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Abstract

The present paper proposes a new strategy namely Boundary Strategy (BS) in the process of optimization-based damage detection 

using metaheuristic algorithms. This strategy gradually neutralizes the effects of structural elements that are healthy in the 

optimization process. BS causes the optimization method to find the optimum solution better than conventional methods that do not 

use the proposed BS. This technique improves both aspects of the accuracy and convergence speed of the algorithms in identifying 

and quantifying the damage. To evaluate the performance of the developed strategy, a new damage-sensitive cost function, which is 

defined based on vibration data of the structure, is optimized utilizing the Shuffled Shepherd Optimization Algorithm (SSOA). Different 

examples including truss, beam, and frame are investigated numerically in order to indicate the applicability of the proposed technique. 

The proposed approach is also applied to other well-known optimization algorithms including TLBO, GWO, and MFO. The obtained 

results illustrate that the proposed method improves the performance of the utilized algorithms in identifying and quantifying of the 

damaged elements, even for noise-contaminated data.
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1 Introduction
Damage occurrence is an inevitable event that can hap-
pen in each engineering structure and causes the perfor-
mance of the structure to decrease over time. On the other 
hand, structural damage is prone to spread as a result of 
changing mechanical properties of the structures which 
are occurred due to crack, creep, corrosion, and so on. 
Considerable attention has been devoted to methods for 
identifying and quantifying the site and extent of damage 
in the elements of engineering structures. Among these 
methods, vibration-based damage detection methods due 
to obtaining easily and being independent of the external 
excitation can be used as an efficient measure of structural 
behavior before and after damage occurrence [1]. 

In a general view, vibration-based damage detection 
methods can be broadly categorized into two groups. 
The first group deals with non-model (data-driven) meth-
ods. Although these techniques can identify the location 
of damage efficiently without using the structural analyt-
ical programs, they are not capable of finding the extent 

of damage with a high level of accuracy [2]. The second 
group is model updating methods in which the damage 
identification problem is defined as an inverse problem. 
Various techniques have been introduced for finite element 
model updating. They are generally categorized into two 
groups. The first group deals with direct methods as accu-
rate ones. These methods are non-iterative and do not need 
parameter updating. The eigenstructure assignment is one 
of the instances of the direct model updating method [3]. 
The second group deals with indirect methods. These 
methods are generally categorized in four classes includ-
ing Bayesian/Monte Carlo approaches, response surface 
method, sensitivity-based methods, and model updating 
using computational intelligence techniques (machine 
learning and evolutionary algorithms) [4]. 

The Bayesian method is a technique based on Bayes' 
theorem. According to this method, a set of data with 
a probability distribution which leads to the probabil-
ity distribution of the model is considered. Monte Carlo 
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approaches are frequently used to solve the Bayesian-
based finite element model updating problems [5]. 

The response surface-based finite element model updat-
ing is a statistical technique that can obtain the best response 
which fits the least change between the initial finite element 
model and the measured response [6]. 

The sensitivity-based finite element model updating 
methods are frequently presented as optimization prob-
lems. These methods deal with linearization of the gen-
erally non-linear relationship between measurable outputs 
such as natural frequencies or mode shapes and model 
parameters that are required to be corrected. The  main 
characteristic of these methods is that the computing deriv-
atives of modal data or frequency responses are expensive 
computationally [7]. Sensitivity-based damage detection 
using regularization techniques has received considerable 
attention in recent past decades. In this technique, a regu-
larization term is applied to the objective function to pro-
vide a physically stable solution, which is a unique one [8]. 
However, selecting an appropriate regularization parame-
ter is problem-dependent and selected by the experience. 
An alternative technique is devoted to sparsity constrained 
optimization algorithms to solve the damage detection 
problem as an optimization one [9]. 

In this paper, we have focused on the finite element 
model updating methods using evolutionary algorithms. 
Evolutionary algorithm-based finite element model updat-
ing methods in comparison to other indirect ones have 
been utilized more extensively in the past decades  [4]. 
On the other hand, they can determine the location and 
severity of damage effectively. In these methods, the cost 
function of the optimization problem, which is defined as 
a function error representing the discrepancies between 
vibration data identified by modal testing and those calcu-
lated by the analytical model, is minimized. Minimizing 
this error will provide a nonlinear optimization problem. 
Since damage detection by model updating is an ill-posed 
problem, a robust damage-sensitive cost function, as well 
as a powerful metaheuristic algorithm, are required to 
identify structural damage sites and extents [10]. To mini-
mize the cost function of the optimization problem, meta-
heuristic algorithms have been employed in recent years. 
These optimization methods are efficient and powerful 
tools. Furthermore, they can not only determine the extent 
and location of the damage with acceptable accuracy [11] 
but also can apply to solve other optimization problems in 
the field of structural optimization [12]. 

Various studies have been devoted to structural dam-
age detection utilizing finite element model updating by 
evolutionary algorithms. For instance, Khatir et  al.  [13] 
proposed an inverse problem method to detect and esti-
mate damages in beam-like structures using Particle 
Swarm Optimization (PSO) and Bat Algorithm (BA). 
Kourehli  [14] proposed three damage detection methods 
based on modal data and static response of the damaged 
structure utilizing Simulated Annealing (SA). Bureerat 
and Pholdee [15] formulated the damage detection prob-
lem as an optimization inverse problem and solved it with 
an improved version of the Sine Cosine Algorithm (SCA). 
Dinh-Cong et  al.  [16] proposed a hybrid objective func-
tion based on the Multiple Damage Location Assurance 
Criterion (MDLAC) and modal flexibility change for 
determining the location and extent of damage using Jaya 
algorithm. In the same year, Dinh-Cong et  al.  [17] pro-
posed an efficient technique for optimal sensor placement 
and damage detection in laminated composite structures, 
and Jaya algorithm was again adopted to solve the inverse 
problem. Ghasemi et al. [18] proposed a two-stage damage 
detection method as an inverse method for truss structures 
via a modified genetic algorithm. Ghiasi et al. [19] carried 
out a comprehensive study on damage detection based on 
machine learning and inverse optimization problem uti-
lizing Colliding Bodies Optimization (CBO). Kaveh and 
Dadras  [20] enhanced Thermal Exchange Optimization 
(TEO) and applied for structural damage detection. 
Tiachacht et al. [21] presented a new methodology based 
on model updating method for damage identification and 
quantification of two- and three-dimensional structures 
using the Genetic Algorithm (GA). Jahangiri et  al.  [22] 
presented an efficient damage detection technique based 
on a hybrid objective function and using the only first 
vibration mode data utilizing meta-heuristic optimization 
algorithms. Mishra et al. [23] used the Ant Lion optimizer 
(ALO) for identifying structural damage based on the 
objective function, which is formulated as an inverse prob-
lem using vibration data. Hosseini et al.  [24] conducted 
a comprehensive study on the efficiency of the objective 
functions developed based on Modal Strain Energy (MSE) 
and flexibility methods for solving structural damage 
detection problems as inverse optimization ones.

When the metaheuristic optimization algorithms are 
employed for damage detection of large-scale structures, 
the algorithms start to search in high-dimensional search 
space. This is because the number of design variables is 
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equal to the number of structural elements. As a result, the 
optimization algorithm may unable to predict the location 
and extent of damage accurately. For instance, the dam-
age detection results for a 72-bar spatial investigated by 
Mishra et al. [25], Kaveh and Zolghadr [26], Bureerat and 
Pholdee  [27] indicate that their techniques found differ-
ent success rates (i.e. the number of successful runs / total 
number of runs), and only some of them have a 100 % suc-
cess rate. On the other hand, there is a high probability for 
the metaheuristic algorithms to trap in local optima when 
they are employed to solve the damage detection prob-
lem. To this end, here, a new strategy namely Boundary 
Strategy (BS) is proposed for structural damage detection 
problem using metaheuristic optimization algorithms. In 
BS, the healthy elements are gradually neutralized from 
the optimization process. This strategy causes the com-
plexity of the search space is progressively decreased and 
improves the performance of the employed optimization 
method in identifying damaged elements. In contrast, in 
conventional damage detection methods utilizing meta-
heuristic algorithms, the effects of healthy elements are 
not neutralized in the optimization process. In this arti-
cle, these conventional techniques are considered Without 
Boundary Strategy (WBS).

Although many structural elements are determined as 
damaged elements in the optimization process due to the 
effects of measurement noise, most of these elements are 
healthy ones  [28]. As a result, a penalty function can be 
considered in order to weight against an increasing number 
of damaged elements. Accordingly, many researchers have 
utilized this approach for their proposed objective func-
tions  [29, 30]. Similarly, in this study, a penalty-function 
by integrating into a damage-sensitive cost function based 
on vibration data is established. The Shuffled Shepherd 
Optimization Algorithm (SSOA) presented by Kaveh and 
Zaerreza  [31] is employed to solve the damage detection 
problem. The reason for selecting SSOA is due to its low-
level accuracy in detecting damaged elements when it is 
applied to solve the problem using WBS. However, when 
the SSOA utilizes the BS in the optimization process, it 
predicts the location and extent of damage with a high 
level of accuracy. In the body of the SSOA, the position of 
community member obtained for a given problem in each 
community not only moves toward the better members but 
also tends to move the worse members. This concept has 
caused SSOA to have appropriate performance in differ-
ent optimization problems [32]. To evaluate the capability 

of the proposed cost function using BS, four test exam-
ples including a 25-bar planar truss, a 40-element continu-
ous beam, a 23-element asymmetrical planar frame, and a 
large-scale 72-bar spatial truss are examined. The obtained 
results are compared with the three well-known parame-
ter-less optimizers: Teaching-learning based optimization 
(TLBO) [33], Grey Wolf Optimizer (GWO) [34], and Moth-
flame Optimization Algorithm (MFO) [35]. Furthermore, 
the robustness of the BS in comparison to WBS is studied 
in different optimization methods and cost functions. 

The rest of this paper is organized as follows: in Section 2, 
a general review of the SSOA is presented. Section 3 pro-
vides the formulation of the problem under consideration 
and introduces BS. Numerical examples are presented in 
Section 4 and the obtained results are discussed. Concluding 
remarks are finally driven in Section 5. 

2 Shuffled Shepherd Optimization Algorithm (SSOA)
Shuffled Shepherd Optimization algorithms (SSOA) is 
a  new multi-community population-based metaheuristic 
introduced by Kaveh and Zaerreza [31]. This optimization 
method mimics the behavior of shepherds in nature. In this 
method, firstly, members of each community are randomly 
generated. Next, the shuffling process is performed to 
enhance survivability by sharing information in the search 
process. This process leads to the possible improvement of 
the community based on the exchange of its information 
with other communities. In the SSOA, to calculate the new 
position of each member in each community, the better 
and worse members are randomly selected from the com-
munity of which the member under consideration belongs. 
Then, if the objective function value of the newly calcu-
lated position is better than the previously generated one, 
the newly obtained position will be replaced by the previ-
ous one. Finally, the optimization process will be termi-
nated if the termination condition is fulfilled.  

2.1 Steps of SSOA
The steps of SSOA are characterized by five main steps [36]. 
These steps are as follows:

1.	 Forming the initial community members
2.	Shuffling process
3.	 Movement of community member
4.	 Updating the position of each community member
5.	 Termination condition of SSOA
In the following, the above-mentioned steps are 

described, and their mathematical interpretations are given.
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2.1.1 Forming the initial community members
In the SSOA, the initial positions of members of commu-
nities (MOC) are determined with a randomly generated 
population in a d-dimensional search space:

MOC x x x

i c j nm
i j min max min, ;

, , , , , , ,

0

1 2 1 2

� � � �� �
� � � �

r

and

	 (1)

where r is a random vector in which each component is 
generated between 0 and 1; xmin and xmax denote the min-
imum and maximum permissible values, respectively; c 
and nm refer to the number of communities and number 
of members that belong to each community, respectively. 
Since each community has nm members and total num-
bers of communities are equal to c, the population size is 
calculated as: 

nPop c nm� � .	 (2)

2.1.2 Shuffling process 
The shuffling process denotes to merging communi-
ties into one community and building new communities. 
Accordingly, initially, the entire population (nPop) is sorted 
based on the quality of solutions. Next, in order to form the 
MC matrix (see Eq. (3)), nPop are grouped into c communi-
ties in which each community has the nm members. To this 
end, in the first step, the first c members are selected from 
the sorted population and are randomly assigned to c com-
munities so that each community has one member so far. 
Thus, the first column of the MC matrix was formed. In the 
next step, the next c members are selected from the remain-
ing population and are again assigned to the c communities 
randomly. Therefore, the second column of the matrix was 
obtained as well. This process is repeated nm times until all 
c communities form with nm members. Consequently, the 
MC matrix is achieved as follows:

MC

MOC MOC MOC MOC

MOC MOC MOC MOC
j nm

j nm

�

1 1 1 2 1 1

2 1 2 2 2 2

. , , ,

, , , ,

� �

� �

� �� � � � �
� �

� � � � � �
�

MOC MOC MOC MOC

MOC MOC MOC

i i i j i nm

c c c j

, , , ,

, , ,

1 2

1 2 �� MOCc nm,

,

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

	 (3)

in which MOCi,j refers to the jth member of the ith commu- 
nity. According to the MC matrix (Eq. (3)), each row illus- 
trates the members belonging to each community. Further-
more, the first column denotes the members of each com-
munity that have the best quality, and members placed in 
the last column are the worst members of each community. 

2.1.3 Movement of community member 
After forming MC matrix, the stepsize of each MOCi, j is 
calculated based on two vectors. For this purpose, for each 
MOCi, j, the members that have the better and worse objec-
tive function values than MOCi, j are selected randomly. 
These members called MOCi,b and MOCi,w, respectively. 
In SSOA, MOCi, j not only moves toward the MOCi,b but 
also tends toward the MOCi,w. Moving MOCi, j toward the 
MOCi,b indicates its intensification tendency. In contrary, 
tending MOCi, j toward the MOCi,w shows its diversification 
tendency. This concept is schematically shown in Fig.  1 
and is mathematically stated as follows:

stepsize stepsize stepsize

i c
i j i j

Worse
i j
Better

, , ,

, , ,

� �

� �1 2 and jj nm� �1 2, , , ,

	 (4)

where stepsizei, j
Worse and stepsizei, j

Better are defined as follows:

stepsize MOC MOCi j
Worse

i w i j, , ,� � � �� �� r1 ,	 (5)

stepsize MOC MOCi j
Better

i b i j, , ,� � � �� �� r2 ,	 (6)

in which stepsizei, j
Worse and stepsizei, j

Better are the stepsize vec-
tors with d design variables. These vectors respectively 
illustrate diversification and intensification tendencies of 
the algorithm; r1 and r2 are random vectors in which each 
component is generated between 0 and 1. Since MOCi,nm is 
placed in the last column of the MC matrix (Eq. (3)), it does 
not have a member worse than itself. Thus, stepsizei, j

Worse 
(Eq. (5)) is equal to zero. Similarly, stepsizei, j

Better will be 
equal to zero because MOCi,1 does not have member better 

Fig. 1 A schematic of position updating in SSOA
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than itself. α and β are the parameters that control explo-
ration and exploitation, respectively. These parameters are 
defined as follows: 

� � �� � �0 0 t ,	 (7)

� � � �� � �� �� �0 0max t t it
Maxit

; ,	 (8)

in which it and Maxit denote the iteration and the maxi-
mum number of iterations. According to Eqs. (7) and (8), 
α and β are among the most important parameters of the 
SSOA in that they control the balance between exploration 
and exploitation tendencies. In this regard, here, decreas-
ing α and increasing β respectively lead to explore the 
search space more efficiently in the early iterations and 
search around the better solutions in the last iterations.

2.1.4 Updating the position of each community member
In this step, first, the new position of each community 
member is determined as:

newMOC MOC stepsizei j i j i j, , ,� � ,	 (9)

where newMOCi, j is the new position of jth member of 
the ith community. Then, its corresponding objective 
function is evaluated. In order to decide which positions  
(newMOCi, j or MOCi, j) return to the population, the 
replacement strategy is applied. Accordingly, the objec-
tive function value of newMOCi, j and MOCi, j are com-
pared, and the better one is returned to the population.   

2.1.5 Termination condition of SSOA 
In SSOA, the maximum number of iterations (Maxit) is 
considered as a stopping criterion. Hence, if the current 
iteration is smaller than Maxit, SSOA returns to Step 2 
for a new round of iteration. Otherwise, the algorithm ter-
minates, and the best community member is reported. 
The pseudo-code of SSOA is provided in Algorithm 1.

3 Structural damage detection approach 
In this section, first, the theoretical background of the 
inverse damage detection problem including damage mod-
eling and obtaining vibration data are presented. The sec-
ond section provides the proposed damage-sensitive cost 
function. An efficient strategy to solve the problem is 
finally introduced in the last section. 

3.1 Theoretical background
In the vibration-based damage detection method, the main 
modal parameters including natural frequency and mode 

shapes vector of a vibrating structure can be calculated by 
the following equation:

K i ndofi i�� � � � ��� ��2
0 1 2; , , , ,	 (10)

where ωi and φi are natural frequency and mode shape 
vector in ith mode, respectively; M and K are respectively 
the mass and stiffness matrix with the size of ndof × ndof. 

An approach that extensively use to model damage, 
considers damage as the reduction of stiffness characteris-
tics such as modulus of elasticity (E), cross-sectional area 
(A), and moment of inertia (I) [30]. In this method, it is 
considered that mass changes before and after damage are 
negligible. Similarly, here, damage is modeled as a relative 
reduction of E in each structural element such that: 

RF x xe e e� �� � � �1 0 1; ,	 (11)

E RF E e ntee
d

e e
h� � � �; , , ,1 2 ,	 (12)

in which xe is the damage ratio of the eth element; nte is 
the total number of structural elements; Ee

h and Ee
d denote 

modulus of elasticity of the eth healthy and damaged 
elements, respectively; xe = 0 indicates that the element 
is healthy, while xe = 1 shows that the element is fully 
damaged. By considering this, the total stiffness matrix 
of structures is equal to the summation of the stiffness 
matrix of damaged and healthy elements:

Algorithm 1 Framework of SSOA

The procedure of Shuffled Shepherd Optimization Algorithm (SSOA) 
begin
Set the algorithm parameters; α0, αmax, and β0

Initialize number of members belong to each community (nm) and 
number of communities (c), and termination criterion (Maxit)
Generate the initial candidate solutions and evaluate them.
while (termination criterion not satisfied) do

for j:1 to nm
select the c members from the remaining population based on 
the quality of solutions.
put c selected members randomly in the jth column of the MC 
matrix.

end for
for i:1 to c

for j:1 to nm
Select MOCi,b and MOCi,w randomly for MOCi, j

Calculate movement of MOCi, j using Eq. (4)
Updating the position of each community member based 
on step 4.

end for
end for

end while
end
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K RF k
e

nte

e e� �
�
�

1

	 (13)

where ke is the stiffness matrix of the eth element. 

3.2 Proposed objective function
In this section, the proposed cost function is presented in 
detail. Damage occurrence leads to changes in natural fre-
quencies and corresponding mode shapes of the structure 
before and after the damage. Although natural frequen-
cies changes as a result of damage occurrence can be eas-
ily obtained, its alterations are low-sensitive to damage 
[37,  38]. Therefore, minor structural damage cannot be 
solely identified by the natural frequency changes. Mode 
shapes in comparison to natural frequencies include local 
information which leads to their more sensitivity to local 
damages. Thus, considering mode shapes make them be 
used directly in multiple damage detection. Furthermore, 
mode shapes are less sensitive to environmental effects 
(e.g. temperature) than natural frequencies. However, 
measuring mode shapes requires the use of many sensors, 
which are measured with lower accuracy than natural fre-
quencies. As a result, they are more susceptible to noise 
contamination than natural frequencies [28, 39]. In order 
to tackle the drawbacks of each main modal parameters 
(natural frequencies and mode shapes), in this paper, the 
combination of them is considered. Accordingly, a dam-
age-sensitive cost of the optimization problems will be 
made up of two functions. The first function is a pen-
alty function that weights against an increasing number 
of damaged elements. The second function is considered 
the combination of natural frequency and mode shapes. 
Since the effect of measurement noise leads optimization 
algorithms to predict many structural elements as dam-
aged ones, a penalty function is considered against the 
increasing of damaged elements. The damage-sensitive 
cost function used for damage identification in this paper 
is established as follows: 

Find x x x xnte
T

eX � ��� �� � �1 2 0 1, , , ; ,	 (14)

where vector X specifies the ratio of structural damage.  

Minimize F X F X P X G X� � � � � � � � �� �� � �; 1 � ,	 (15)

where F(X) is the proposed cost function; γ is the penalty 
factor (equal to 0.5 in this study), and P(X) and G(X) are 
respectively penalty function and the cost function with-
out penalty:

P X
m X
nte

d

� � � � � ,	 (16)

G X R MAC i i
i

nmod
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�
�
1

1 , ,	 (17)

where md(X) is the number of damaged elements found by 
the metaheuristic algorithm in the solution X; nmod num-
ber of used modes and Ri and MAC(i,j) are calculated as 
follows:

R MAC i ii
i
d

i
a

i
dT

i
a

i
dT

i
d

i
aT

i
a

�
� �
� �
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�� �

�� � �� �
�

�

� �
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2

2

2

, , ,	 (18)

in which ωi and φi represent the ith natural frequency and 
its corresponding mode shape, respectively. The super-
script d and a stand, respectively, for the damaged model 
and the analytical one, and MAC represents the modal 
assurance criteria (MAC).

3.3 The Boundary Strategy (BS) in metaheuristic based 
damage detection
Structural damage identification problem using finite ele-
ment model updating is a highly complex problem with lots 
of local optimum. Despite a lot of effort has been devoted to 
the damage detection methods utilizing metaheuristic algo-
rithms, it is observed some shortcomings in damage detec-
tion results. Some of them are mentioned below: (1) when 
too many design variables are involved in the problem, 
some metaheuristic algorithms cannot find the location and 
extent of damage properly or may not predict it with a high 
level of accuracy. For instance, Mishra et al. [25] employed 
10  metaheuristic algorithms for solving the problem. 
The obtained results revealed that most of the investigated 
algorithms are not capable of identifying damaged elements 
properly; (2)  there is a high probability of being trapped 
in local optima when some metaheuristic algorithms are 
applied. As a result, the algorithms fail to find the global 
optimum solution as the damage detection results. 

In order to alleviate these handicaps, here, a simple 
strategy is proposed for damage detection problems using 
metaheuristic algorithms. This strategy is called Boundary 
Strategy (BS). In this strategy, the effects of structural ele-
ments that are related to the healthy ones are gradually 
neutralized in the optimization process. 

In BS, first of all, the lower and upper bounds of design 
variables are respectively set to be -1 and 1 instead of 0 and 
1 in WBS. Then, the metaheuristic algorithm is executed. 
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Before evaluating the objective function of each agent 
in each step, the vibration characteristics of the analyt-
ical model (like modal data) should be calculated first 
according to Section 3.1. Hence, in order to calculate RFe 
in Eq. (11), the value of each solution component should 
be changed to zero if it is negative. This is because the 
extent of damage in each structural element according to 
this equation is placed in  [0,1] interval. In other words, 
when the vibration characteristic of the model structure 
is calculated, each solution component smaller than zero 
is changed to zero. It is worth mentioning that this change 
from [-1,1] to [0,1] is only performed to calculate the RFe 

in Eq. (11) and is not returned to the optimization process. 
This means that the values of the design variables remain 
unchanged so that each of them is placed in [-1,1] interval 
during the course of optimization. 

The BS causes the design variables related to healthy 
elements to be in [-1,0] interval. When any design variable 
among all solutions of the population placed in this interval, 
it traps in this range. As a result, the effect of the respective 
design variable is neutralized from the course of the opti-
mization process. SSOA as a population-based metaheuris-
tic algorithm is considered to evaluate the capability of BS 
in comparison to WBS. The reason for choosing the SSOA 

Fig. 2 Flowchart of the SSOA using BS for damage detection
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is due to its many false alarms in damage detection results 
when WBS is applied. The flowchart of SSOA for damage 
detection using BS is provided in Fig. 2.    

4 Numerical examples
In this section, four numerical examples are studied to 
show the capability and efficiency of the proposed method. 
These examples are as follows: a 25-bar planar truss, a 
40-element continuous beam, a 23-element asymmetrical 
planar frame, and a large-scale 72-bar spatial truss. 

All numerical case studies are investigated in two 
states. The first is the ideal condition in which input data 
are not contaminated by measurement noise. The second 
deals with the noisy condition in which each component 
of eigenvalue and eigenvector are contaminated with mea-
surement noise as:  

input input randnoise � � � �� �1 � ,	 (19)

where inputnoise and input are natural frequencies value or 
mode shape vector in the noisy and ideal states, respec-
tively. rand is a random number between -1 and 1, and σ 
is the intensity of the applied noise. In this paper, natural 
frequencies and corresponding mode shapes vectors are 
contaminated with 1 % and 3 % noise, respectively.  

In order to compare the ratio of the identified and actual 
damage, an error index is defined as follows:

Error
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�100
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%
,	 (20)

in which ADe is the actual damage ratio and IDe is the 
identified damage ratio. 

SSOA is employed for solving the damage detection 
problem as an optimization one. The algorithm parameters 
in all test examples are assumed to be as follows: m = 4, 
n = 5, Maxit = 1000, α0 = 0.5, β0 = 2, and βmax = 2.5. Three 
other well-known parameter-less metaheuristics including 
Teaching-learning-based optimization (TLBO), Grey Wolf 
Optimizer (GWO), and Moth-Flame Optimization (MFO) 

are run with the same maxNSAs, and their obtained results 
are compared with those found by the SSOA. In all cases, 
the number required structural analyses (NSAs) is calcu-
lated. For this purpose, an iteration in which differences 
between its corresponding cost function value and cost 
function value of the Maxit is smaller than 10–6 is found. 
Next, the obtained iteration is multiplied to the population 
size, which gives NSAs.

All investigated structures are modeled numerically 
in the MATLAB environment and are analyzed using the 
direct stiffness method. 10 independent runs are executed 
in all test examples to get statistically meaningful results. 
The average values of the obtained results are reported in 
the figures. The healthy elements which have negative val-
ues in the vector of the best solution using BS are consid-
ered equal to zero. Thus, zero values in all bar figures indi-
cate that the respective element is healthy. It should be noted 
that in the first three test examples, the first five vibration 
modes are utilized for identifying damage, whereas in the 
last large-scale example this value is considered 12.

4.1 25-bar planar truss
The first example is considered a 25-bar planar truss as 
depicted in Fig. 3. This example has 12 nodes and 21 degrees 
of freedom (DOFs). For each element, the modulus of elas-
ticity, material density, and cross-sectional area are respec-
tively as follows: E = 200 GPa and ρ = 7780 kg/m3, and 
A = 10 cm2. Table 1 provides two different damage scenarios.

In this example, the capability of using BS in compar-
ison to using WBS is investigated. For this purpose, the 
average values of damage detection results found by SSOA 
using BS and WBS in different scenarios are depicted in 
Figs. 4 and 5, respectively. A close examination of these 
figures reveals that the results obtained by using BS are 
much better than those found by using WBS in all cases. 
In other words, using BS localized and quantified damaged 
elements precisely even when the input data are contam-
inated by measurement noise. In contrast, applying WBS 
shows that all elements have damage even for the ideal 

Fig. 3 Finite element model of the 25-bar planar truss
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state. The statistical results gained via SSOA using BS 
and WBS for two different damage scenarios in the case 
with noise and without noise are given in Table 2. From 
this table, in both damage scenarios, the statistical results 

using BS are significantly better than those obtained by 
using WBS. For further investigation, it can be seen that 
using BS decreases NSAs more than 50  % in compari-
son to using WBS in both damage scenarios. Moreover, 
the error index (calculated according to Eq. (20)) obtained 
from utilizing BS in comparison to WBS is considerably 
is low and close to zero value in all cases. It can be con-
cluded that unlike employing WBS for damage detection, 
applying BS has high acceptable accuracy.

Table 1 Two different damage scenarios in the 25-bar planar truss

Scenario I II

Element no. 2 21 3 7 15 20

Damage ratio (%) 25 10 20 25 20 25

(a)

(b)
Fig. 4 Average value of damage detection results for the scenario I of the 25-bar planar truss (a) using BS, and (b) WBS

(a)

(b)
Fig. 5 Average value of damage detection results for scenario II of the 25-bar planar truss (a) using BS, and (b) WBS
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Table 2 Statistical damage identification results in the 25-bar planar truss for both damage scenarios in the case with noise and without noise

Scenario Noise 
level

Actual 
location Actual ratio

BS WBS

Avg. value Std. value Avg. value Std. value

I

Noise-free

2 25 25 9.72E-7 42.42 6.0536

21 10 10 2.89E-6 27.16 5.6981

Error (%) 1.34E-7 9.09E-8 19.7787 7.1536

NSAs 7126 19800

Noisy

2 25 25 0.4195 41.68 5.9545

21 10 10.24 1.7127 28.84 5.6336

Error (%) 0.1532 0.1011 21.1405 5.9146

NSAs 9986 19822

II

Noise-free

3 20 20 4.72E-7 33.57 3.5304

7 25 25 1.50E-6 39.51 13.2814

15 20 20 5.17E-6 21.27 14.8681

20 25 25 2.00E-6 36.21 3.1153

Error (%) 3.33E-7 6.04E-8 14.4617 3.9270

NSAs 4808 19802

Noisy

3 20 20.29 0.1928 36.51 8.0478

7 25 27.34 0.0516 47.31 11.5700

15 20 21.04 0.2180 33.06 17.3246

20 25 24.07 0.0520 37.77 4.2017

Error (%) 0.2081 0.0456 18.7160 4.9669

NSAs 7120 19896

4.2 40-element continuous beam 
A 40-element continuous beam is considered as the second 
test example to verify the capability of the proposed method. 
The finite element model of the beam is given in Fig.  6.  
Each node of this beam has 2 DOFs and only the vertical 
components of the supports have been limited. Therefore, 
the total DOFs becomes 79. In this case study, both the width 
and height of each element are equal to 15 cm. The mod-
ulus of elasticity and material density for all elements are  
E = 210 Gpa and ρ = 7860 kg/m3, respectively. Two different 
damage scenarios as presented in Table 3 are considered. 

In this example to evaluate the performance of SSOA, 
three other well-known optimization algorithms includ-
ing TLBO, GWO, and MFO are considered for compari-
son. For this purpose, the average results obtained by these 
algorithms using BS are compared with the results found 

by SSOA. These comparisons for the damage Scenarios I 
and II are presented in Figs. 7 and 8, respectively. A close 
examination of these figures shows that by applying BS, 
SSOA could gain much better results than other optimiza-
tion methods whether the input data are contaminated with 
noise or not. For further inspection to show the efficiency 
of the proposed method in the case when TLBO, GWO, 
and MFO are employed for detecting damaged elements, 
Fig. 9 provides the results using WBS for the second dam-
age scenario in the noisy state. As can be shown in this 

Fig. 6 Finite element model of the 40-element continuous beam

Table 3 Two different damage scenarios in the 40-element continuous 
beam

Scenario I II

Element no. 7 20 37 2 6 8 26 32

Damage ratio (%) 35 10 60 45 55 20 55 60
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(a)

(b)
Fig. 7 Comparison of the average value of damage detection results from different metaheuristics for the scenario I of the 40-element continuous 

beam in: (a) noise-free state, (b) noisy state

(a)

(b)
Fig. 8 Comparison of the average value of damage detection results from different metaheuristics for the scenario II of the 40-element continuous 

beam in: (a) noise-free state, (b) noisy state

Fig. 9 Comparison of the average value of damage detection results using WBS found by MFO, GWO, and TLBO for scenario II of the 40-element 
continuous beam in the noisy state
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figure and Fig. 8(b), it can be concluded that when BS in 
comparison to WBS is employed, the results obtained by 
BS are much better than those found by using WBS.   

Table 4 gives statistical results for investigated algo-
rithms together with the results found by SSOA when BS 
is employed. These statistical results are including average 
values of damage ratios, Errors, and NSAs. The standard 
deviations of damage ratios and Errors are given in this 
table as well. All these values reveal that SSOA reaches the 
best results among the other algorithms in both ideal and 
noisy states. The most important point is that the average 
NSAs obtained by SSOA is significantly smaller than the 
other algorithms in all cases. Likewise, from the inspecting 
of Tables 4 and 5 in damage Scenario II of the beam, it can 
be seen that when BS is applied, TLBO, MFO, and GWO 
algorithms gain better results than when WBS is employed. 

4.3 23-element asymmetrical planar frame 
The third test example is considered a 23-element asym-
metrical planar frame. The finite element model of this 
frame is made up of 23  elements, which include 14  col-
umns and 9 beams as illustrated in Fig. 10. The frame has 
14  free nodes and each node has three DOFs, leading to 
42 total DOFs. For beam elements, the cross-sectional area, 
mass per unit length, and moment of inertia are respec-
tively equal to Abeam = 1.62 × 10–2 m2, m̅ = 1300 kg/m, and 
Ibeam  =  3.85  ×  10–4  m4, whereas these values for column 
elements are respectively equal to Acolumn = 1.6 × 10–2 m2, 
m̅ = 125.6 kg/m, and Icolumn = 3.5 × 10–4 m4. Furthermore, 
modulus of elasticity and material density for all ele-
ments are the same and respectively equal to E = 200 GPa 
and ρ = 7850 kg/m3. Two different damage scenarios are 
assumed as presented in Table 6.

Table 4 Comparison of statistical damage identification results using BS in the 40-element continuous beam for both damage scenarios in the case 
with noise and without noise

Scenario State Actual 
location

Actual 
ratio

SSOA TLBO MFO GWO

Avg. value Std. value Avg. value Std. value Avg. value Std. value Avg. value Std. value

I

Noise-free

7 35 35 1.66E-6 34.97 0.1922 28.96 14.6466 30.78 10.2790

20 10 10 2.88E-6 10.05 0.1135 6.92 6.3282 4.27 5.1799

37 60 60 3.98E-7 60.04 0.0393 60.70 1.0909 60.17 0.1289

Error (%) 1.17E-7 4.79E-8 0.0997 0.0882 1.4111 1.7126 0.8636 0.6306

NSAs 3964 13828 13714 18972

Noisy

7 35 34.96 3.11E-5 33.81 0.6507 24.31 15.9213 30.88 10.3096

20 10 10.70 6.87E-5 7.66 3.8591 3.67 5.6206 3.72 4.5616

37 60 59.97 7.53E-6 59.62 0.1730 42.11 27.5657 60 0.1774

Error (%) 0.0194 1.77E-6 0.3624 0.2221 2.1939 1.5369 0.8746 0.7454

NSAs 5400 14764 8066 18702

II

Noise-free

2 45 45 1.36E-4 44.73 1.4099 40.91 13.9595 31.15 20.4255

6 55 55 3.08E-5 49.34 16.4525 44.58 22.4081 49.26 16.4396

8 20 20 9.79E-6 16.29 8.2478 11.83 9.7590 0.40 1.1870

26 55 55 5.52E-5 49.47 16.5006 55.23 2.9115 44.34 22.1782

32 15 15 1.11E-4 13.77 5.0890 9.48 7.9751 1.80 3.6374

Error (%) 3.06E-6 8.96E-6 1.2417 1.7322 2.4310 3.4466 3.2446 2.5940

NSAs 9920 16632 11338 19696

Noisy

2 45 44.44 0.0843 42.15 14.1305 33.49 21.9301 29.82 19.3838

6 55 54.88 0.0990 49.44 16.4957 54.66 1.9565 50.03 16.6915

8 20 22.09 0.2129 14.85 7.4640 9.39 9.5739 3.50 5.3420

26 55 54.74 0.0687 49.39 16.4998 49.45 16.5186 55.11 1.3397

32 15 15.77 0.7954 13.90 2.2986 6.23 6.3742 0.34 1.0284

Error (%) 0.1597 0.0855 1.4316 1.6151 1.9666 1.5646 2.7639 2.0630

NSAs 8422 16120 10534 19760
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Table 5 Comparison of statistical damage identification results obtained by different algorithms using WBS for scenario II of the 40-element 
continuous beam in the case with noise and without noise

Noise level Actual 
location Actual ratio

TLBO MFO GWO

Avg. value Std. value Avg. value Std. value Avg. value Std. value

Noise-free

2 45 36.12 18.0612 35.78 30.7190 35.75 17.8866

6 55 54.72 1.1301 60.99 21.8961 49.24 15.0559

8 20 20.76 1.0692 37.69 19.6206 8.73 9.6139

26 55 54.93 0.6419 65.84 10.2809 49.78 16.6101

32 15 13.07 4.7426 25.40 25.7395 7.96 6.8583

Error (%) 0.8986 0.9816 22.3001 15.7348 2.8388 2.1340

NSAs 16144 18596 19884

Noisy

2 45 44.34 3.3786 35.57 23.8740 35.29 16.3648

6 55 49.13 16.3893 49.20 25.3673 49.95 16.6521

8 20 18.98 6.8690 26.67 20.8168 6.50 8.3067

26 55 48.91 16.3765 55.83 19.8007 54.92 1.2156

32 15 9.88 8.3634 26.53 17.0036 6.34 5.6541

Error (%) 1.4825 1.7455 13.6565 12.0996 3.1814 1.8289

NSAs 16256 16122 19890

In this example, to verify the superiority of the pro-
posed cost function, one other cost function is investigated 
here for comparison. This cost function consists of three 
parts. The first and second parts are respectively related 
to the discrepancy between natural frequencies and mode 
shapes of the measured structure and analytical model. 

The third part is a penalty against too many damage loca-
tions so that it weights against an increasing number of 
damage locations. This cost function is as follows [40]:
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Like the previous examples, it is assumed that the first 
five mode's data are available for comparison. The aver-
age of damage detection results by employing the F(X) 
and E(X) and using BS for both damage scenarios are pre-
sented in Fig. 11. Although in both damage scenarios both 
examined cost functions can identify damaged elements, 
there are many false predictions for the results found by 
E(X). Moreover, F(X) using BS can precisely locate the 
actual location of both damage scenarios in this frame, 
even for noisy state. To compare the results obtained by 
BS with those found by WBS using E(X), Scenario  II 
of this frame in the case with noise and without noise is 
selected for comparison as depicted in Fig. 12. As can be 
seen, when WBS is employed, the results significantly get 
worse and the error index is increased. When E(X) using 
WBS is incorporated by BS, the obtained results get much 
better even for noise-contaminated data. In this regard, it 
can be concluded that the BS is capable to improve the 
performance of E(X) as well. 

For further examination, Table 7 provides the statisti-
cal results consisting of the average and standard devia-
tion values of damage ratios and errors. Furthermore, the 

Fig. 10 Finite element model of the 23-element asymmetrical planar 
frame

Table 6 Two different damage scenarios in the asymmetrical 
23-element planar frame

Scenario I II

Element no. 4 10 4 18 21

Damage ratio (%) 15 25 15 35 20
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(a)

(b)
Fig. 11 Comparison of damage detection results for the 23-element asymmetrical planar frame obtained from the SSOA using two different cost 

functions for (a) Scenario I, and (b) Scenario II

Fig. 12 Obtained damage detection results for Scenario II of the 23-element asymmetrical planar frame using E(X) and WBS in the noisy condition 

Table 7 Comparison of statistical damage identification results obtained by different cost functions for both scenarios of the 23-element asymmetrical 
planar frame in the case with noise and without noise

Scenario Noise level Actual 
location Actual ratio

BS, using F (X) BS, using E(X) WBS, using E(X)

Avg. value Std. value Avg. value Std. value Avg. value Std. value

I

Noise-free

4 15 15 1.26E-6 6.00 7.35 20.71 10.8528

10 25 25 5.55E-7 20.01 10.01 30.46 15.1078

Error (%) 9.84E-8 5.11E-8 1.7533 1.7458 11.9748 10.1250

NSAs 3538 7004 19320

Noisy

4 15 14.56 0.0823 9.47 7.7532 20.67 13.6939

10 25 24.19 0.0090 17.28 11.3157 36.37 10.8711

Error (%) 0.0754 0.0171 1.3798 1.6445 12.3229 6.4175

NSAs 5824 4326 19282

II

Noise-free

4 15 15 7.39E-7 11.94 5.9714 25.58 13.4528

18 35 35 7.34E-6 27.33 13.7262 29.90 30.4757

21 20 20 2.17E-6 18.09 6.0329 18.24 20.0152

Error (%) 3.88E-7 2.19E-7 2.2448 4.1413 16.8918 7.1453

NSAs 4002 10066 19840

Noisy

4 15 14.58 8.94E-7 13.64 12.5562 16.78 16.1385

18 35 35.65 5.9E-6 5.92 17.7746 34.59 37.1335

21 20 21.60 1.49E-6 13.18 12.4078 14.91 16.9992

Error (%) 0.1166 2.42E-7 4.3392 3.3973 18.5783 9.2930

NSAs 3282 7544 19388
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average of NSAs in both cost functions for both damage 
scenarios is presented in this table. A close examination of 
this table reveals that: (1) the average of identified damage 
is much close to actual damage in all cases when F(X) is 
employed using BS. (2) the average and standard deviation 
of errors determined by F(X) are much better than E(X). 
(3) the average NSA in the case F(X) is employed for dam-
age detection is much better than those obtained by E(X). 
As a result, in a general view using F(X) has better perfor-
mance than using E(X).

4.4 72-bar spatial truss
The last example is considered a 72-bar spatial truss as 
a large-scale test example. Four nonstructural masses are 
added to the fourth story nodes in which each mass has 
the weight equal to 2270 kg as shown in Fig. 13. The truss 

Fig. 13 Finite element model of the 72-bar spatial truss 

Table 8 Two different damage scenarios in the 72-bar spatial truss

Scenario I II

Element no. 5 1 21 37

Damage ratio (%) 30 25 20 30

(a)

(b)
Fig. 14 Damage detection results obtained by SSOA for the 72-bar spatial truss: (a) Scenario I, (b) Scenario II
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Table 9 Comparison of statistical damage identification results for both scenarios of the 72-bar spatial truss in the case with noise and without noise

Scenario Noise level Actual location Actual ratio Avg. value Std. value

I

Noise-free

5 30 30 0.0088

Error (%) 2.89E-4 9.14E-4

NSAs 11704

Noisy

5 30 30.85 0.0606

Error (%) 0.0407 0.0433

NSAs 9978

II

Noise-free

1 25 25.03 0.1069

21 20 20.21 0.5871

37 30 29.82 0.4998

Error (%) 0.0323 0.1020

NSAs 11809

Noisy

1 25 25.31 0.2523

21 20 19.76 1.4704

37 30 29.38 0.3828

Error (%) 0.1626 0.1673

NSAs 16436

has 16 free nodes, leading to 48 active DOFs. For each 
element, the modulus of elasticity, material density, and 
cross-sectional area are respectively E = 69.8 GPa and 
ρ = 2770 kg/m3, and A = 25 cm2. Two different damage 
scenarios are considered as given in Table 8. 

Fig. 14 presents the average value of damage detection 
results in the case with noise and without noise for both 
damage scenarios. From this figure, although the structure 
has many elements, it is clear that even in the noisy condi-
tion all damaged elements are identified with a high level 
of accuracy. Like previous examples, the statistical results 
in both noise-free and noisy states for damage Scenarios I 
and II are provided in Table 9. A close investigation of this 
table reveals that the number of successful runs is equal to 
100 %, and the proposed method can detect damaged ele-
ments with a maximum average error equal to 0.1626 %.

5 Conclusions
This study presents a new strategy called Boundary 
Strategy (BS) in the process of optimization-based dam-
age detection problem. In this strategy, despite the conven-
tional damage detection methods that only zero values in 
the vector of design variables represent healthy elements, 

the range between -1 and 0 represents healthy ones. BS 
gradually neutralizes the effects of structural elements 
that are healthy in the optimization process. This strat-
egy leads to the complexity of the search space decreases. 
Shuffled Shepherd Optimization Algorithm (SSOA) as 
a new multi-community metaheuristic is considered to 
solve the problem. The damage-sensitive cost function is 
established by utilizing vibration data with a penalty func-
tion. To evaluate the capability of the proposed method, 
several examples were considered. They include a 25-bar 
planar truss, a 40-element continuous beam, a 23-element 
asymmetrical planar frame, and a large-scale 72-bar spa-
tial truss. In the first numerical examples, the performance 
of the BS in comparison to WBS in identifying and quan-
tifying damage was examined. The SSOA was compared 
with three well-known metaheuristics namely TLBO, 
GWO, and MFO in the second example. In the third exam-
ple, the proposed cost function was compared with one 
other cost function. In the last example, a large-scale truss 
with 72 design variables is checked with the proposed BS. 
All obtained results indicate that SSOA considering BS 
and the proposed cost function have proper functioning 
for both noisy state and large-scale problems. 
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