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Abstract

Water Strider Algorithm (WSA) is a new metaheuristic method that is inspired by the life cycle of water striders. This study attempts 

to enhance the performance of the WSA in order to improve solution accuracy, reliability, and convergence speed. The new method, 

called improved water strider algorithm (IWSA), is tested in benchmark mathematical functions and some structural optimization 

problems. In the proposed algorithm, the standard WSA is augmented by utilizing an opposition-based learning method for the initial 

population as well as a mutation technique borrowed from the genetic algorithm. By employing Generalized Space Transformation 

Search (GSTS) as an opposition-based learning method, more promising regions of the search space are explored; therefore, the 

precision of the results is enhanced. By adding a mutation to the WSA, the method is helped to escape from local optimums which 

is essential for engineering design problems as well as complex mathematical optimization problems. First, the viability of IWSA is 

demonstrated by optimizing benchmark mathematical functions, and then it is applied to three skeletal structures to investigate 

its efficiency in structural design problems. IWSA is compared to the standard WSA and some other state-of-the-art metaheuristic 

algorithms. The results show the competence and robustness of the IWSA as an optimization algorithm in mathematical functions as 

well as in the field of structural optimization.
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1 Introduction
Optimization methods can generally be categorized into 
two distinct classes: 1) Gradient-based methods and 
2) Metaheuristic methods. In the past, the most commonly 
used optimization techniques were gradient-based algo-
rithm which utilized gradient information to search the 
solution space near an initial starting point. The objective 
functions are usually complex and non-convex in engi-
neering design problems and obtaining the gradient or 
a starting point could be difficult or even impossible in 
some cases. Metaheuristic algorithms do not need gradi-
ent information to solve optimization problems and this is 
one of the reasons for attraction toward these methods in 
the last two decades amongst engineers [1].

Developing metaheuristic algorithms could be tracked 
down in John Holland works in 1975 [2] and what became 
known as the genetic algorithm. Probably the most 
well-known metaheuristic algorithm is Particle Swarm 

Optimization (PSO) developed by Kennedy and Eberhart in 
1995 [3]. After these pioneering works, many metaheuris-
tic algorithms have been developed by researchers to solve 
various kinds of optimization problems. Many of these 
algorithms are inspired by nature. For instance, Ant Colony 
Optimization (ACO) [4] is inspired by the behavior of ants 
for finding food, Artificial Bee Colony (ABC) [5] sim-
ulates foraging behavior of honey bees, and Simulated 
Annealing (SA) [6] is inspired by a heat treatment method 
in metallurgy. Some of the recently introduced metaheuris-
tic methods employed by many researchers are Grey Wolf 
Optimization (GWO) [7], Whale Optimization Algorithm 
(WOA) [8], Charged System Search (CSS) [9], Colliding 
Bodies Optimization (CBO) [10], Teaching Learning Based 
Optimization (TLBO) [11]. Besides, many metaheuristic 
algorithms have been modified to make them suitable for 
more complex problems such as structural optimization 

https://doi.org/10.3311/PPci.16872
https://doi.org/10.3311/PPci.16872
mailto:alikaveh%40iust.ac.ir%20?subject=


Kaveh et al.
Period. Polytech. Civ. Eng., 64(4), pp. 1284–1305, 2020|1285

problems or any other branches of science. In this regard, 
there is usually a chance to enhance a particular meta-
heuristic algorithm so as to make it suitable for special pur-
poses [12–14]. According to the NFL theory [15], develop-
ing new optimization algorithms is an open problem since 
there is not one optimization algorithm which can success-
fully solve all optimization problems.

The branch of structural optimization has been exten-
sively developed in the last three decades and could be 
classified as follows: (1) obtaining optimal size of struc-
tural members (size optimization); (2) finding the opti-
mal form for the structure (shape optimization); and 
(3) achieving optimal size and connectivity between struc-
tural members (topology optimization). Metaheuristic 
algorithms have been widely used in the field of structural 
optimization [16–22]. Most of the studies focused on the 
size optimization of structures that its purpose is to design 
structures with minimum weight or to minimize a target 
function corresponding to the minimal cost of construc-
tion while the design constraints are met simultaneously.

Water Strider Algorithm (WSA) is a new metaheuris-
tic algorithm and its performance has been shown in 
obtaining near-optimum solutions for mathematical func-
tions as well as structural engineering problems [23]. 
However, it can still be enhanced in terms of exploration 
and accuracy of the results and achieving a better solu-
tion faster. In this paper, an improved version of this newly 
developed algorithm is proposed which is called IWSA. 
The Generalized Space Transformation Search as an oppo-
sition-based learning method and a mutation technique is 
added to the WSA. The opposition-based learning has 
been previously applied to some metaheuristic algorithms. 
For instance, this idea has been employed in moth-flame 
optimization [24], grasshopper algorithm [25], particle 
swarm optimization [26–29], differential evolution [30], 
firefly algorithm [31], and sine cosine algorithm [32].

The rest of the paper is organized as follows. In Section 2, 
a brief overview of the WSA is presented and the IWSA 
is proposed in Section 3. In Section 4, some numerical 
examples are studied and the performance of the IWSA 
is compared with WSA and some other algorithms in the 
literature. Finally, the conclusions and future works are 
explained in Section 5.

2 A brief introduction to Water Strider Algorithm (WSA)
The WSA is a population-based algorithm mimics terri-
torial behavior, intelligent ripple communication, mat-
ing style, feeding mechanism; and succession of water  

strider bugs [23]. The steps of this method are briefly 
described as follows:

2.1 Initial birth
The water striders (WSs) or the candidate solutions are 
generated randomly in the search space as follows:

WS Lb rand Ub Lb i nwsi
0

1 2= + −( ) = …. ; , , , , (1)

where WSi
0 is the initial positions of the ith WS in the lake 

(search space). Lb and Ub denote lower and upper bound of 
variables, respectively. rand is a random number between 
[0,1] and nws is the number of WSs (population size). 
The initial positions of WSs are evaluated by an objective 
function to calculate their fitness.

2.2 Territory establishment
To establish nt number of territories, the WSs are sorted 
according to their fitness and 

nws
nt  number of groups are 

orderly created. The jth member of each group is assigned 
to the jth territory, where j = 1, 2, …, nt. Therefore, the 
number of WSs living in each territory is equal to nwsnt . The 
positions in each territory with the worst and best fitness 
are considered as male (keystone) and female, respectively.

2.3 Mating 
The male WS sends ripple to the female WS in order to 
mate. Since the response of the female is not known, a 
probability like p is defined for attraction or else repulsion. 
The p is set to 0.5. The position of the male WS is updated:

WS WS R rand if mating happens with probability of p

WS
i
t

i
t

i
t

+ = +1
. ; ( )

++ = + +( )





1

1WS R rand otherwisei
t

. ;
. (2)

The length of R is calculated by the following formula:

R WS WSF
t

i
t= −− −1 1
,  (3)

where WSi
t–1 and WSF

t–1 denote the male and female WS in 
the (t – 1)th cycle, respectively.

2.4 Feeding
Mating consumes a lot of energy for water striders and 
the male WS forages for food after mating. We assess the 
objective function for food availability. If the fitness is bet-
ter than the previous fitness the male WS has found food 
in the new position, and otherwise, it has not. In the latter 
condition, the male WS moves toward the best WS of the 
lake (WSBL) to find food according to the following formula:

WS WS rand WS WSi
t

i
t

BL
t

i
t+ = + −1

2 *( ),  (4)
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2.5 Death and succession
If in the new position, the male WS cannot find food, it will 
die and a new WS will replace it:

WS Lb rand Ub Lbi
t

j
t

j
t

j
t+ = + −( )1

* ,  (5)

where Ubj
t and Lbj

t denote the maximum and minimum 
values of the WS 's position inside the jth territory.

2.6 WSA termination
If the termination condition is not met, the algorithm will 
return to the mating step for a new loop. Here, the max-
imum number of function evaluation (MaxNFEs) is con-
sidered as the termination condition here.

3 Improved Water Strider Algorithm (IWSA)
Based on the knowledge from opposition-based initializa-
tion of population and mutation technique borrowed from 
the genetic algorithm, the standard WSA was modified to 
be a more suitable global optimization algorithm. These 
two features are introduced in the following and the flow-
chart of the IWSA as shown in Fig. 1.

3.1 Opposition-based learning
The opposition-based learning (OBL) was initially intro-
duced by Tizhoosh [33] for machine learning. By utiliz-
ing OBL, the whole search space is searched efficiently by 
considering the corresponding opposite estimate simul-
taneously along with the estimate. So, the current esti-
mate is searched in two directions and the search space is 
searched more efficiently. The opposition-based optimiza-
tion helps the solution to converge faster hence reducing 
the time complexity [31]. 

The opposite of real number x ϵ [l, u] is given by x̃ :

x l u x= + − ,  (6)

where l and u are the lower and upper bound of search 
space, respectively. In the multimodal space, the definition 
of x̃ can be generalized. Suppose x = [x1, x2, …, xn] ϵ n and 
xj ϵ [lj, uj]. The opposite point x̃ = [x̃1, x̃2, …, x̃n] is defined by:

x u l x j nj j j j= + − = …; , , ,1 2 . (7)

3.1.1 Generalized opposition-based learning (GOBL)
Let x be a solution in the current search space S, x ϵ [a, b]. 
According to GOBL the opposition of the x is calculated 
as follows:

x k a b x= +( ) − , (8)

where k is a random number in . The GOBL can also be used 
in a multi-dimensional search space similar to OBL [26]. 
When the limits of the variables are violated, the following 
formula is employed.

x Lb k Ub Lb x x x xmin max0 0 0
* * *

,= + × −( ) if or  (9)

3.1.2 Generalized Space Transformation Search (GSTS)
Let P = (x1, x2, …, xD) and Q = (x̂1, x̂2, …, x̂D) denote two dif-
ferent points distributed in D-dimensional space, where x1, 
x2, …, xD ϵ  and x̂1, x̂2, …, x̂D ϵ . Assume l = (l1, l2, …, lD) 
and u = (u1, u2, …, uD) are the lower and the upper bounds of 
the D-dimensional space, respectively. The opposite point P̆ 
= (x̆1, x̆2, …, x̆D) of the point P is defined as:

 (10)

where λ called elastic factor is a random number drawn 
from interval [0,1]. 

In comparison to OBL and GOBL, GSTS has higher 
potential to find the better opposite solution. More specif-
ically, compared with OBL, GOBL and GSTS all can not 
only enhance the exploitation of the current search space 

̂x l u x x i Di i i i i= +( ) − −( ) =λ , , ,..., ,1 2

Fig. 1 The flowchart of the proposed IWSA
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but also strengthen the exploration in the neighborhood 
of the current search space while GSTS does better [27]. 
In order to return the solutions that violate the side con-
straints into the feasible search space, Eq. (9) is utilized. 

3.1.3 Opposition-based optimization 
In this optimization strategy, the candidate solution and the 
corresponding opposite solution are evaluated simultane-
ously and the fitter solution is stored and the other one is 
omitted. Let f(m) denote the fitness of a candidate solution 
m = (m1, m2, …, mD) in D-dimensional space and f(m̃) denote 
the fitness of its opposite, m̃ = (m̃1, m̃2, …, m̃D) Replace m 
with m̃ if (m̃) > f(m); otherwise, leave m unchanged.

Since both the current point and the opposite point are 
considered simultaneously for computation and evaluation, 
faster convergence toward a better solution is seen [24].

To strengthen the standard WSA we employ Generalized 
Space Transformation Search (GSTS) to it. The GSTS is a 
more general form of the OBL and GOBL. GSTS has also 
a more potential to find better solutions around optimal 
solution than OBL and GOBL. Here, GSTS is only applied 
in the initialization part of the algorithm, and it is not used 
in the main loop of the algorithm. There are similarly 
some examples in the literature in which OBL has merely 
been applied in the population initialization time and has 
produced a quite successful algorithm [28, 31]. However, 
OBL has been utilized in the main loop of the metaheuris-
tic algorithms in the literature with a probability called 
jumping rate [34], too. Herein, utilizing OBL in the main 
loop might increase the exploration of the algorithm to 
an unnecessary level. Especially in structural optimiza-
tion problems in which evaluation of the objective func-
tion could be a very costly action, and converging to a 
near optimal solution with a reasonable number of objec-
tive function evaluation is essential. Thus, the generalized 
space transformation search is applied to enhance the ini-
tial population quality of the algorithm. 

Initial population plays an important role in any opti-
mization algorithm. It has been shown that the ran-
dom selection of solutions from a given solution space 
can result in exploiting the fruitless areas of the search 
space. Intelligent initialization methods based on realistic 
approaches are required for efficient results [28]. In fact, 
it has been proven mathematically and empirically that, 
in terms of convergence speed, utilizing random num-
bers and their opposite is more beneficial than using the 
pure randomness to generate initial estimates in absence 

of a priori knowledge about the solution [35]. For a better 
insight into GSTS application in IWSA, the pseudo code is 
provided in Algorithm 1.

3.2 Mutation
The exploration phase of the standard WSA is performed 
using a random solution created when the keystone cannot 
reach food after he moves toward the best water strider 
of the lake. In order to enhance the ability of the WSA to 
explore more promising regions of the search space and 
help it to escape from local optimums, a mutation tech-
nique is embedded in this metaheuristic. In evolutionary 
algorithms, mutation plays a significant role to provide 
diversity of the solutions. 

After the last stage of the standard WSA, which is gen-
erating a random solution in the search space, mutation is 
utilized with a probability called pro to improve the explo-
ration of the algorithm. In our study, the mutation was 
applied on the best-so-far solution of the algorithm, which 
is also called the best water strider of the lake (WSBL). One 
of the components of the WSBL is selected randomly and 
regenerated by the following formula:

x x rand x xj j min j max j min= + −( ), , ,. , (11)

where xj is the selected component, xj,max and xj,min are the 
maximum and minimum of all the components in the best 
territory, respectively. The regenerated WS is evaluated 
using the objective function. If the fitness is better than the 
previous fitness, this mutated WS is replaced with the WSBL. 
After a number of trial-and-error experiments, the pro was 
set equal to 30 percent for our problems.

4 Numerical examples
In this section, the efficiency of IWSA is investigated 
through benchmark mathematical functions and structural 

Algorithm 1 Pseudo code of GSTS for initializing population

Input: the random initial candidate solutions
Output: the improved initial candidate solutions with GSTS 
application
for (each initial candidate solution) do
calculate P̃  = (x̃1, x̃2, …, x̃D) using Eq. (9)

if f(P̃ ) > f(P)
replace P with P̃

else
leave P unchanged

end if
end for
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optimization problems and the results are compared with 
the standard WSA and some of the state-of-the-art meta-
heuristic algorithms.

4.1 Mathematical benchmark functions 
In the first step, 23 mathematical functions from the litera-
ture (7 unimodal F1 – F7, 6 multimodal F8 – F13 and 10 fixed 
dimension multimodal functions F14 – F23) are considered. 
These functions are presented in Tables 1–3. The num-
ber of territories and the population of WSS are assumed 
as 25 and 50, respectively. For a fair comparison, in all 
algorithms, the maximum number of function evaluations 
(MaxNFEs) are predefined as 5000 multiples by dimension 
(Dim). IWSA is executed 30 times independently similar 
to other algorithms reported in [23]. The statistics results 
such as average and standard deviation of the results are 
reported in Tables 4–6. IWSA has outperformed WSA in 
most of the benchmark mathematical functions F1 – F23 in 
terms of the average and standard deviation. The results 
found by IWSA is also better than those of some of the clas-
sic well-known metaheuristic namely PSO, GA and ICA. 
Considering some modern well-established metaheuristic 
algorithms such as BBO, SSA, SCA, MFO, DA and MVO, 
the IWSA has also achieved better results for most of the 
functions in terms of mean and standard deviation values.

To further investigate the performance of the IWSA, 
in the next step, 21 benchmark functions F24 – F44 taken 
from [36] are tested for both IWSA and WSA. These 
bench-mark functions have been also solved by 13 dif-
ferent methods in [37]. Properties of these functions are 

Table 1 The unimodal benchmark functions

Function Dim Range fmin

30 [-100,100] 0

30 [-10,10] 0

30 [-100,100] 0

30 [-100,100] 0

30 [-30,30] 0

 30 [-100,100] 0

 30 [-1.28,1.28] 0
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Table 2 The multimodal benchmark functions

Function Dim Range fmin

30 [-500,500] -418.9829 × Dim

30 [-5.12,5.12] 0

30 [-32,32] 0

30 [-600,600] 0

30 [-50,50] 0

30 [-50,50] 0

F x x x
i

n

i i8

1

( ) = − ( )
=
∑ sin

F x x x
i

n

i i9

1

2
10 2 10( ) = − − ( ) +





=
∑ cos π

F x
n

x
n

cos x
i

n

i
i

n

i10

1

2

1

20 0 2
1 1

2( ) = − −















− ( )

= =
∑ ∑exp . (exp π )) + +20 e

F x x x
i

i

n

i
i

n
i

11

1

2

1

1

4000
1( ) = −









 +

= =
∑ ∏cos

F x sin x x sin x
i

n

i n13
2

1

1

2 2
0 1 3 1 1 2( ) = ( ) + −( ) + ( )














=
∑. π π 


+

=
∑
i

n

iu x
1

5 100 4( , , , )

F x
n

y x sin x x
i

n

i i n12 1

1

2 2 2
10 1 1 3 1 1( ) = ( ) + −( ) + + + −( )


=
∑π

π πsin [ ( )


+ ( )













+ = +
+ ( ) =

−( )

1 2

1
1

4

2sin x

y
x

u x a k m
x a x

n

i
i

i

i
m

π ]

, , ,

ii

i

i
m
i

x

x a x− −( )












Kaveh et al.
Period. Polytech. Civ. Eng., 64(4), pp. 1284–1305, 2020|1289

Table 3 Multimodal benchmark Functions with fixed dimension

Function Dim Range fmin

2 [-65,65] 1

4 [-5,5] 0.00030

2 [-5,5] -1.0316

2 [-5,5] 0.398

 2 [-2,2] 3
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Table 4 The statistical results of unimodal benchmark functions (F1–F7)

IWSA WSA GA PSO ICA BBO SSA SCA MFO DA MVO

F1

Ave 9.25E-195 1.09E-50 0.493651 474.0286 1.78E-27 0.631961 5.28E-09 1.94E-16 2000 101.3336 0.022462

STD 0 3.99E-50 0.976457 266.9246 4.27E-27 0.665318 8.26E-10 9.45E-16 4068.381 96.58759 0.006160

F2

Ave 1.04E-105 4.89E-28 0.027773 9.234122 4.24E-15 0.165913 0.535547 1.28E-18 28.66667 7.530338 8.877180

STD 1.73E-105 1.94E-27 0.053506 2.396783 9.59E-15 0.057118 0.813057 4.59E-18 15.69831 6.143436 33.74294

F3

Ave 1.80E-14 0.014089 4682.494 4441.754 1.307412 10032.46 6.70E-7 650.4789 16833.44 6410.172 1.916605

STD 34.74E-14 0.011180 1974.782 1762.155 0.812703 3031.347 4.49E-7 1248.101 12520.75 5456.428 0.706664

F4

Ave 1.22E-73 0.000490 9.282368 14.10854 0.069323 7.924755 1.328179 1.335270 45.80769 5.930244 0.218609

STD 1.18E-73 0.000354 2.208485 2.390036 0.093936 1.155925 1.611482 1.828663 13.34950 7.065519 0.093077

F5

Ave 25.9132 32.42146 481.1478 31370.23 107.5567 219.3536 67.11092 27.51712 18268.11 2890.214 176.5168

STD 21.3821 29.52849 481.3205 24726.88 135.2055 151.6324 84.22198 0.556120 36497.23 3939.582 253.5243

F6

Ave 0 0 0.398834 477.1967 1.65E-27 0.500071 5.44E-09 3.720126 1340.033 127.2942 0.018740

STD 0 0 0.472675 265.9348 3.56E-27 0.650763 9.93E-10 0.334225 3474.982 101.2584 0.005324

F7

Ave 0.000641 0.006433 0.011947 0.141906 0.026134 0.027428 0.017356 0.00598 1.375182 0.067759 0.005043

STD 0.0002717 0.0018394 0.0063860 0.059233 0.010122 0.009938 0.006085 0.00590 3.577760 0.050227 0.0017982

Table 5 The statistical results of multimodal benchmark functions (F8–F13)

IWSA WSA GA PSO ICA BBO SSA SCA MFO DA MVO

F8

Ave -12569.49 −9354.74 −10348.4 −5693.364 -8087.05 -12566.2 -7529.63 -4314.06 -8732.63 -6793.96 -7918.0

STD 1.85E-12 653.1757 389.5341 614.6499 486.5310 2.18026 705.6967 255.6938 1072.626 989.3598 782.706

F9

Ave 0.0055 40.56002 9.177337 62.34716 100.6904 1.20078 51.96994 1.83186 148.5348 60.4525 112.474

STD 0.0071 10.78416 2.255343 18.0979 17.71236 0.82409 16.85193 6.96691 40.87507 27.58083 35.2363

F10

Ave 8.88E-16 1.88E-14 1.123709 6.63813 0.04571 0.23474 1.78994 12.38263 9.7306 5.09027 0.15472

STD 0 4.52E-15 0.558145 1.00764 0.24526 0.1827 0.86588 9.10541 9.74539 2.14984 0.40645

F11

Ave 0.0067 0.016042 0.293621 4.63638 0.02423 0.52837 0.01026 0.00786 21.14255 1.9369 0.10271

STD 0.0095 0.020111 0.246095 1.83215 0.02844 0.22331 0.01217 0.02831 45.56648 1.57439 0.03706

F12

Ave 1.57E-32 1.57E-32 0.128613 7.71879 0.03784 0.00879 1.80927 0.3975 0.25016 2.68162 0.20096

STD 5.57E-48 5.57E-48 0.153503 3.60638 0.20661 0.02595 1.5772 0.13269 0.48244 5.13881 0.37664

F13

Ave 1.35E-32 1.35E-32 0.177732 873.08203 1.99E-23 0.02846 0.00366 2.06867 1.37E + 7 0.19126 0.01012

STD 5.57E-48 5.57E-48 0.139143 3390.035 1.08E-22 0.02109 0.00527 0.13673 7.49E + 7 11.45285 0.01326

described in Tables 7–9. These functions are more com-
plicated than the first 23 functions and finding their opti-
mum is more challenging for an optimization algorithm. 
They incorporate shifted unimodal, and shifted multi-
modal as well as hybrid composite functions. IWSA and 
WSA are run 30 times independently and the termination 
condition is 5000 multiplied by dimension which is set as 
50 for all the functions.

The statistical results including average, best, worst, 
standard deviation as well as Friedman test [38] are pro-
vided in Table 10. The Friedman test is a non-parametric 
statistical test employed to detect the differences among 

the algorithms. The confidence level of 0.05 is used to 
assess the significance level of difference amongst the 
algorithms. Thus, if the p-value is less than 0.05, we can 
reject the null hypothesis. The methods utilized in [37] 
are NNA, RS, TLBO, ICA, CS, GSA, WCA, HS, PSO, GA, 
SA, DE, CMA-ES. According to Table 11 [37], the NNA 
(Neural Network Algorithm) was placed at the first rank 
and the DE and TLBO were located in the second and  
third place, respectively. Here, statistical results of the 
NNA are compared with IWSA and WSA because it has 
the best performance amongst the 13 mentioned methods 
for solving these 21 benchmark functions.
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Table 6 The statistical results of fixed-dimension multimodal benchmark functions (F14–F23)

IWSA  WSA GA PSO ICA BBO SSA SCA MFO DA MVO

F14

Ave 0.998004 0.998004 1.130409 3.693964 1.330271 3.527829 1.592317 1.794415 1.525135 1.757204 1.560495

STD 5.83E-17 1.13E-16 0.430993 2.446979 0.655267 3.634702 1.150621 1.892839 1.34095 1.289434 0.810885

F15

Ave 0.0011 0.000549 0.001722 0.000848 0.000686 0.003912 0.002086 0.001134 0.00092 0.001832 0.003426

STD 0.0036 0.00032 0.003555 0.000504 0.000158 0.004179 0.004974 0.00035 0.000284 0.001337 0.006762

F16

Ave -1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03082 −1.03163 −1.03156 −1.03163 −1.03163 −1.03163

STD 5.22E-16 5.68E-16 1.27E-15 6.45E-16 5.05E-16 0.001666 4.95E-14 7.79E-05 6.78E-16 2.70E-14 1.47E-06

F17

Ave 0.397887 0.397887 0.397887 0.397887 0.397887 0.40586 0.397887 0.403152 0.397887 0.397887 0.39789

STD 0 0 0 0 0 0.011123 9.94E-14 0.007668 0 6.48E-15 3.98E-06

F18

Ave 3 3 3 3 3 5.687621 3 3.000109 3 3 3.000014

STD 2.49E-15 2.91E-15 1.69E-15 1.58E-15 4.15E-15 6.048765 4.75E-13 0.000124 2.04E-15 4.13E-09 1.23E-05

F19

Ave -3.86278 −3.86278 −3.86278 −3.86278 −3.86278 −3.86178 −3.86278 −3.85388 −3.86278 −3.86071 −3.86278

STD 2.32E-15 2.46E-15 2.71E-15 2.68E-15 2.36E-15 0.001816 7.55E-10 0.002132 2.71E-15 0.003279 2.83E-06

F20

Ave -3.2705 −3.25066 −3.28633 −3.28826 −3.31011 −3.27638 −3.21634 −2.94575 −3.22824 −3.23633 −3.25038

STD 0.059923 0.059241 0.055415 0.056989 0.036278 0.057813 0.042258 0.320805 0.053929 0.081325 0.059472

F21

Ave -6.8983 −6.72819 −6.99664 −5.82346 −6.97219 −5.92825 −8.47826 −3.37565 −7.30772 −6.01288 −7.80433

STD 3.4182 3.378711 3.696605 3.645863 3.350957 3.306321 2.897832 2.046341 3.400748 2.150163 3.018852

F22

Ave -9.6191 −7.35819 −8.46037 −6.4398 −7.99872 −6.45539 −8.3773 -4.06593 −8.17415 −6.47641 −8.32628

STD 2.0677 3.609873 3.285714 3.565778 3.259124 3.598817 3.203741 1.942808 3.250245 2.735904 3.062084

F23

Ave -9.7433 −8.30703 −8.57634 −5.42603 −6.49715 −5.52286 −9.49528 −4.667 −8.66814 −6.24959 −9.02186

STD 2.0894 3.499898 3.324285 3.527142 3.647386 3.453432 2.700535 1.758723 3.183513 2.475969 2.584132

As seen in Table 12, considering the total average rank-
ing by Friedman test, the IWSA is placed in the first rank, 
the NNA is placed in the second rank; and the WSA is 
located in the third rank. According to the Table 10, 
it is seen that for 14 benchmark functions, IWSA has 
obtained the first rank among the three methods (includ-
ing two simultaneous first rank with another algorithm). 
The p-value in the last column of the table is lower than 
the confidence level of 0.05 for all the functions except 
for F26. Therefore, the null hypothesis is rejected for 
almost all functions and there is a significant difference 
among the three algorithms.

From Fig. 2 it can be observed that the differences 
between the performance of the algorithms will be more 
obvious. IWSA's line is specified by a blue color and the 
red lines are the algorithms which differ from IWSA  
significantly while the gray lines are the algorithms that 
do not differ significantly. For instance, regarding the 
graph of F34, IWSA has outperformed WSA and NNA, 
and its result is significantly better than WSA and NNA.

The average convergence history obtained by IWSA 
and WSA for F24 - F44 are depicted in Fig. 3. They demon-
strate that the IWSA has a faster convergence rate in com-
parison with WSA in most of the cases.

4.2 Structural optimization problems
In this section, three benchmark structural optimization 
problems are solved by IWSA and its results are compared 
with the standard WSA and some of the well-established 
metaheuristic algorithms. Here, the objective is to mini-
mize the weight of the structures to reduce the construction 
costs by selecting the best possible design variables from a 
given set of sections provided by valid codes while meet-
ing the design constraints simultaneously (sizing optimiza-
tion). The optimization problem can formally be stated as
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Table 7 The benchmark Functions F24 to F34 (dimension = 50)

Function Name Definition

F24 Shifted Hyper Sphere

F25 Shifted Schwefel 2.21

F26 Shifted Rosenbrock

F27 Shifted Rastrigin

F28 Shifted Griewank

F29 Shifted Ackley

F30 Schwefel 2.22

F31 Schwefel 1.2

F32 Extended 

F33 Bohachevsky

F34 Schaffer
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Table 8 The composition benchmark functions F35 to F44.

Function First Function Second Function Weight Factor

F35 F32 +F24 0.25

F36 F32 +F26 0.25

F37 F32 +F27 0.25

F38 F33 +F30 0.25

F39 F28 +F24 0.50

F40 F26 +F27 0.50

F41 F32 +F24 0.75

F42 F32 +F26 0.75

F43 F32 +F27 0.75

F44 F33 +F30 0.75

where {X} is the vector containing the design vari-
ables; W({X}) presents the weight of the structure; nm(i) 
is the number of members for the ith group; ρj and Lj 
denote the material density and the length of the jth  

member, respectively. ximin and ximax are the lower and 
upper bounds of the design variable xi, respectively. 
gj({X}) denotes the design constraints; and nc is the num-
ber of the constraints.
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Table 9 The properties of F24 to F44. 

Function Range Optimum U/M* Separable Shifted

F24 [-100,100] 0 U Yes Yes -450

F25 [-100,100] 0 U No Yes -450

F26 [-100,100] 0 M Yes Yes 390

F27 [-5,5] 0 M Yes Yes -330

F28 [-600,600] 0 M No Yes -180

F29 [-32,32] 0 M Yes Yes -140

F30 [-10,10] 0 U Yes No -

F31 [-65.536,65.536] 0 U No No -

F32 [-100,100] 0 U No No -

F33 [-15,15] 0 U Yes No -

F34 [-100,100] 0 U Yes No -

F35 [-100,100] 0 U No Yes -

F36 [-100,100] 0 M No Yes -

F37 [-5,5] 0 M No Yes -

F38 [-10,10] 0 U Yes No -

F39 [-100,100] 0 M No Yes -

F40 [-10,10] 0 M Yes Yes -

F41 [-100,100] 0 U No Yes -

F42 [-100,100] 0 M No Yes -

F43 [-5,5] 0 M No Yes -

F44 [-10,10] 0 U Yes No -

Table 10 Optimization results for benchmark functions F24–F44.
WSA IWSA NNA p-value

F24

Ave 0 0 2.25e-10
Best 0 0 4.95e-12

Worst 0 0 1.39e-9
STD 0 0 3.45e-10 9.36e-14

Ave. rank. Friedman test 1.5 1.5 3

F25

Ave 0.1397 0.1633 1.03
Best 0.0494 0.0812 0.452

Worst 0.3755 0.3929 1.65
STD 0.0791 0.0626 0.31 9.93e-11

Ave. rank. Friedman test 1.37 1.63 3

F26

Ave 75.7416 106.6633 96.0
Best 4.0971 0.1268 0.539

Worst 377.2147 362.3666 335 0.0794
Ave. rank. Friedman test 1.67 2.20 2.13

F27

Ave 112.5852 4.7691 6.60
Best 61.6874 0.5223 1.99

Worst 162.1779 17.2707 11.9 5.10e-11
Ave. rank. Friedman test 3 1.3 1.7

F28

Ave 0.0079 0.0121 0.062
Best 0 0 6.76e-12

Worst 0.0443 0.0850 0.161 2.26e-07
Ave. rank. Friedman test 1.62 1.58 2.8

F29

Ave 1.712e-11 5.3054e-14 1.12e-06
Best 2.8422e-14 2.8422e-14 1.21e-07

Worst 2.7256e-10 1.1369e-13 5.27e-06 5.15e-12
Ave. rank. Friedman test 1.78 1.22 3
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WSA IWSA NNA p-value

F30

Ave 5.8425e-62 5.9421e-106 3.99e-11
Best 1.3248e-71 5.4202e-109 1.78e-12

Worst 1.4217e-60 6.5974e-105 1.44e-10 9.36e-14
Ave. rank. Friedman test 2 1 3

F31

Ave 3.4286e-96 2.5197e-176 5.18e-20
Best 2.6174e-104 1.7090e-183 6.80e-23

Worst 8.1214e-95 7.0225e-175 3.08e-19 9.36e-14
Ave. rank. Friedman test 2 1 3

F32

Ave 72.0886 4.2070e-47 3.21
Best 19.2195 5.4523e-49 0.107

Worst 133.8062 1.7425e-46 11.0 9.36e-14
Ave. rank. Friedman test 3 1 2

F33

Ave 1.7568 0 0
Best 0.4699 0 0

Worst 6.2987 0 0 9.36e-14
Ave. rank. Friedman test 3 1.5 1.5

F34

Ave 78.9188 1.4532e-43 5.80
Best 24.0197 2.4220e-48 0.0647

Worst 154.2299 4.3454e-42 20.4 9.36e-14
Ave. rank. Friedman test 3 1 2

F35

Ave 88.3081 9.9425 16.4
Best 54.0279 0.0069 0.175

Worst 118.2414 25.0593 52.9 1.23e-10
Ave. rank. Friedman test 3 1.4 1.60

F36

Ave 186.9210 72.3444 146
Best 101.6506 1.8425 9.70

Worst 740.5083 432.3517 942 1.51e-05
Ave. rank. Friedman test 2.7 1.6 1.7

F37

Ave 88.1138 8.1221 6.83
Best 51.0990 1.4281 1.81

Worst 127.4487 18.2882 11.5 1.25e-10
Ave. rank. Friedman test 3 1.6 1.4

F38

Ave 2.9507e-35 5.5811e-29 3.48e-11
Best 2.6456e-37 1.5090e-31 1.48e-12

Worst 2.8271e-34 6.0541e-28 2.75e-10 9.36e-14
Ave. rank. Friedman test 1 2 3

F39

Ave 0.5456 1.6829e-30 7.35e-11
Best 0 0 4.56e-18

Worst 1.9254 5.0487e-29 2.01e-09 3.29e-07
Ave. rank. Friedman test 2.3 1.23 2.47

F40

Ave 24.0433 0.1303 1.39
Best 8.9552 1.2233e-14 4.63e-04

Worst 44.7731 2.9021 9.60 2.46e-13
Ave. rank. Friedman test 3 1.03 1.97

F41

Ave 71.5098 16.0430 11.4
Best 34.7482 2.9948 1.90

Worst 115.7428 53.8301 33.9 7.35e-11
Ave. rank. Friedman test 3 1.66 1.33

F42

Ave 213.7061 21.4102 4.21
Best 142.1433 3.9660 0.108

Worst 309.2074 85.8444 13.8 1.39e-12
Ave. rank. Friedman test 3 1.90 1.10

F43

Ave 21.7265 3.8763 2.62
Best 14.9470 0.4509 0.00168

Worst 30.4789 7.9178 5.59 9.93e-11
Ave. rank. Friedman test 3 1.63 1.36

F44

Ave 0.1325 3.5755e-62 8.85e-38
Best 0 0 4.39e-72

Worst 1.0498 1.0726e-60 2.66e-36 3.75e-08
Ave. rank. Friedman test 2.1 1.2 2.7
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For constraints handling, a penalty approach is utilized. 
For this purpose, the objective function (Eq. (12)) is rede-
fined as follows:

p X W X{ }( ) = +( ) × { }( )1 1
2ε υ ε

. , (13)

where P({X}) is the penalized cost function or the objec-
tive function to be minimized and υ denotes the sum of the 
violations of the design constraints. Here, ε1 is set to unity 
and ε2 is increased linearly from 1.5 to 3 during the opti-
mization process.

In the following subsections the benchmark exam-
ples are examined. All our codes are implemented in 
MATLAB and the structures are analyzed using direct 
stiffness method with our own codes. In all examples, the 
population size for the IWSA and WSA are considered 
as nws = 50 and the number of territories is considered 
to be 25. Termination condition is the maximum number 
of structural analyses which is MaxNFES = 20000 and 
twenty independent runs are considered for each example.

4.2.1 3-bay 15-story frame
Fig. 4 shows the 3-bay 15-story steel moment frame as the 
first design example. The applied loads and the number-
ing of the member groups are also shown in this figure. 

The modulus of elasticity is 29 Msi (200 GPa), and the yield 
stress is 36 ksi (248.2 MPa). The effective length factors of 
the members are calculated as kx ≥ 0 for a sway-permitted 
frame, and the out-of-plane effective length factor is speci-
fied as ky ≥ 1. Each column is considered as non-braced along 
its length, and the non-braced length for each beam mem-
ber is specified as one-fifth of the span length. Limitation 
on displacement and strength are imposed according to the 
provisions of the AISC-LRFD [39]. The design variables 
are chosen from 267 W-shaped sections.

This benchmark problem has been studied by many 
researchers; therefore, it is a suitable example to investigate 
the performance of the proposed algorithm against some 
well-established metaheuristic algorithms. The results 
obtained by some metaheuristic methods reported in the 
literature [16, 40] as well as WSA and IWSA are provided 
in Table 13. The best designs found by IWSA, ECBO, 
and VPS have approximately the same weight. The sec-
ond lightest design is reached by cuckoo search algorithm 
(CS) which is 0.6 % heavier than IWSA, ECBO and VPS. 
The mean and standard deviation of the obtained results 
show that the IWSA has performed very well. By compar-
ing the IWSA and WSA results, it is seen that, the best 
and the mean weight obtained by the IWSA is about 0.6 % 
lighter than the WSA. The best design convergence curve 
as well as the mean convergence curve of the IWSA and 
WSA are depicted in Fig. 5.

4.2.2 384-bar double-layer barrel vault
The second design problem is the size optimization of 
a 384-bar double-layer barrel vault which is shown in 
Fig. 6. The span of the barrel vault is 24.82 m, its rise is 
5.12 m, and its length is 26.67 m. The depth of the struc-
ture, i.e., the distance between the top and bottom layers, 
is equal to 1.35 m. The barrel vault consists of 111 pinned 
joints and 384 bar elements, which are grouped into 31 
independent sizing variables as depicted in Fig. 6(b). 
The modulus of elasticity is considered to be 30450 ksi 
(210000 MPa), the yield stress of steel is taken as 58 ksi 
(400 MPa), and the density of steel is equal to 0.288 lb/in3 
(7833.413 kg/m3). All connections are assumed as ball 
jointed and the supports are considered at the two external 
edges of the top layer of the barrel vault. Vertical concen-
trated loads of -20 kips (-88.964 kN) are applied to all free 
joints (non-support joints) of the top layer. Strength and 
slenderness limitations are according to AISC-ASD pro-
vision [41]. Displacement constraints of ±0.1969 in (5 mm) 
are imposed on all nodes in x, y and z directions.

Table 11 Sum of average ranking using Friedman test for optimization 
algorithms used in [37]

Methods Total Average Ranking by Friedman Test (Rank)

NNA 84.41 (1)

RS 271.74 (13)

TLBO 103.21 (3)

ICA 232.52 (12)

CS 139.35 (8)

GSA 107.27 (4)

WCA 163.17 (10)

HS 126.03 (7)

PSO 206.81 (11)

GA 116.06 (5)

SA 140.05 (9)

DE 85.33 (2)

CMA-ES 125.25 (6)

Table 12 Sum of average ranking using Friedman test for IWSA, WSA 
and NNA [37]

Methods Total Average Ranking by Friedman Test (Rank)

IWSA 30.18 (1)

NNA 45.76 (2)

WSA 50.04 (3)
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Fig. 2 Multiple comparison test for benchmark functions F24–F44 obtained by IWSA, WSA and NNA
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Fig. 3 Average convergence curves obtained by IWSA and WSA for the benchmark functions 24–44
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The statistical results achieved by different methods [16] 
are provided in Table 14. The IWSA has reached the lightest 
weight among the 6 algorithms in terms of best design and 
average optimized weight, and after that, WSA is placed in 
the second. The weight for the best design and the average 
optimized weight achieved by the proposed algorithm is 
0.64 % and 0.75 % lighter in comparison to WSA, respec-
tively. The standard deviation achieved by IWSA is lower 
than WSA and the other four algorithms which demon-
strates that IWSA is a more reliable and robust algorithm.

The convergence curves of the algorithms are depicted 
in Fig. 7. The IWSA has a faster convergence rate than 
WSA in terms of average convergence curve. The stress 
ratio graph for the best design obtained by IWSA is illus-
trated in Fig. 8. The maximum stress ratio is 98.22 %.

4.2.3 800-bar grid
The last design problem deals with the size optimization 
of the 800-bar grid shown in Fig. 9. The structure has 
800 members and 221 nodes and the bottom layer is sim-
ply supported at the nodes illustrated in Fig. 10. Each top 
layer joint is subjected to a concentrated vertical load of 
30 kN. Cross-section areas of the members are categorized 
into 24 groups as shown in Fig. 10. The design variables 
are the cross-sectional areas of the bar elements which are 
selected from the list of steel pipe sections from AISC-
LRFD [39]. The modulus of elasticity, the yield stress, and 
the density of steel are taken as 205 GPa, 248.2 MPa, and 
7833.413 kg/m3, respectively. Strength and slenderness Fig. 4 The 3-bay 15-story frame

Table 13 Performance comparison for the 3-bay 15-story frame structure

Element 
group

Sections

HPSACO ABC ICA CS ECBO BB-BC TLBO VPS TEO WSA IWSA

1 W21×111 W14×99 W24×117 W14×109 W14×99 W21×122 W12×96 W14×90 W18×86 W14×99 W14×90

2 W18×158 W40×264 W21×147 W27×161 W27×161 W27×146 W27×161 W36×170 W36×182 W27×161 W36×170

3 W10×88 W14×82 W27×84 W27×84 W27×84 W27×84 W27×84 W14×82 W14×68 W27×84 W14×82

4 W30×116 W33×118 W27×114 W24×104 W24×104 W30×108 W24×104 W24×104 W36×182 W24×104 W24×104

5 W21×83 W21×68 W14×74 W14×61 W14×61 W24×68 W10×68 W21×68 W10×49 W21×68 W21×68

6 W24×103 W18×86 W18×86 W30×90 W30×90 W16×89 W30×90 W18×86 W30×99 W30×90 W18×86

7 W21×55 W21×93 W12×96 W14×48 W14×48 W16×57 W8×48 W21×48 W21×48 W14×48 W21×48

8 W27×114 W12×58 W24×68 W21×68 W14×61 W21×68 W24×68 W14×61 W14×68 W12×65 W14×61

9 W10×33 W40×149 W10×39 W6×25 W14×30 W12×50 W8×28 W12×30 W6×25 W8×28 W12×30

10 W18×46 W18×35 W12×40 W14×43 W12×40 W18×35 W10×39 W10×39 W10×45 W10×39 W10×39

11 W21×44 W18×46 W21×44 W21×44 W21×44 W14×48 W21×50 W21×44 W24×68 W21×44 W21×44

Weight (lb) 95,850 88,536 93,846 87,469 86,986 89,483 87,735 86,985 87,735 87,538 86,986

Mean 
weight (lb) N/A 101,424 N/A 99,674 88,410 98,039 95,206 90,066 95,206 89,044 88,522

STD (lb) N/A      31,734 N/A 24,308 N/A 19,215 11,346 2,533 11,346 1,576 1,490
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Fig. 5 Convergence curve of IWSA and WSA for the 3-bay 15-story frame

limitations are according to AISC-LRFD provisions, and 
displacement limitations of span/600 were imposed on all 
nodes in vertical direction.

The example has been optimized by CBO, ECBO, VPS 
and MDVC-UVPS algorithms [16] and comparison of 
optimized designs are provided in Table 15. The lightest 
design is achieved by the proposed method which is 53101 
kg that shows the IWSA is more precise than other algo-
rithms. In terms of average optimized weight and standard 
deviation, the proposed algorithm has outperformed the 
other methods.

The average convergence curve and the convergence 
curve for the best result of WSA and IWSA are depicted 
in Fig. 11. It can be seen that for the initial and middle 
part of the curve, both algorithms have approximately 
achieved similar results in nearly the same rate (with 
WSA doing a little faster). After the middle part, WSA 
cannot improve the obtained solution, but IWSA has still 
found the better designs. The stress ratio for the best 
design obtained by IWSA is depicted in Fig. 12. The max-
imum stress ratio is 90.79 %.

Fig. 6 (a) 3D view, (b) plan view with group numbers (c) flattened cross-sectional view of the 384-bar double-layer barrel vault
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Table 14 Performance comparison for the 384-bar double-layer barrel-vault problem

Sections

Element group CBO ECBO VPS MDVC-UVPS WSA IWSA

1 ST 1/2 ST 1/2 ST 3/4 ST 1/2 ST 1/2 EST 1/2

2 EST 2 ST 2 1/2 EST 2 1/2 EST 2 EST 2 EST 2

3 EST 2 EST 2 EST 2 1/2 EST 2 EST 2 ST 2 1/2

4 ST 3 ST 1 1/2 EST 1 1/2 ST 1 1/2 ST 1 1/4 ST 1 1/4

5 DEST 2 1/2 EST 4 DEST 3 DEST 3 ST 5 EST 4

6 ST 2 1/2 ST 1 1/2 ST 1 1/2 ST 1 1/2 ST 1 1/4 ST 1 1/4

7 ST 12 ST 12 ST 12 ST 12 EST 8 ST 12

8 DEST 4 ST 10 EST 8 DEST 5 DEST 5 DEST 5

9 DEST 5 ST 12 EST 10 EST 10 EST 12 DEST 6

10 ST 12 DEST 8 EST 10 EST 10 EST 10 EST 10

11 DEST 5 DEST 5 DEST 5 DEST 5 DEST 5 ST 10

12 DEST 6 EST 8 DEST 5 ST 12 ST 10 EST 8

13 DEST 3 ST 6 ST 6 ST 6 DEST 3 DEST 3

14 EST 3 1/2 EST 3 1/2 DEST 3 ST 4 ST 5 EST 3 1/2

15 ST 2 1/2 ST 2 1/2 ST 2 1/2 EST 2 1/2 ST 2 1/2 ST 2 1/2

16 EST 6 ST 5 ST 5 ST 4 EST 3 1/2 ST 4

17 EST 6 EST 4 DEST 3 ST 6 DEST 3 EST 5

18 EST 2 EST 1 1/2 EST 1 1/2 EST 1 1/2 DEST 2 EST 1 1/2

19 EST 2 ST 1 1/4 ST 1 1/4 ST 1 1/4 ST 1 1/4 ST 1 1/4

20 EST 2 1/2 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 2 EST 1 1/2

21 EST 4 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 2 EST 2

22 ST 3 1/2 ST 1 1/4 EST 1 1/2 ST 1 1/4 ST 1 1/2 ST 1 1/4

23 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 1 1/2

24 ST 3 1/2 EST 2 1/2 EST 2 1/2 ST 3 1/2 DEST 2 DEST 2

25 ST 2 1/2 ST 2 1/2 EST 2 1/2 EST 2 EST 2 EST 1 1/2

26 DEST 4 ST 2 1/2 EST 1 1/2 EST 2 EST 2 ST 2 1/2

27 EST 3 DEST 2 ST 3 ST 3 1/2 DEST 2 DEST 2

28 EST 2 EST 1 1/2 EST 1 1/2 EST 2 EST 1 1/2 EST 1 1/2

29 ST 2 1/2 ST 2 1/2 EST 2 EST 2 ST 2 1/2 ST 2 1/2

30 ST 3 EST 1 1/2 EST 2 EST 2 EST 2 EST 2

31 ST 2 1/2 EST 1 1/2 EST 1 1/2 EST 2 EST 1 1/2 EST 2

Weight (lb) 69,448.52 62,486.02 62,455.30 62,735.42 61,962.70 61,564.72

Average (lb) 123,397 65,785 67,900 65,738 64,254 63,771

STD (lb) 103,837 3,386 2,913 2,882 1,670 1,495

5 Conclusions 
In this study, an improved version of a newly devel-

oped metaheuristic algorithm, namely the water strider 
algorithm, is proposed by utilizing Generalized Space 
Transformation Search and a mutation technique. 
The GSTS was only applied to the initial population for 
the first time to direct the algorithm in more promising 
regions of the search space. The mutation was also used 
on the best-so-far-solution of the algorithm to help WSA 

jump out of the local optimums. The proposed algorithm is 
examined by solving benchmark mathematical functions 
as well as three structural optimization problems. Almost 
in all of the mathematical examples, IWSA outperformed 
the standard WSA in terms of the best result, mean result, 
standard deviation; and convergence rate. IWSA was 
also tested on two space truss and a steel moment frame 
design problem. The results demonstrated superiority of 
the IWSA to the standard version in terms of best design 
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Fig. 7 Convergence curve of IWSA and WSA for the 384-bar barrel vault

Fig. 8 Stress ratio graph for the best design obtained by IWSA for 384-bar barrel vault

weight, average optimized weight, and standard deviation 
on average weight. This indicates that IWSA is a more 
reliable and robust algorithm in comparison to its standard 
version. This also shows that GSTS is a powerful tool in 
strengthening metaheuristic algorithms, and the proposed 
mutation technique was successful as the results of IWSA 
was better that the WSA. IWSA was also compared with 
some other state-of-the-art metaheuristic algorithms in 

mathematical function as well as in structural optimiza-
tion examples. The results confirmed the competitiveness 
of IWSA in these examples. 
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Fig. 9 3D view of the 800-bar double-layer grid problem
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Fig. 10 Top view of the 800-bar double-layer grid problem and member groups: a) all members with simple supports, b) bottom layer members,  
c) top layer members, and d) web members

(d)

(a) (b)

(c)
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Table 15 Performance comparison for the 800-bar double-layer grid problem

Sections

Element group CBO ECBO VPS MDVC-UVPS WSA IWSA

1 EST 3 1/2 ST 4 ST 4 ST 4 ST4 ST 4

2 ST 6 ST 5 ST 5 ST 5 ST 5 ST 5

3 ST 2 EST 2 EST 1 1/2 ST 1 1/2 EST 2 EST 1 1/2

4 ST 3 1/2 ST 3 EST 3 ST 3 ST 4 ST 3 

5 ST 2 1/2 EST 2 ST 3 1/2 ST 2 1/2 ST 2 1/2 ST 3 1/2

6 ST 3 ST 2 EST 1 1/2 ST 2 ST 2 1/2 ST 2

7 EST 3 EST 3 1/2 ST 5 ST 3 DEST 2 1/2 EST 3

8 ST 2 1/2 ST 3 ST 4 DEST 2 EST 2 DEST 2 1/2

9 EST 3 EST 3 1/2 EST 3 ST 5 ST 5 ST 5

10 ST 5 ST 3 ST 2 DEST 3 EST 3 EST 3 1/2

11 ST 8 EST 5 ST 6 DEST 4 ST 5 EST 5

12 ST 3 1/2 ST 3 1/2 ST 3 1/2 ST 3 1/2 EST 3 1/2 ST 3 1/2

13 ST 4 ST 6 ST 6 ST 6 EST 6 ST 5

14 ST 5 ST 6 ST 6 ST 5 EST 4 ST 5

15 ST 6 ST 6 ST 6 ST 5 ST 6 DEST 4

16 ST 6 ST 6 ST 6 ST 6 ST 5 ST 6

17 DEST 4 EST 5 EST 6 DEST 4 EST 5 EST 5

18 EST 5 EST 6 EST 5 DEST 4 EST 5 DEST 4

19 EST 5 DEST 4 DEST 4 DEST 5 ST 8 ST 6

20 EST 3 1/2 ST 4 ST 4 ST 4 ST 4 ST 4

21 ST 3 1/2 ST 3 1/2 ST 3 1/2 ST 3 1/2 ST 3 1/2 ST 3 1/2

22 ST 3 ST 3 1/2 ST 3 ST 3 ST 3 ST 3 

23 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2

24 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2

Weight (kg) 55,714 53,673 53,714 53,590 54,286 53,101

Average (kg) 61,464 58,953 57,912 57,679 56,120 54,764

STD (kg) 10,127 4,643 4,102 3,524 1,568 1,202

Fig. 11 Convergence curve for the 800-bar double-layer grid
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Fig. 12 Stress ratio graph for the best design obtained by IWSA for 800-bar grid
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