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Abstract

The paper critically investigates the role of the combined compliance average and spreading measures in the volume-constrained 

continuous robust topology optimization with uncertain loading magnitude and direction. In the robust topology optimization 

the generally expected and most popular robustness measure is the expected compliance, In the expectancy oriented approach, 

the compliance increment which is needed to get the robust design is an implicitly defined response variable. In order to open 

the possibility of the creative contribution of the designer to the best robust design searching process, this measure is sometimes 

combined with a spreading-oriented measure, which may be the variance or standard deviation. The best weighting schema can be 

done by a try-and-error-like algorithm in which the weights are design variables and the compliance-increment remains an implicitly 

defined response variable. In this paper, it will be shown that all of the compliance oriented approaches which are based on a single 

or combined statistical measure can be replaced by a new compliance-function-shape-oriented robust approach in which the allowed-

compliance-increment will be an explicitly defined design variable and for a given increment value the robust solution will be the 

theoretically best one. A popular volume-constrained symmetric bridge problem with uncertain loading magnitude and direction will 

be presented to demonstrate the viability and efficiency of the proposed robust approach.
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1 Introduction
Uncertainty is an important consideration in volume-con-
strained continuous topology optimization to produce 
robust solutions which are insensitive to the uncertain 
design parameters as much as possible. More than two 
decades ago a robust truss topology design procedure 
was elaborated by Ben-Tal and Nemirovski [1] using 
semidefinite programming as one of the first applica-
tion. The source of uncertainty may be the variability of 
applied loads, spatial positions of nodes, material proper-
ties, and so on [2–5]. Various deterministic and stochastic 
approaches have been developed to account for different 
types of uncertainty in structural design and optimization 
methods to get robust solutions [6–8]. In addition, the reli-
ability based topology optimization play important rule to 
handle uncertainties [9–13] in this research field.

In this paper, it is assumed that the investigated problems 
are symmetric, the only source of uncertainty is the variabi- 

lity of the magnitude and direction of the loads and a com-
pliance-based performance measure is used in the robust 
topology optimization to get a robust design. A good sum-
mary of the different approaches of the compliance-based 
robust topology optimization can be found in [14].

In the volume-constrained continuous robust topol-
ogy optimization with uncertain loading magnitude and 
direction the generally expected and most popular robust-
ness measure is the expected compliance. In the expec-
tancy oriented approach, the compliance increment which 
is needed to get the robust design is an implicitly defined 
response variable. In order to open the possibility of the 
creative contribution of the designer to the best robust 
design searching process, this measure is sometimes com-
bined with a spreading-oriented measure, which may be the 
variance or standard deviation [14–20]. In these cases, the 
best weighting schema can be done by a try-and-error-like 
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algorithm in which the weights are design variables and 
the compliance-increment remains invariably an implic-
itly defined response variable.

In the presented case, according to the symmetric-
ity assumption, the robust nominal compliance is always 
greater than or equal to the original nominal compliance 
and the robust compliance function shape is always more 
balanced than the nominal compliance function shape on 
the set of uncertain design parameters independently from 
the applied robustness measure. In a forthcoming paper, 
an anomaly resolving strategy will be presented for such 
challenging and frustrating cases where, independently 
from the applied robust approach, the original nomi-
nal and robust nominal compliances are always the same 
therefore it is impossible to get a robust design with nom-
inal compliance increasing. 

In this paper, it will be shown that all of the compli-
ance oriented approaches which are based on a single or 
combined statistical measure can be replaced by a com-
pliance-function-shape-oriented robust approach in which 
the allowed-compliance-increment will be an explicitly 
defined design variable and for a given increment value 
the robust solution will be the theoretically best one.

Using the terminology of the classical variational 
problems, the proposed total compliance variation ori-
ented approach [21] can be classified as a curve-length, 
surface-area, volume or generalized volume minimizing 
problem with a problem specific condition which con-
strains the maximum allowable increase of the nomi-
nal-compliance, expressed as a percentage of the original 
(deterministic) nominal compliance, the searching domain 
is defined implicitly as integration limits in the objective 
function formulation, and the usual equality relation is 
used to prescribe the allowable material volume expressed 
as a percentage of the total material volume.

The paper is organized as follows. Section 2 focuses 
on the problem-specific mathematical formulation and 
the numerical algorithm of the total-compliance-varia-
tion-oriented approach. The example used to illustrate the 
viability and efficiency of the proposed approach is pre-
sented in Section 3. Finally, some concluding remarks are 
presented in Section 4. 

2 Models and algorithms 
In this paper, for sake of simplicity but without loss of 
generality the theoretical model of the compliance-func-
tion-shape-oriented robust approach will be formulated 
only for symmetric 2D structures with one point load with 
uncertain direction and magnitude. 

In this case, using the terminology of the classical vari-
ational problem, the total-compliance-variation oriented 
approach will be a surface-area-minimization problem 
with a maximally allowed compliance increment con-
straint. Without any mathematical proof, it simply follows 
from its definition that the total-compliance-variation is the 
theoretically best measure of robustness and its minimiza-
tion model is the only one which has an explicitly defined 
and from engineering point of view an easily interpreta-
ble design parameter to control the robustness. It has to 
be emphasized that in the combined expected compliance 
and compliance variation or standard deviation oriented 
measures the best weighting schema searching process the 
weight factor is an artificial design parameter without any 
engineering meaning. In the case of combined compliance 
expectancy and variation measure, the problem will be 
more complicated because an additional normalizing fac-
tor has to be introduced in order to resolve the disparity 
problem between the different measure units.

The load with uncertain direction and magnitude can 
be defined by a two-dimensional vector:

f �m d m d m d, cos , sin( ) = ( ) ( )  , (1)

where the magnitude is denoted by m and the direction by d 
The volume-constrained total compliance variation 

(surface area) minimization model can be described in the 
following form:

tv x( )→min , (2)

mv x( ) =ϕv , (3)

KU F= , (4)

c 

m d c,( ) =τ , (5)

0 ≤ x ≤ 1, (6)

where x is the vector of design variables (the element den-
sities), tv(x) is the total-variation (surface-area) of the 
compliance function on the set of the feasible loads, U and 
F are the displacement and load vectors, respectively, K is 
the global stiffness matrix, mv(x) and v̅ are the material 
volume and design domain volume, respectively, φ is the 
prescribed volume fraction, c(m, d) is the nominal compli-
ance function, c is the nominal compliance minimal com-
pliance, and τ > 1 is the allowed maximum nominal com-
pliance increase factor.

Exploiting the fact that load vector F has maximum two 
nonzero entries the surface-area of compliance function 
tv(x) can be described as follows (see, e.g., Olver [22]):
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where

c f Qfm d m d m d t, , ,( ) = ( ) ( )  (8)

is the directional compliance function and Q is a 2 × 2 
symmetric matrix consisting of such entries of K–1 which 
are needed for the compliance computation. It is worth to 
note, that the selected inverse elements can be computed 
without inverting matrix K as a whole. 

The nominal (deterministic) load magnitude and direc-
tion are denoted by ṁ and ḋ, the variations are defined by 
the  m m m m m− ≤ ≤ +  and  d d d d d− ≤ ≤ +  relations.

In the case of 2D topology optimization problems, the 
design domain is assumed to be rectangular and discret-
ized with n e ex y= ×  square elements discretized with four 
nodes per element and two degrees of freedoms (DOFs) 
per node. Both nodes and elements are numbered column- 
wise from left to right. 

The algorithm of the new robust approach has been 
developed in Matlab language as a variant of a very effi-
cient 88 line Matlab code developed in [23] for the tradi-
tional deterministic SIMP-type volume-constrained com-
pliance-minimization problem, starting from the famous 
99 line code which was originally developed in [24]. 
To solve the large and nonlinear optimization problem the 
fmincon solver from the Matlab environment was used 
with semi-analytical objective and gradient function val-
ues. It is an open and very challenging question that what 
would be the most efficient numerical algorithm which 
could solve the problem within a more reasonable time.

In the expected compliance model, the standard devia-
tion model, and their weighted combination the objectives 
and gradients can be generated symbolically using appro-
priate symbolic manipulation software. In this study, for 
all symbolic computation the Wolfram Mathematica pack-
age was used. These models differ from the total com-
pliance variation model only by the objective function; 
therefore their description will be omitted here. In the fol-
lowing, the objective function of these models will be 
denoted by ec(x), dc(x), and ed(x), respectively, where 
ed(x) = λ ec(x) + (1 – λ) dc(x) with an explicitly defined 
design parameter (weighting factor) .

Using the applied notations, the mathematical formu-
lation of the traditional deterministic volume-constrained 
compliance minimization problem can be described as 
follows:

nc x f Qf( ) = ( ) ( ) →





m d m d
t

, , min, (9)

mv x( ) =ϕv , (10)

KU F= , (11)

0 ≤ x ≤ 1. (12)

Therefore, using the optimal Q matrix the nominal 
minimal compliance will be defined in the following form:

c m d m d
t

= ( ) ( )f Qf





, , . (13)

3 Example 
In this section a popular bridge design problem will be 
presented with uncertain loading magnitude and direc-
tion to demonstrate the efficiency and viability of the new 
robust solution searching approach. In the non-parametric 
shape oriented approach the loading magnitude and direc-
tion are treated as uncertain-but-bounded parameters. 
In the parametric (stochastic) approach, the well-known 
three-sigma-rule is applied in each case to get the corre-
sponding stochastic parameters. The example with repro-
ducible numerical results as a benchmark problem may 
be used for testing the quality of exact and heuristic solu-
tion procedures to be developed in the future for robust  
topology optimization. 

The Young's modulus is E0 = 1, the Poisson's ratio is 
v = 0.3 and the fixed volume fraction is φ = 0.25. The penal-
ization power is p = 3 and we applied density filtering with 
filter radius rmin = 3. 

In the parametric case, symbolically generated ana-
lytical functions and gradients can be used. However, in 
the total compliance oriented approach only semi-ana-
lytical functions and gradients can be generated because 
the symbolic integration has to be replaced by numerical 
integration.

The example, shown in Fig. 1, is a symmetric bridge 
with a ground structure of 60 mm × 30 mm × 1 mm. 
An external point load f acts in the middle position of 
the bridge where the nominal magnitude is ṁ = 6 and the 
nominal direction is α̇ = 3π/2. The uncertain loading mag-
nitude is described by the ṁ – m̅ ≤ m ≤ m + m̅ symmetric 
relation, where m̅ = 3. The directional uncertainty of the 
point load is defined by the symmetric ḋ  – d̅  ≤ d ≤ ḋ  + d̅  
relation, where ḋ  = π/4. 

In the stochastic approach, applying the three-sig-
ma-rule to the uncertain-but-bounded direction and size 
parameters, the means are defined as μ(m) = ṁ = 3 and 
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μ(d) = ḋ ̇ = 3π/2, the standard deviations as σ(m) = m̅/3 and 
σ(d) = d̅ /3 = π/12. As usual, it is assumed that loading 
magnitude (m) and loading direction (d) are normally dis-
tributed independent random variables (see Fig. 2).

The nc minimal and the corresponding tv minimal 
designs are presented in Figs. 3 and 4. The common plot 
of the compliance function shapes is shown in Fig. 5. It is 
very important to note that the hardly-detectable small 
differences in the design shapes can be able to cause rela-
tively large differences in the compliance function shapes 
on the set of the feasible loads. In other words, an appro-
priate rearrangement of the available fixed amount of 
material may be able to smooth out the shape drastically 
without affecting the nominal-compliance-minimal com-
pliance value. 

The performance measures of the nc minimal and the 
corresponding tv minimal solutions are presented in Table 1, 
in which each row describes an optimization process where 
the optimal objective function value is presented as a bold 
number in a light grey cell and the corresponding column 
label defines the currently used objective function. 

Table 1 Performance measures of the nc and the corresponding tv 
minimal solutions

τ nc(x) tv(x)

896.2 129641.3 24295.0 224.0 24070.9

1.00 896.2 28218.6 6792.9 224.0 6568.9

The ec minimal and the corresponding tv minimal 
designs are presented in Figs. 6 and 7. The common plot of 
the compliance function shapes is shown in Fig. 8. The per-
formance measures of the ec and tv minimal solutions are 
presented in Table 2. 

The dc minimal and the corresponding tv minimal 
designs are presented in Figs. 9 and 10. The common plot 
of the compliance function shapes is shown in Fig. 11. The 
performance measures of the dc minimal and the corre-
sponding tv minimal solutions are presented in Table 3. 



c x( ) 

c x( ) 

c x( )

x

y

Fig. 1 The design domain, boundary conditions, and the applied point 
load with 3π/2 + π/4 directional and 6 ± 3 magnitude uncertainty

Fig. 2 Visualization of the multi-normal load with uncertain magnitude 
and direction

Fig. 3 The nc minimal design

Fig. 4 The corresponding tv minimal design with τ = 1.00

Fig. 5 The common plot of the compliance functions
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Table 2 Performance measures of the ec and the corresponding tv 
minimal solutions

τ ec(x) tv(x)

1026.8 5071.6 5328.3 256.7 5071.6

1.15 1026.8 2938.7 3195.4 256.7 2938.7

The presented three examples well illustrate the fact 
that, according to the definition of the total compli-
ance variation, its performance is at least as good as its 
original counterparts. It is also easily-understandable 
facts that, using the total variation measure, the higher 
the allowed nominal compliance increment the higher 

the chance to get a more balanced compliance func-
tion shape. It is very interesting to see that performance 
of the standard deviation measure (dc), as a single mea-
sure, is very close to the performance of the correspond-
ing total variation (tv) measure with τ = 1.19. If we select 



c x( ) 

c x( ) 

c x( )

Fig. 6 The ec minimal design

Fig. 7 The corresponding tv minimal design

Fig. 8 The common plot of the compliance functions

Fig. 9 The dc minimal design

Fig. 10 The corresponding tv minimal design

Table 3 Performance measures of the dc and the corresponding tv 
minimal solutions

τ dc(x) tv(x)

339.5 2394.8 2646.0 251.2 2394.8

1.19 356.6 2327.7 2595.0 267.3 2327.7



c x( ) 

c x( ) 

c x( )

Fig. 11 The common plot of the compliance functions
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the τ   [1.15,1.19] interval and define a combined mea-
sure as ed x ec x dc x( ) = ( ) + −( ) ( )λ λ1  where 0 ≤ λ ≤ 1 
is an explicitly defined design parameter (weighting fac-
tor), we can generate all of the robust solutions in the 
ec x ed x dc x( ) ≤ ( ) ≤ ( )  range. Only as an illustration, we 
present all of the results for λ = 0.5. This case is enough 
to demonstrate, that from engineering point of view one 
of the most important performance parameters, namely 
the nominal compliance increment, remains hidden in the 
robust solution searching process. Because it is an implicit 
response variable, a try-and-error-like approach is needed 
to understand the hidden relation between the artificial 
objective function and the nominal compliance increment. 

The ed and the corresponding tv minimal designs are 
presented in Figs. 12 and 13. The common plot of the com-
pliance function shapes is shown in Fig. 14. The perfor-
mance measures of the dc and the corresponding tv mini-
mal solutions are presented in Table 4. 

In the following, corresponding to engineering way of 
thinking, we show that using the theoretically best tv mea-
sure for example with  design parameter (which means 
ten percentage nominal compliance increase) we get the 
required robust solution in exactly one step. The robust tv 
minimal design is presented in Fig. 15. The common plot 
of the nc and tv minimal compliance function shapes are 
shown in Fig. 16. The performance measures of the nc and 
tc minimal solutions are shown in Table 5 where the nc 
minimal solution is only presented for the reason of easier 
comparison of the results. 

Fig. 12 The ed minimal design

Fig. 13 The corresponding tv minimal design

Fig. 14 The common plot of the compliance functions

Table 4 Performance measures of the ed and the corresponding tv 
minimal solutions

τ ed(x) tv(x)

737.3 5776.8 3085.0 261.8 2823.2

1.17 722.9 4268.2 2746.3 261.8 2484.5



c x( ) 

c x( ) 

c x( )

Fig. 15 The tv minimal design with τ = 1.10

Fig. 16 The common plot of the compliance functions
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We have to note, that there is a practically never used 
parametric measure which performance is nearly the same 
as the performance of the corresponding total variation 
measure and this is the uniformly distributed expected 
compliance measure (uc). The uc minimal and the cor-
responding tv minimal designs are presented in Figs. 17 
and 18. The common plot of the compliance function 
shapes is shown in Fig. 19.

The performance measures of the uc and tv minimal 
designs are presented in Table 6.

In Fig. 20, we show common plot of the optimal nc and 
tv compliance functions to visualize the fact that in the 
original nc space the robust tv minimal shape practically 
will be a plane.

4 Conclusions
In this paper, exploiting the fact that for each allowed com-
pliance-increment value the total compliance variance is 
the theoretically best measure of robustness, it has been 
demonstrated that all of the parametric robustness mea-
sures can be replaced by the corresponding total compli-
ance variance measure. In each case, the corresponding 
total compliance variance measure will be at least as good as 

any single or combined parametric measure independently 
from its statistical assumptions. From an engineering point 
of view, the most important feature of the proposed total 
compliance variance oriented robustness measure is that 
the best robust design searching process can be controlled 
by the maximally allowed nominal compliance increment 
which is an explicit and easy-to-understand design vari-
able. A well-known and popular volume-constrained sym-
metric bridge problem with uncertain loading magnitude 
and direction has been used to illustrate the viability and 
efficiency of the proposed robust approach. The presented 
example as a benchmark problem can be used for test-
ing the quality of exact and heuristic solution procedures 
to be developed in the future for the volume-constrained 

Fig. 17 The uc minimal design

Fig. 19 The common plot of the compliance functions

Fig. 18 The corresponding tv minimal design

Table 5 Performance measures of the nc and the tv minimal solutions

τ ed(x) tv(x)

896.2 129641.3 24295.0 224.0 24070.9

1.10 985.8 2327.7   4168.9 246.4 3922.4



c x( ) 

c x( ) 

c x( )

Table 6 Performance measures of the ed and the corresponding tv 
minimal solutions

τ ed(x) tv(x)

1203.8 3683.4 2564.9 265.2 2299.7

1.30 3579.1 2575.3 284.8 2290.5



c x( ) 

c x( ) 

c x( )

Fig. 20 The common plot of the nc and tv compliance functions
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continuous robust topology optimization with uncertain 
loading magnitude and direction. A further application of 
the method could be to apply it to frame structures tasks 
examined by Lógó et al. [25–26] with limited residual 
strain energy capacity.
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