBO 6.6 33 8.50 361.5814 1.8981 10000

SD-RC 7.8 31 7.79 374.2 NA 10000

GHN-ALM 6.6 33 8.495227 374.2 NA 10000

GHN-EP 6.32 34 8.637180 362.00648 NA 10000

GA 7.20 32 8.0451 366.1459 NA 10000

FLC-AHGA 6.16 35 8.7500 364.8541 NA 10000
NA is used for not available.

Fig. 9 Ten-bar truss design using discrete variables [43]
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4.3.1 Optimal design of tuned mass damper parameters 
The optimal design of a Tuned mass damper (TMD) located 
on the top story of a ten-story shear building subjected 
to the artificial earthquake excitation, shown in Fig. 11, 
is considered for validation of the proposed MTLBO algo-
rithm. The artificial earthquake is produced by a band-lim-
ited Gaussian white noise with the following power spec-
tral density function:

s g g

g g g
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where ξg and ωg are the ground damping and frequency, 
respectively. For numerical simulations, the ground damp-
ing and frequency are adopted as 0.3 and 2π rad/s, respec-
tively [44].

The mass, damping coefficient, and stiffness coefficient 
of each story are 360 ton, 6.2 MNs/m, and 650 MN/m, 
respectively. The optimization problem aims to find the opti-
mal TMD parameters, including TMD mass (md), damping 
coefficient (cd) and stiffness coefficient (kd), for minimizing 
the maximum top story displacement as follows:

Minimize

Subject to:

and

I
max x t

max x t

m c k
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t

d d d
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where I is the maximum floor displacement of the structure 
with the TMD normalized to the corresponding response 
for the structure without TMD. A limitation for the maxi-
mum TMD stroke is added to the problem as a constrained. 
In other words, the term of maxt||xTMD(t) – xtop(t)|| refers to 

Fig. 10 Convergence graphs for the optimal design of Ten-bar truss design

Fig. 11 Time history of the artificial earthquake

Table 12 The best solutions and the statistical results of the Ten-bar truss design problem

Members GA, Mahfouz [39] GA, Barbosa et al [40] ACO, Camp and Bichon [41] BB–BC, Camp [42] TLBO MTLBO

1 33.50 33.50 33.50 33.50 33.50 33.50

2 1.62 1.62 1.62 1.62 1.62 1.62

3 22.90 22.90 22.90 22.90 22.90 22.90

4 14.20 14.20 14.20 14.20 14.20 14.20

5 1.62 1.62 1.62 1.62 1.62 1.62

6 1.62 1.62 1.62 1.62 1.62 1.62

7 22.90 22.90 22.90 22.90 22.90 22.90

8 7.97 7.97 7.97 7.97 7.97 7.97

9 1.62 1.62 1.62 1.62 1.62 1.62

10 22.00 22.00 22.00 22.00 22.00 22.00

Wmin 5490.74 5490.74 5490.74 5490.74 5490.74 5490.74

Wavg NA 5534.98 5510.52 5494.17 5595.60 5490.75

SD NA NA 23.19 12.42 211.55 0.13852

NFE 8000 200000 10000 8694 7500 7500
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the maximum relative TMD displacement respect to the 
maximum roof displacement which should be less than 
150 cm. Using a penalty method, the complicated con-
strained optimization problem can be converted to an 
unconstrained optimization problem as follows:

J I

x t x tt TMD Roof

� � � � �� �� �

�
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�

1 50 0

150
1

max ,

max
.
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 (11)

For a population number of 10, the mean, best, worst, 
and SD results for 30 runs are inserted in Table 13. The 
convergence graphs for both TLBO and MTLBO are illus-
trated in Fig. 12. Furthermore, the optimal parameters of 
the TMD using the TLBO and MTLBO are inserted in 
Table 14. Some optimal design scenarios for the men-
tioned problem reported by GA in [7], Lee et al. [45] and 
charged system search (CSS) in [9], are also inserted in the 
Table for comparison purposes.

The maximum seismic responses of the structure sub-
jected to the El Centro (1940) NS earthquake in terms of 
maximum floor displacement and acceleration are shown 
in Tables 15 and 16, respectively. The optimized TMD by 
TLBO and MTLBO gives better results than GA and the 
results given by Lee et al. in the reduction of structural 
responses in terms of floor displacement and accelera-
tion. An average reduction of 37.09 % in the maximum 

displacement and an average reduction of 29.44 % in the 
maximum acceleration of floors are obtained for both 
TLBO and MTLBO. However, as found from Table 13, 
the MTLBO with a less SD provides reliable results than 
the TLBO. The MTLOB performs better than CSS in 
the reduction of the maximum floor acceleration, while 
the CSS results in more reduction in the maximum floor 

Table 13 The statistical results of the optimal design problem of TMD 

Method Mean Best Worst SD

TLBO 0.484426 0.483998 0.488119 9.227553e-04

MTLBO 0.484277 0.483996 0.485167 2.763895e-04

Fig. 12 Convergence graphs for the optimal design of TMD

Table 14 Optimum TMD parameters for the optimal design problem of 
TMD

Methods
Optimum parameters

md (ton) cd (kNs/m) kd (kN/m)

GA [7] 108 151.5 3750

Lee et al. [45] 108 271.79 4126.93

CSS [9] 108 88.697 4207.735

TLBO 107.99 214.81 4119.55

MTLBO 108 214.82 4119.83

Table 15 Maximum displacements of stories subjected to the El Centro (1940) NS earthquake 

Maximum displacement (m) Percentage of reduction (%)

Story Without TMD GA [7] Lee et al. [45] CSS [9] TLBO MTLBO GA Lee et al. [45] CSS TLBO MTLBO

1 0.031 0.019 0.020 0.0185 0.019 0.019 38.71 35.48 40.32 38.80 38.80

2 0.060 0.037 0.039 0.0362 0.037 0.037 38.33 35.00 39.67 38.20 38.20

3 0.087 0.058 0.057 0.0525 0.054 0.054 33.33 34.48 39.65 38.10 38.10

4 0.112 0.068 0.073 0.0682 0.069 0.069 39.29 34.82 39.11 38.37 38.37

5 0.133 0.082 0.087 0.0825 0.082 0.082 38.35 34.59 37.97 37.98 37.98

6 0.151 0.094 0.099 0.0950 0.095 0.095 37.75 34.44 37.09 37.33 37.33

7 0.166 0.104 0.108 0.1056 0.105 0.105 37.35 34.94 36.39 36.76 36.76

8 0.177 0.113 0.117 0.1139 0.113 0.113 36.16 33.90 35.65 35.89 35.89

9 0.184 0.119 0.123 0.1196 0.120 0.120 35.33 33.15 35.00 34.95 34.95

10 0.188 0.122 0.126 0.1225 0.123 0.123 35.11 32.98 34.84 34.55 34.55

TMD – 0.358 0.282 0.4933 0.341 0.341 --- --- --- ---

Average reduction (%) 36.97 34.38 37.57 37.09 37.09
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displacement. It is noted that the results of the CSS are 
obtained for an unconstraint TMD design problem (with-
out the TMD stroke constraint defined in Eq. (13). In other 
words, the optimal design of the TMD given by CSS does 
not satisfy the TMD stroke constraint during the artificial 
earthquake excitation. 

4.3.2 Optimal active control design 
A three-story building model studied in [46] is considered. 
An ATS is installed between the first floor and the ground 
floor. The mass, damping, and stiffness matrices of the 
model are as follows:
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Considering Z(t) = [x1 x2 x3 ẋ1 ẋ2 ẋ3]
T, L and H as the loca-

tion vectors of the control force and ground acceleration, 
the state space form of the equation of motion of the struc-
tural model can be stated as:



Z AZ t B Ht u t x tg� � � � � � � � � � �  (13)
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Considering the cost function defined in Eq. (15), 
the active control force of the linear-quadratic regulator 
(LQR) controller is given by Eq. (16).

J t t t dt
t

T T� � � � � � � �� ��
0

Z QZ R u R , (15)

u t t tT� � � � � � � � � ��GZ R B PZ1 , (16)

where G is a feedback gain matrix of the controller. Also,  
Q and R are the symmetric weighting matrices. Further-
more, P is a semi-positive definite matrix that can be 
obtained from the following Riccati equation:

PA A P PBR B P Q� � � ��T T1
0 . (17)

In the LQR controller, the weighting matrices Q and R 
are the design matrices for optimal tuning of the con-
trol force. For the problem, the weighting matrices are 
assumed as the following form:

Q R� � �� � � �diag � �
0 0 1 1 1 10, . (18)

The maximum displacement of floors in the controlled 
structure normalized to the corresponding response in the 
uncontrolled structure is assumed as a cost function to 
tune the optimal design variables i.e. α and β. The TLBO 
and MTLBO algorithms are utilized for optimal tuning of 
the weighting matrices. For a population of 10, the optimal 
design and statistical results of the active control design 
problem for 30 runs are shown in Table 17. The conver-
gence graphs for the problem are displayed in Fig. 13. 
Similar results are obtained for both algorithms, while the 
MTLBO algorithm resulted in a smaller SD and a higher 
convergence than rate than the TLBO algorithm. Time his-
tories of the top floor displacement, top floor acceleration, 

Table 16 Maximum accelerations of stories subjected to the El Centro (1940) NS earthquake 

Maximum acceleration (m/s2) Percentage of reduction (%)

Story Without TMD GA [7] Lee et al. [45] CSS [9] TLBO MTLBO GA Lee et al. [45] CSS TLBO MTLBO

1 2.89 2.70 2.67 3.4260 2.66 2.66 6.57 7.61 1.12 8.03 8.03

2 3.97 3.03 3.10 5.2593 3.02 3.02 23.68 21.91 1.47 24.01 24.01

3 4.93 3.53 3.64 5.9736 3.51 3.51 28.40 26.17 2.60 28.90 28.90

4 5.68 3.94 3.99 6.2626 3.88 3.88 30.63 29.75 14.56 31.75 31.75

5 6.14 4.08 4.12 6.3223 4.02 4.02 33.55 32.90 23.59 34.57 34.57

6 6.55 3.83 4.14 6.1456 3.88 3.88 41.53 36.79 30.00 40.81 40.81

7 6.71 4.39 4.26 5.7233 4.30 4.30 34.58 36.51 36.77 35.97 35.97

8 7.01 5.05 4.95 5.5797 4.99 4.99 27.96 29.39 39.72 28.82 28.83

9 7.84 5.53 5.44 5.8272 5.46 5.46 29.46 30.61 38.19 30.38 30.39

10 8.32 5.81 5.72 5.9564 5.73 5.73 30.17 31.25 37.62 31.13 31.13

Average reduction (%) 28.65 28.29 22.56 29.44 29.44
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first-floor drift, and control force of the structure subjected 
to the scaled 1940 El Centro and 1995 Kobe earthquakes 
are displayed in Figs. 14 and 15, respectively. A significant 
reduction is shown in the seismic responses of the struc-
ture equipped with ATS in comparison with the uncon-
trolled ones. The similar results are obtained for the TLBO 
and MTLBO algorithms. 

5 Conclusions
The design problems of the passive and active control 
devices for the seismic-excited structures can be defined 
as some of the optimization problems that demand simple, 
accurate, and fast optimization algorithms. For this pur-
pose, a new modified TLBO algorithm, namely MTLBO, 
is proposed here. In the MTLBO, an extra term was added 
to the basic TLBO in the both teacher and learner phases. 
The performance of MTLBO was firstly validated for 
some unconstrained and constrained engineering bench-
marks. To compare the efficiency of the MTLBO, some 
evolutionary optimization techniques such as PSO, DE, 
GA, and ABC along with their various variants were con-
sidered. Considering the statistical results undertaken for 
assessing the performance and reliability of optimiza-
tion algorithms, it was concluded that the MTLBO was 
able to give reliable and better results than other algo-
rithms. Furthermore, it was found that the superiority of 
the MTLBO was evident for optimization problems with 
a large number of design variables. For some optimization 
problems, the MTLBO also resulted in the best solution 
with less function evaluation numbers and computational 

Table 17 The optimal design and statistical results of the active control design problem

Method α β Mean Best Worst SD

MTLBO 1 7.475728 0.234946 0.234946 0.234946 7.432602e-14

TLBO 1 7.476714 0.234946 0.234946 0.234954 1.674994e-06

Fig. 13 Convergence graphs for the optimal design of TMD

Fig. 14 Time histories of the top floor displacement, top floor acceleration, first-floor drift and control force of the structure subjected to the El 
Centro earthquake
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efforts rather than other algorithms. Finally, the efficiency 
of the MTLBO was investigated for the optimal tuning 
of the parameters in structural engineering problems 
consisting of passive and active control problems. It was 

found that the MTLBO algorithm resulted in faster and 
better performance than the basic TLBO. Consequently, 
the MTLBO can be successfully extended and utilized for 
particular engineering optimization problems.

Fig. 15 Time histories of the top floor displacement, top floor acceleration, first-floor drift and control force of the structure subjected to the Kobe 
earthquake
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