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Abstract

This paper deals with numerical analyses of laminated composite plate and shell structures using a new four-node quadrilateral flat 

shell element, namely SQ4C, based on the first-order shear deformation theory (FSDT) and a combined strain strategy. The main notion 

of the combined strain strategy is based on the combination of the membrane strain and shear strain related to tying points as well 

as bending strain with respect to cell-based smoothed finite element method. Many desirable characteristics and the enforcement of 

the SQ4C element are verified and proved through various numerical examples in static, frequency and buckling analyses of laminated 

composite plate and shell structures. Numerical results and comparison with other reference solutions suggest that the present 

element is accuracy, efficiency and removal of shear and membrane locking.
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1 Introduction
Laminated composite materials are manufactured by 
stacking layers of orthotropic materials in different ori-
entations to obtain the desired strength and stiffness. 
Nowadays, the laminated composite materials are fre-
quently applied in many industries because of their attrac-
tive properties as compared to isotropic materials, such 
as higher stiffness-to-weight ratio, strength, damping and 
good properties related to thermal or acoustic isolation, 
among others. Due to the vast application of composite 
materials in the industries, extensive research has been 
carried out to achieve a better understanding of the behav-
iors of composite structures. A fast growing interest in 
the use of laminated composite plate and shell structures 
in engineering field is demonstrated by various efforts to 
expand the robust analysis. There are many theories intro-
duced into linear and nonlinear analyses from thin to thick 
plates or shells such as the classical plate theory (CPT), 
the first-order shear deformation theory (FSDT), the high-
er-order shear deformation theory (HSDT), the layer-wise 
theory (LWT) and variable kinematics models. Amongst 
them, the first-order shear deformation theory (FSDT) is 
commonly used because of its low computational cost and 

simplicity. And besides, numerical methods have been 
expanded for the analysis of laminated composite plate 
and shell structures as given by Yang et al. [1], Ko etal. [2], 
Ton-That et al. [3] and so on.

Specifically, we can mention a survey of recent shell 
finite elements which includes the degenerated shell 
approach, stress-resultant-based formulations and Cosserat 
surface approach, reduced integration with stabilization, 
incompatible modes approach, enhanced strain formula-
tions, 3-D elasticity elements, drilling degree of freedom 
elements, co-rotational approach and higher-order theories 
for composites. Besides the standard finite element meth-
ods, the smoothed finite element formulation for static, free 
vibration and buckling analyses of laminated composite 
plates and shells was also introduced in [4]. The improved 
four-node elements for analysis of composite plate/shell 
structures based on twice interpolation strategy was given 
by Ton-That et al. [5]. Many desirable characteristics of 
these efficient numerical methods were shown as contin-
uous nodal gradients, higher order polynomial basis, no 
increase in number of the degree of freedom of the sys-
tem. In [6], a novel numerical procedure based on the 
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framework of isogeometric analysis was presented for 
static, free vibration, and buckling analysis of laminated 
composite plates using the first-order shear deformation 
theory. The isogeometric approach utilizes non-uniform 
rational B-splines to implement for the quadratic, cubic, 
and quartic elements. Shear locking problem could be sig-
nificantly alleviated by a stabilization technique. In our 
research, a new 4-node quadrilateral flat shell element, 
namely SQ4C, is introduced for linear analysis of the lam-
inated composite plate and shell structures. Although the 
4-node shell finite elements MITC4 are popular because 
of their accuracy and simplicity, the MITC4 elements usu-
ally endure the membrane locking when curved geome-
tries of the structures are solved with distorted meshes. 
Ko et al. [2] have suggested novel assumed membrane 
strain fields, which are simple and effective for reducing 
the membrane locking. The authors call the MITC4+ shell 
elements. However, both MITC4 and MITC4+ elements 
do not employ any smoothing techniques for the bend-
ing strains. This can cause some troubles of convergence 
rate when using badly distorted meshes. Therefore, the 
present SQ4C flat shell element is proposed by using the 
strain smoothing technique for the bending strains com-
bined with the assumed membrane strains as well as shear 
strains through tying points. The SQ4C can reduce affec-
tion of shear and membrane locking. Numerical examples 
indicate that the present element is free from locking and 
reveals good stability as well as accuracy in linear analy-
sis, including statics, frequency and buckling of laminated 
composite plates and shells. 

This paper is summarized as follows. A terse review of 
the first-order shear deformation theory (FSDT) is firstly 
introduced in Section 2. The formulation of the SQ4C flat 
shell element is presented in Section 3. Various numerical 
examples are fulfilled in Section 4. Some conclusions are 
finally given in Section 5.

2 A brief of the first-order shear deformation theory 
(FSDT)
A laminated composite plate is considered as shown in 
Fig. 1. It has a thickness h with n orthotropic layers. The kth 
layer is situated between the line z = zk–1 and z = zk, more-
over, the xy-plane is called the undeformed mid-surface 
of the laminate. The first-order shear deformation theory 
(FSDT) of laminated composite plates is an enhancement 
of the Reissner-Mindlin theory [7]. The kinematics of 
the plate is determined by the mid-surface displacements  
u0, v0, w0 and rotations θx, θy as follows:
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in which u0, v0, w0 are called the displacements of a point 
located in the mid-surface, and θx, θy are called the rota-
tions of the transverse normal, i.e. in the z direction, about 
the x- as well as y-axes, respectively.

The in-plane strain vector can be rewritten
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and the transverse shear strain vector is also presented 
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The relationships between the stresses and strains are 
described in matrix notations as below:
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with N̅  = [Nx Ny Nxy]
T, M̅  = [Mx My Mxy]

T, and S̅  = [Qx Qy] 
are called the membrane force vector, the bending moment 
vector and the transverse shear force vector; k1

2, k 2
2 are the 

shear correction factors (SCFs); A̅ , B̅ , D̅ and C̅  are called 
the matrices of extensional stiffness, bending-extension 
coupling stiffness, bending stiffness and transverse shear-
ing stiffness, succinctly depicted as
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Fig. 1 The laminated composite plate with thickness h and n orthotropic 
layers
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In which Q̅ij are called the elastic constants in the x-axis 
with their details were obtained in [7].

3 A novel 4-node quadrilateral flat shell element SQ4C 
for laminated composite structures
3.1 The standard formulation of the 4-node quadrilate-
ral flat shell element in the local coordinate system
Consider a plate or shell structure discretized by 4-node 
quadrilateral flat shell elements. A local coordinate system 
Oxyz is defined for each element, in which the Oxy plane is 
the mid-surface of the element. The displacement approx-
imations of the 4-node quadrilateral flat shell element are 
defined in the local coordinate system as follows
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In which Ni i i� � � � ��, .� � � �� � �� �0 25 1 1  denotes the 
shape function of the element; (ξi,ηi) is the nodal coordi-
nates in the nature coordinate system (ξ,η); and ui, vi, wi, 
qxi, qyi are the nodal displacements of the element with the 
positive directions given in Fig. 2.

From Eq. (2), the discrete strain field based on the deri- 
vatives of the displacement approximation (Eq. (8)) can  
be given
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with, qmi = [ui  vi]
T, qbi = [wi  θxi  θyi]

T and the gradient matrices
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Similarly, the relationship between the transverse shear 
strain and nodal displacements can be written
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According to the standard finite element procedure, the 
formulas of the element stiffness matrix Ke, the element 
force vector Fe, the mass matrix Me and the geometric 
stiffness matric Ke

g in the local coordinate system can be 
respectively obtained
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Fig. 2 Nodal displacements of a 4-node quadrilateral element
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N, Nm are the matrices of the shape functions; p is the 
vector of external loadings; and ρ is the mass density.
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And kz = 10–6 × max(diag(Ke)) and mz = 10–6 × max(di-
ag(Me)) are factors used to eliminate the singularity due to 
the artificial drilling degree-of-freedom.

3.2 A novel 4-node quadrilateral flat shell element SQ4C
3.2.1 Membrane part
The mid-surface of this element is subdivided into four 
non-overlapping 3-node triangular domains defined by the 
vertexes and the center point '5' of the element as shown in 
Fig. 3. The coordinates of the point '5' in the natural coor-
dinate system are interpolated by [2].
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Here, the constants ςi are determined using the follow-
ing equation:
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In which, A234, A124, A134 and A123 are the areas of tri-
angles '234', '124', '134' and '123' defined in Fig. 4. Based 
on the characteristics of the isoparametric element, the 
in-plane displacement vector of the point '5' is approxi-
mated from the nodal displacements as
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To alleviate the membrane locking, Ko et al. [2] have 
approximated the membrane strains as
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Fig. 3 Triangular subdivision of the mid-surface of the 4-node element



60|Ton-That and Nguyen-Van
Period. Polytech. Civ. Eng., 65(1), pp. 56–71, 2021

In which, and  are respectively the membrane strains of 
the 3-node triangular domains A, B, C and D evaluated at 
the tying points (A), (B), (C) and (D) with their positions in 
the natural coordinate system given in Fig. 5.

From the displacement approximation, and relation-
ships between the membrane strains and nodal displace-
ments, the assumed membrane strains can be described



�� m
m m� B q .  (25)

3.2.2 Bending part
The bending strain will be smoothed by following [4] 

and as shown in Fig. 6. Thence the liaison between the 
nodal displacements and the smoothed bending strain field 
is rewritten as
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Here, Ac and Γc are respectively the area and the bound-
ary of the smoothing cell. nx and ny are the components of 
the vector normal to the boundary Γc.

3.2.3 Shear part
The transverse shear strain field is based on assuming con-
stant transverse shear strain conditions along the edges to 
attenuate the shear locking phenomenon [8] as follows
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Fig. 4 Four triangles to determine the point '5' of the element

Fig. 5 Position of tying points (A), (B), (C) and (D) corresponding to the 
four non-overlapping triangular domains

Fig. 6 Subdivision of the 4-node quadrilateral element into nC 
smoothing cells and the set of shape functions at nodes in the format 

(N1, N2, N3, N4) 
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Here, and  are the transverse shear strains directly com-
puted from the displacement approximation at the tying 
points shown in Fig. 7.
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where bi
11 = ξi xξ

M, bi
12 = ξi yξ

M, bi
21 = ηi xη

L and bi
22 = ηiyη

L 
in which ξi  {–1 1 1 –1}, ηi  {–1 –1 1 1} and  
(i, M, L)  {(1, F, H), (2, F, G) (3, E, G), (4, E, H)}

3.2.4 The combined strain strategy
As a result, the stiffness matrix and the geometric stiff-
ness matrix of the 4-node quadrilateral flat shell element 
SQ4C in the local coordinate system are rewritten



 

 K

K K

K Ke

e
m

e
mb

e
mb T

e
b

zk

=

0

0

0 0
� �
�

�

�
�
�
�

�

�

�
�
�
�

,  (30)

� � � �K B Be
g

g
T

g

e

� � �� 0 d�
�

,  (31)

here,

  

    



K B AB

K B DB B C B

K

e
m

m
T

m

e
b

b
T

b s
T

s s

e
mb

e

e e

�

� �

�

� �

d

d d

�

� �

�

� �

,

,

�� �  B BBm
T

b

e

d�
�

,

 (32)

    



B B B B B

B

g g g g g

gi
C

i x

i y

A

N n
N n

� �� ��

�

1 2 3 4

1

0 0 0 0

0 0 0 0

0

    with 

NN n
N n

N n
N n

N n
N n

N n

i x

i y

i x

i y

i x

i y

i x

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 00 0 N ni y

C

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�d .
 (33)

To build the structure stiffness and mass matrices, the ele-
ment stiffness and mass matrices are transformed from the 
local coordinate system to the global coordinate system by
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In which, λ is the direction cosine matrix transforming 
from the local coordinate system to the global coordinate 
system.

Finally, the problems of static, natural frequency and 
buckling analyses are solved by the following discretized 
equations:

Kq F= ,  (36)

K M q�� �� 2 = 0,  (37)

K K q�� �� g = 0.  (38)

Here, K, M and Kg are respectively the stiffness, mas 
and geometric stiffness matrices of the structures, which 
are assembled from the stiffness, mass and geometric stiff-
ness matrices of the elements and  K M Ke e e

gglb glb ,glb, and ; q 
is the nodal displacements of the structure; ω is the natural 
frequency; and λ is the critical buckling load factor.

4 Numerical examples
In this section, the patch tests, the Cook's problem as 
well as various application studies are given to verify 
the recommendation of the SQ4C element in analyses of 

Fig. 7 Tying positions (E), (F), (G) and (H) for the assumed transverse 
shear strains
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several shapes of structures. The material properties for 
the laminated composite structures are accepted to be the 
equivalent in all the layers. From the global x-axis to the 
fiber direction, the ply angle is valuated for each layer. 
Moreover, based on the identification of the thickness of 
each layer, the units of the model are also assumed to be 
consistent and thence are not specified for almost exam-
ples. The SCFs are k1

2 = k2
2 = 5/6 except for examples 

mentioned. The following Table 1 is three sets of material 
properties that are taken into the analyses.

4.1 Basic tests
4.1.1 The patch test
The patch tests are sufficient requirements in consider-
ing the convergence or the assignment of a novel element.  
We verify whether the stabilized SQ4C elements can 
reproduce a constant distribution of all quantities for 
distorted meshes. The material, the mesh as well as the 
boundary conditions were arrogated by using the details 
of [9] as depicted in Fig. 8. In these verifications, the  
nominated displacements are located at the edges related to 
four nodes 1, 2, 3, and 4. They are clearly given including 
in-plane patch test and out-of-plane patch test for mem-
brane and bending situations. 

The boundary conditions are taken into two verifications 
which related to the membrane patch test: u = 10–3(x + 0.5y),  
v = 10–3(y + 0.5x), w = 0 and the bending patch test:  
w = 10–3 (x2 + xy + y2)/2, θx = 10–3(y + 0.5x), θy = 10–3(x + 0.5y), 
w = 0 The proposed element with exact results that up 
to 8 digit machine precision is proved through both patch 
tests as given in Table 2.

4.1.2 The Cook's problem
With rerespect to test the in-plane bending and shearing 
behaviors of the SQ4C element, the Cook's problem shown 
in Fig. 9 is presented [2, 10]. 

The displacement at point A in vertical direction as 
well as displacement field or stress field are given by using 
the SQ4C element as Table 3 and Fig. 10. This test shows 
that these behaviors are better than the behaviors of the 
MITC4 and MITC4+ shell elements respectively.

4.2 Static analysis
A fully clamped square plate with two-layer [θ°/-θ°], 
material I, length a = 10 as well as thickness h = 0.02 and 
subjected to a uniform load qo = 1 as shown in Fig. 11(a) 
is analyzed. The thickness of each layer is h/2. Table 4 
and Fig. 12(a) give a comparison of the normalized central 
deflection w E wh q ao� � �100 2

3 4/  for this structure with 
Table 1 Three sets of material properties

Material I

E1/E2 = 3, 10, 20, 30, 40; G12 = G13 = 0.6E2; G23 = 0.5E2;  
ν12 = ν13 = ν23 = 0.25, ρ = 1.

Material II

E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.2E2; ν12 = ν13 = ν23 = 0.25, ρ =1.

Material III

E1 = 2.0685 × 1011; E1/E2 = 40; G12 = G13 = 0.5E2; G23 = 0.6E2;  
ν12 = ν13 = ν23 = 0.25; ρ = 1605.

Fig. 8 The geometry and the mesh for patch test with material 
properties as E = 106, v = 0.25, h = 0.001

Table 2 The results of patch tests

Test Stress SQ4C Exact

Membrane

σx 1.33300000 × 103 1333

σy 1.33300000 × 103 1333

σxy 0.40000000 × 103 400

Bending

Mx 1.11111111 × 10–7 1.11111111 × 10–7

My 1.11111111 × 10–7 1.11111111 × 10–7

Mxy 0.33333333 × 10–7 0.33333333 × 10–7

Fig. 9 The Cook's problem with 
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different values of fiber orientation angles. The results 
of this study are compared with the numerical results 
obtained by MQH3T [4], SQUAD4 [11], RDTMLC [12], 
RDKQ-L24 [13], MISQ20 [4] and the exact result pre-
sented by Whitney [14, 15]. 

Next, a simply supported two-layer [-45°/45°] with thick-
ness h and length a is subjected to doubly sinusoidal load 
q q x a y ao� � � � �sin sin as illustrated in Fig. 11(b). The 
SCFs are assumed to be 5/6 for this plate made of material I. 
The numerical results for present study are given in Table 5 
together with some other results. In this table, the normalized 
deflection at the plate center w E wh q ao� � �100 2

3 4 , and the 

Table 3 The vertical displacement at point A for Cook's problem

Element
Mesh

Exact
2 × 2 4 × 4 8 × 8 16 × 16 32 × 32

MITC4 11.8452 18.2992 22.0792 23.4304 23.8176 23.9642

MITC4+ 11.7291 18.2662 22.0751 23.4301 23.8176

SQ4C 12.2576 18.5149 22.1513 23.4507 23.8230

Fig. 10 The displacement field and stress field related to Cook's 
problem

Table 4 The comparison of the normalized central deflections for a clamped square plate with two-layer angle-ply [θ°/-θ°]

θ MQH3T SQUAD4 RDTMLC RDKQ-L24 MISQ20 SQ4C Exact

5° 0.1083 0.1040 0.1074 0.1049 0.1023 0.1000 0.0946

15° 0.2009 - 0.1959 0.1993 0.1971 0.1884 0.1691

25° 0.2572 0.2602 0.2508 0.2599 0.2580 0.2500 0.2355

35° 0.2844 0.2914 0.2782 0.2907 0.2889 0.2844 0.2763

45° 0.2929 0.3013 0.2868 0.3004 0.2986 0.2960 0.2890

(b)
Fig. 11 The data of geometry with a) uniform load and b) doubly 

sinusoidal load for unsymmetrical angle-ply square plate

(a)
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normalized stress � �x x oh q a� � �2 2/ at point (a/2,a/2, h/2), 
� �xy xy oh q a� � �2 2/ at point (0, 0, -h/2), � �xz xz oh q a� � �2 2/  
at point (0, a/2, h/4) are presented. As compared with the 
exact solution [7], the errors of the normalized central 
deflection w̅ and the normalized stress � x a a h2 2 2, ,� �  
provided by different types of elements are also shown in 
Fig. 12(b). The results gained by the SQ4C element are in 
good agreement with the exact results based on the FSDT 
from thin to thick plate for arbitrary values a/h.

We consider a pinched cylinder of the radius R = 300 
and the length L = 600 as shown in Fig. 13. This structure 
is restricted by rigid diaphragms at two ends. At the mid-
dle of the length L, two opposite radial concentrated loads 
P = 1 are applied.

The laminated composite material II with lay-up 
[0°/90°], [0°/90°]5, [-45°/45°] or [-45°/45°]5 is used for this 
structure. The different radius-to-thickness ratios S = R/h 
are investigated.

Because of the symmetry of this cylinder, only one 
octant is modeled with meshes of 32 × 32 regular or irreg-
ular elements as illustrated in Fig. 14. The normalized dis-
placements at point C, w E w h PRC C� � �10 1

3 2/  are shown 
in Table 6 with the radius-to-thickness ratios S = 20, 50 
and 100. The SQ4C results for this example are in good 
agreement with the FSDT results of Reddy [7] and better 
than results of MISQ20 of Nguyen-Van [4].

Table 5 The comparison of normalized central deflection and normalized 
stresses for a simply supported square plate with two-layer angle-ply 

[-45°/45°]

a/h Model w̅ σ̅x τ̅xy τ̅xz

100

CTMQ20 [4] 0.6519 0.2474 0.2295 0.1194

RDKQ-L24[13] 0.6546 0.2500 0.2316 0.1597

MFE [4] 0.6558 - - -

MISQ20 [4] 0.6553 0.2459 0.2304 0.1884

SQ4C 0.6562 0.2486 0.2327 0.1884

Exact(FSDT)[7] 0.6564 0.2498 0.2336 0.2143

20

CTMQ20 [4] 0.6906 0.2523 0.2333 0.1773

RDKQ-L24[13] 0.6960 0.2516 0.2316 0.2020

MFE [4] - - - -

MISQ20 [4] 0.6973 0.2456 0.2304 0.1884

SQ4C 0.6980 0.2486 0.2327 0.1884

Exact(FSDT)[7] 0.6981 0.2498 0.2336 0.2143

10

CTMQ20 [4] 0.8218 0.2543 0.2349 0.2005

RDKQ-L24[13] 0.8241 0.2517 0.2316 0.2053

MFE [4] 0.8257 - - -

MISQ20 [4] 0.8286 0.2459 0.2304 0.1884

SQ4C 0.8286 0.2486 0.2327 0.1884

Exact(FSDT)[7] 0.8284 0.2498 0.2336 0.2143

(b)
Fig. 12 a) The convergence of w̅ for the case of uniform load and b) The 

error of w̅ and σ̅x for case of doubly sinusoidal load

Fig. 13 The rigid diaphragms at two ends of a pinched cylinder

(a)
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The last example in this section is a shallow spherical 
shell of the radius R = 10 and a = 1 as shown in Fig. 15. 
This structure is simply supported on four curved sides 

as well as subjected to uniform load q = 1. This shallow 
shell is manufactured by nine-layer cross-ply [(0°/90°)4/0°] 
or angle-ply [(45°/-45°)4/45°] laminates of material I with  
E1/E2 = 40. The span-to-thickness ratios a/h = 100 or 1000 
are considered. 

Based on the symmetry of structure, only one quadrant 
is simulated as in Fig. 15. The vertical deflections wA at the 
center point A of the shell with several span-to-thickness 
ratios a/h determined by the SQ4C elements are compared 
with other references in Table 7. Table 7 shows the accu-
racyof the present method with very favorable references 
[4, 16–19].

Fig. 14 Two cases with the mesh for one octant of a pinched cylinder

Table 6 The comparison of w̅c at point C

S = R/h Model
Lay-up

[0°/90°] [-45°/45°] [0°/90°]5 [-45°/45°]5

20

MISQ20 [4] 4.4678 5.4868 3.7960 4.0132

SQ4C (re) 4.5297 5.2923 4.1698 3.7519

SQ4C (irre) 4.6400 5.3913 4.2565 3.7854

Reddy [7] 6.0742 5.2275 4.2118 3.6457

50

MISQ20 [4] 1.7988 2.1124 1.6559 1.3496

SQ4C (re) 1.8734 2.1505 1.5531 1.3349

SQ4C (irre) 1.9462 2.2561 1.6044 1.3200

Reddy [7] 2.3756 2.2283 1.4527 1.2986

100

MISQ20 [4] 0.8162 1.0500 0.4895 0.6238

SQ4C (re) 0.9433 1.0991 0.5382 0.6853

SQ4C (irre) 1.0675 1.1170 0.5506 0.6925

Reddy [7] 1.2450 1.3065 0.7405 0.7373

Fig. 15 A shallow spherical shell

Table 7 The central deflection wA × 10–3 with several ratios a/h for the 
laminated composite shallow spherical shells

a/h
Model

Lay-up

[(0°/90°)4/0°] [(45°/-45°)4/45°]

100

To and Wang [16] 2.7170 0.5259

Park et al. [17] 2.7010 0.5337

Somashekar et al. [18] 2.7270 0.5270

MISQ20 [4] 2.8005 0.5369

SQ4C 2.8421 0.5399

Analytic [19] 2.7170 0.5170

1000

To and Wang [16] 0.0588 0.0101

Park et al. [17] 0.0591 0.0105

Somashekar et al. [18] 0.0599 0.0088

MISQ20 [4] 0.0592 0.0063

SQ4C 0.0575 0.0088

Analytic [19] 0.0592 0.0105
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4.3 Free vibration analysis
A simply supported four-layer cross-ply [0°/90°/90°/0°] 
square laminated plate made of material I is used to study 
the frequency convergence of the present elements. With 
the length-to-thickness ratio a/h = 5 and a variety of the 
ratios E1/E2, the normalized fundamental frequencies 
� � �� � �L h E2

2/ /  related to the SQ4C elements are 
compared with other results in Table 8 and Fig. 16(a). The 

present results based on the SQ4C elements are in good 
agreement with MLSDQ's results by Liew et al. [20], RBF's 
results of Ferreira et al. [21], MISQ20's results of Nguyen-
Van [4] and exact results in [7, 22]. The first six mode 
shapes are also depicted in Fig. 17. To investigate the effect 
of the length-to-thickness ratio a/h on the fundamental fre-
quency of structure, the normalized fundamental frequen-
cies given by the SQ4C elements in the cases of E1/E2 = 40 
and different ratios a/h are shown in Table 9 and Fig. 16(b). 

Table 8 The convergence of ω̅ for a simply supported [0°/90°/90°/0°] 
square plate with the length-to-thickness ratio a/h = 5

Model
E1/E2

10 20 30 40

MISQ20 [4] 8.309 9.569 10.322 10.847

MLSDQ [20] 8.292 9.561 10.320 10.849

RBF [21] 8.310 9.580 10.349 10.864

SQ4C 8.308 9.567 10.320 10.843

Exact 8.298 9.567 10.326 10.854

(b)
Fig. 16 Convergence of the ω̅  with a) several E1/E2 ratios and b) several 

a/h ratios

Table 9 Simply supported [0°/90°/90°/0°] square plate with E1/E2 = 40: 
Convergence of normalized fundamental frequencies  

� � �� � �L h E2

2/ /  

Model
a/h

5 10 20 25 50 100

MISQ20 10.847 15.165 17.719 18.138 18.753 18.918

p-Ritz 10.855 15.143 17.658 18.071 18.673 18.836

RBF-pseudo-
spectral 10.807 15.100 17.633 18.049 18.658 18.822

HSDT 10.989 15.268 17.666 18.049 18.462 18.756

HOIL theory 10.673 15.066 17.535 18.054 18.670 18.835

Local theory 10.682 15.069 17.636 18.055 18.670 18.835

Global theory 10.687 15.072 17.636 18.055 18.670 18.835

Global-local 
theory 10.729 15.165 17.803 18.240 18.902 19.156

SQ4C 10.843 15.190 17.732 18.147 18.756 18.919

Mode 1
Mode 2

Mode 3 Mode 4

Mode 5

                                                                 Mode 6
Fig. 17 The first six mode shapes of a simply supported [0°/90°/90°/0°] 

square plate with E1/E2 = 40 and a/h = 5
(a)
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The present numerical results are comparable with 
solutions of HSDT [23], p-Ritz method [24], RBF-pseudo-
spectral method [25], local higher-order theory [26], global 
higher-order theory [27], HOIL theory [28], global-local 
higher-order theory [29] and FSDT-MISQ20 elements [4].

Next, the simply supported cross-ply [0°/90°/90°/0°] 
laminated cylindrical panel with geometrical properties 
L = 20, R = 100 and φ = 0.1 radian is given. The thickness 
h of this structure is 0.2. Each layer has same thickness as 
well as material II with others. 

Due to symmetry, a quadrant nominated as ABCD as 
depicted in Fig. 18 is calculated. 

The results of the normalized fundamental frequencies 
given by the SQ4C and references are presented in Table 10. 
The fundamental frequency provided by the suggested 
elements are also similar to other numerical results of 
Nguyen-Van [4] using MISQ20 elements, Liu and To [30] 
based on layer-wise shell elements, Jayasankar et al. [31] 
following 9-node degenerated shell elements and the ana-
lytical result of Reddy [19]. The first six mode shapes of 
quadrant ABCD are illustrated in Fig. 19.

A clamped nine-layered cross-ply [0°/90°/0°/90°/0°/
90°/0°/90°/0°] laminated spherical panel as presented in 
Fig. 20 is studied. This structure has side length a = 1, 

Fig. 18 The data of a laminated cylindrical panel

Table 10 Simply supported cross-ply [0°/90°/90°/0°] cylindrical panel: 
The � � �� � �L h E2

2/ /

Lay-up Model

[0°/90°/90°/0°] MISQ20
[4]

LW theory 
[30]

Jayasankar 
[31]

Reddy 
[19] SQ4C

16.736 17.390 17.700 16.668 16.659

Mode 1 Mode 2

Mode 3 Mode 4

                       Mode 5
Fig. 19 The first six modes shapes for ABCD part with [0°/90°/90°/0°] 

cylindrical panel

Mode 6

Fig. 20 The laminated spherical panel with mesh for a quadrant
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thickness h = 0.01 and radius R = 10. All layers are of same 
thickness as well as same material III. The mesh of 6 × 6 
four-node quadrilateral elements is used for modeling a 
quadrant of shell as shown in Fig. 20.

Table 11 presents the first four normalized natural fre-
quencies related to the SQ4C elements and they are com-
pared with the solutions of Jayasankar et al. [31] using 
nine-node degenerated shell elements and results of 
MISQ20 elements using smoothed finite element method 
by Nguyen-Van [4]. It can be seen that the results obtained 
by SQ4C elements agree well with the solutions given by 
Jayasankar et al. [31] and Nguyen-Van [4]. The first six 
mode shapes are illustrated in Fig. 21.

4.4 Buckling analysis
A simply supported four-layer cross-ply [0°/90°/90°/0°] 
square laminated plate of the span a and the thickness h 
is subjected to uniaxial compression as shown in Fig. 22. 
The span-to-thickness ratio a/h is 10. This structure is 
made of material I with different values of the ratios E1/E2. 

Table 12 and Fig. 23(a) show that the normalized crit-
ical buckling loads of the present element are in good 
agreement with other results in the cases of different 
ratios E1/E2. 

Next, we study the effect of the ratio a/h on the uniax-
ial critical buckling load for this structure made of mate-
rial I having E1/E2 = 40. The results achieved by the SQ4C 
ele-ments are listed in Table 13 and Fig. 23(b). These 
results also agree well with others achieved by FSDT(a)  
of Chakrabarti and Sheikh [35], FSDT(b) of Reddy and 
Phan [23], MISQ20 of Nguyen-Van [4] and HSDT of 
Reddy and Phan [23].

The uniaxial buckling analysis of simply supported five-
layer [0°/90°/0°/90°/0°] cylindrical shell panel of mate- 
rial I is finally studied as depicted in Fig. 24. The panel is 
simply supported at all the edges and has ratio a/b = 1 and 
R/a = 20. The SCFs k1

2 = k2
2 = π2/12 are used for this com-

putation. Table 14 presents the normalized critical buck-
ling loads achieved by SQ4C elements in several cases 
of a/h. In comparison with the solutions of the smoothed 

elements [4], the higher order elements [36], and the ana-
lytic solution [37], the elements SQ4C display the same 
results. It is sighted that increasing a/h leads to higher 
value of critical buckling loads. 

Mode 1 Mode 2

Mode 3

Mode 4

                  Mode 5
Fig. 21 Clamped nine-layer cross-ply [(0°/90°)4/0°] spherical panel: the 

first six mode shapes

Mode 6

Fig. 22 Simply supported cross-ply [0°/90°/90°/0°] square plate 
under in-plane uniaxial compression

Table 11 Clamped nine-layer [(0°/90°)4/0°] cross-ply spherical panel: 
the normalized frequencies

Model Mode 1 Mode 2 Mode 3 Mode 4

Jayasankar et al. [31] 67.43 84.16 99.71 113.70

MISQ20 [4] 67.51 86.00 101.27 115.88

SQ4C 67.79 85.21 100.89 116.04

Table 12 Simply supported cross-ply [0°/90°/90°/0°] square plate: 
Normalized critical buckling loads �* /� � �N a E hx

2

2

3  with various  
E1/E2 ratios

Model
E1/E2

3 10 20 30 40

MISQ20[4] 5.352 9.878 15.214 19.577 23.236

Liu et al. [32] 5.401 9.985 15.374 19.537 23.154

Phan and Reddy [33] 5.114 9.774 15.298 19.957 23.340

Khdeir [22] 5.442 10.026 15.418 19.813 23.489

Noor [34] 5.294 9.762 15.019 19.304 22.881

SQ4C 5.357 9.899 15.268 19.668 23.366
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5 Conclusions
In this study, the novel 4-node quadrilateral flat shell ele-
ment SQ4C is introduced and successfully applied to anal-
ysis of laminated composite plate/shell structures in the 
framework of the FSDT. Numerical analyses of statics, 
frequency and buckling have been implemented to con-
firm the robustness and the accuracy of the proposed ele-
ment. The present element can yield satisfactory results 

in comparison with other available numerical results. It is 
also observed that the present approach remains accu-
rate for analysis of both moderately thin and thick plate 
and shell structures. In addition, the present element has 
advantages of being simple in formulation and implemen-
tation to static, frequency and buckling analyses of both 
plate and shell structures. 
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Fig. 23 Normalized critical buckling loads of the simply supported 
symmetric cross-ply [0°/90°/90°/0°] square plate with a) various ratios 

E1/E2 and b) various ratios a/h

Fig. 24 The data of a cylindrical shell panel

Table 14 Simply supported cross-ply [0°/90°/0°/90°/0°] cylindrical shell 
panel with

Model
a/h

10 20 30 50 100

MISQ20 [4] 23.97 31.91 34.08 35.33 35.89

Kumar et al. [36] 23.97 31.79 - 35.40 36.85

Prusty and 
Satsangi [38] 23.96 31.89 33.98 36.84 35.39

FSDT [37] 24.19 31.91 34.04 35.42 36.86

SQ4C 24.10 31.96 34.12 35.35 35.90
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