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Abstract

One of the most crucial geotechnical engineering problems is the stability of slopes that are still attracting scientists and engineers. 

In this study, five recently developed meta-heuristic methods are utilized to determine the Critical Failure Surface (CFS) and its 

corresponding Factor of Safety (FOS). Through the FOS calculations, the Finite Element Method (FEM) is employed to convert the 

strong form of the main differential equation to a weak form. Additional to the general loading, seismic forces and seepage effect 

are considered, as well. Finally, the proposed optimization procedure is applied to numerical benchmark examples, and results are 

compared with other methods.
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1 Introduction
One of the most crucial geotechnical engineering prob-
lems is the stability of slopes that are still attracting sci-
entists and engineers. Over the years, the analysis of this 
problem has advanced from tedious manual calculations 
to high-level computer algorithms. Hence, the researcher's 
comprehension of the stability of slopes has improved due 
to the ameliorate of computational methods. In the slope 
stability problems, one of the critical aims is to evaluate the 
Factor of Safety (FOS) corresponding with the critical fail-
ure surface of the slope. Usually, the evaluation of FOS is 
executed by widely popular Limit Equilibrium Techniques 
(LETs). There are several well-known and efficient 
LET, such as Fellenius [1], Bishop and Morgenstern [2], 
Morgenstern and Price [3], and Spencer [4] to estimate the 
FOS of slopes against failure.

A complete slope stability analysis requires investigation 
of the Critical Failure Surface (CFS) corresponding to the 
minimum FOS among all probable Trial Failure Surfaces 
(TFS). There are some traditional methods, such as the grid 
search method, to detect a CFS. Also, some researchers, 
such as Baker and Garber [5], Chen and Shao [6], Celestino 
and Arai and Tagyo [7], He et al. [8] and Varga and Czap [9], 
have utilized classical optimization procedures. Examples 

of these methods are variation, simplex method, and con-
jugate-gradient method to calculate the minimum FOS. 
Although these conventional methods are robust, straight 
forward, and swift, however, it is possible to get trapped 
to a local minimum due to consideration of a smaller num-
ber of trial failure surfaces. On the other hand, by consider-
ing more TFS, the search procedure to find the CSF will be 
impossible due to run time and allocated computer memory 
error. To overcome the mentioned drawbacks of the clas-
sical optimization methods, it is possible to utilize Meta-
Heuristic algorithms.

Nowadays, meta-heuristic algorithms have found many 
applications in different fields of applied mathematics, 
engineering, medicine, economics, and other sciences, 
Kaveh [10]. It is possible to obtain optimal or near-optimal 
solutions to the severe and even NP-complete problems 
within an affordable computational time using meta-heu-
ristic algorithms, Coello et al. [11]. They generally mimic 
a complicated or simple approach to investigate the space 
of solutions without consuming much computational costs. 
The mentioned and many other advantages encouraged 
researchers to employ meta-heuristic algorithms as opti-
mizer to different complicated optimization problems. 
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Animals' behavior such as flocking, migrating, hunt-
ing, and foraging approaches can be studied and be 
employed as swarm intelligent rules for developing effi-
cient meta-heuristic algorithms. For example, the robust 
algorithm that is known as Particle Swarm Optimization 
(PSO) is inspired by the social behavior of fish schooling 
or birds flocking [12]. Ant Colony Optimization (ACO) 
algorithm is developed by observing the pheromone-based 
communication strategy of biological ants [13]. Firefly 
Algorithm (FA) and its Enriched version [14] are proposed 
according to the luminary flashing activities of fireflies to 
attract the partners in risk warning.

Some of the meta-heuristic algorithms employ the bio-
logical evolution concepts, such as mutation, crossover, 
and natural selection. These types of methods are called 
Evolutionary Algorithms (EAs), and Genetic Algorithm 
(GA), Evolution Strategy (ES) algorithm, evolutionary 
programming (EP), and Genetic Programming (GP) are 
the most famous instances in this category [15], and [16]. 
Also, meta-heuristics can be developed based on physi-
cal laws such as Colliding Bodies Optimization (CBO) 
algorithm [17], Thermal Exchange Optimization algo-
rithm [18], and Black Holes Mechanics Optimization 
(BHMO) algorithm [19].

Another type of meta-heuristics are some algorithms 
having no clear origin, and some of them are based on 
mathematical models. The Covariance Matrix Adaptation 
Evolution Strategy (CMA-ES) algorithm [20], Eigenvectors 
of the Covariance Matrix (ECM) algorithm [21], and Sine 
Cosine Algorithm (SCA) can be categorized as this group 
of algorithms. Moreover, some methods, such as Bio-
Geography-Based Optimization (BBO) algorithm [22], 
maybe classified in more than one category. 

As seen, many methods have been established as 
meta-heuristic algorithms. Each one is successful in one 
or several search patterns and optimization problem types. 
This fact can be deducted from the No Free Lunch (NFL) 
theorem, which states that there is no universal, robust 
algorithm for all types of problems [23]. Therefore, study-
ing the new patterns, social behavior, etc., for developing 
new robust algorithms are required.

In this study, five novel meta-heuristic methods, includ-
ing Black Hole Mechanics Optimization (BHMO), Enriched 
Firefly Algorithm (EFA), Eigenvectors of the Covariance 
Matrix (ECM), Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES), and Sine Cosine Algorithm (SCA), are 
utilized to determine critical failure surface due to reduc-
tion of the FOS. The paper reports the outcomes of the 
mentioned algorithms in solving homogenous soil slope, 

layered slope considering the effect of the phreatic sur-
face resulting from steady-state seepage, and seismic anal-
ysis. To obtain more reliable analysis, the Finite Element 
Method (FEM) concepts are employed to convert the strong 
form of Richard's differential equation to the weak form. 
As a comparative study in meta-heuristic method robust-
ness, the final results of the employed algorithms are 
compared together. Also, for validation, the results of the 
current study have been verified by already available pub-
lished results of literature, such as [24–25]. Some relevant 
papers on reliability can be found in Movahedi Rad [26], 
Lógó et al. [27] and Kaveh et al. [28], Tauzowski et al. [29], 
Blachowski et al. [30].

The rest of this paper is organized as follows. Section 2 
is dedicated to the main differential equation of the fluid 
flow within a porous medium, its strong form, weak form, 
and finite element formulation. In Section 3, the utilized 
meta-heuristic algorithms have been introduced in a nut-
shell. Section 4 represents numerical examples and com-
parative deductions of employed algorithm robustness. 
Finally, Section 5 concludes the results of the current study.

2 Fluid flow equations through a porous medium
In many real-world engineering problems, it is necessary 
to model fluid flow through a porous medium such as the 
flow of water through soil, earthen dam, and through pipes 
or around solid bodies. By some considerations, their form 
of basic differential equations is alike. This section is ded-
icated to develop and present the basic formulation of fluid 
flow analysis in a porous medium. Firstly, the strong form 
of the central equation is performed, and then its weak 
form is developed for the finite element analysis. In the 
procedure of establishing the equations, the fluid is con-
sidered as an ideal one in a steady-state, not rotating, 
incompressible, and inviscid.

2.1 The Strong-Form Formulation
To derive the basic differential equation of the fluid flow 
through a porous medium, firstly, a one-dimensional con-
trol volume is considered. Then it is extended to two-di-
mensional problems. Fig. 1 illustrates a control volume for 
one-dimensional fluid flow.

According to the volume control illustrated in Fig. 1, 
Eq. (1) can be stated based on the conservation of mass.

M M Min b out+ = , (1)

where Min is the mass entering the control volume, Mb is the 
mass generated within the body, and Mout is the mass leav-
ing the control volume, all in units of kilograms or slugs.
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It is possible to restate Eq. (1) in the form of Eq. (2).

ρ ρ ρv Adt Qdt v Adtx x dx+ = + , (2)

where vx is the velocity of the fluid flow at surface edge 
x, in units of m/s or in./s. vx+dx is the velocity of the fluid 
leaving the control volume at surface edge x + dx. t is time, 
in unit of second. Q is an internal volumetric flow rate, in 
m3/s or in.3/s. ρ is the mass density of the fluid, in kg/m3 or 
slug/in.3. Finally, A is the cross-sectional area perpendicu-
lar to the fluid flow, in m2 or in.2.

To relate the velocity of fluid flow to the hydraulic gradi-
ent, the change in the fluid head with respect to x, Darcy's 
law can be employed, as stated in Eq. (3).

v K d
dx

K gx xx xx x= − = −
φ

, (3)

where Kxx is the permeability coefficient of the porous 
medium in the x-direction, in m/s or in./s. φ is the fluid 
head in m or in. Lastly, gx is the fluid hydraulic gradient or 
head gradient.

Eq. (3) states that the velocity in the x-direction is pro-
portional to the gradient of the fluid head in the same 
direction. By using Fourier's law, Eq. (4) can be stated.

v K d
dxx dx xx

x dx
+

+

= −
φ

 (4)

By Taylor series expansion, Eq. (5) can be obtained.

v K d
dx

d
dx
K d

dx
dxx dx xx xx+ = − +





φ φ
( ) , (5)

where the expansion is truncated by the two-term.
By substituting Eqs. (3) and (5) into Eq. (2), dividing Eq. (2) 

by ρAdxdt, and simplifying, the basic differential equation 
for one-dimensional problems can be stated as Eq. (6).

d
dx
K d

dx
Qxx( ) '

φ
+ = 0 , (6)

where Q' = Q/A dx is the volume flow rate per unit volume 
in units s–1. For a constant permeability coefficient, Eq. (6) 
can be converted to Eq. (7).

K d
dx

Qxx

2

2
0

φ
+ =' , (7)

where the boundary conditions are of the form φ = φB on S1, 
φB represents a known boundary fluid flow, and S1 is a 
surface.

For two-dimensional control volumes, as illustrated in 
Fig. 2, the strong form of the main differential equation 
can derive analogously. Eq. (8) states the strong form of 
the fluid flow through a porous medium in the two-dimen-
sional control volume.

∂
∂

∂
∂

+
∂
∂

∂
∂

+ =
x
K

x y
K

y
Qxx yy( ) ( ) '

φ φ
0 , (8)

with boundary conditions φ = φB on S1, and

K
x
C K

y
C cons on Sxx x yy y

∂
∂

+
∂
∂

=
φ φ

. 2 , (9)

where Cx and Cy are direction cosines of the unit vector 
normal to the surface S2, as illustrated in Fig. 3.

2.2 The Weak-Form and Finite Element Formulation
In order to solve Eq. (8), which is known as Laplace's 
equation, Richard's equation, flow differential equation, 
etc., its strong form should be converted to a weak form. 

Fig. 1 Control volume for one-dimensional fluid flow

Fig. 2 Control volume for two-dimensional fluid flow

Fig. 3 Unit vector normal to surface S2
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Also, to utilize the finite element formulation in solving 
procedure, an appropriate element should be considered. 
In the current study, the three-node triangular element, as 
illustrated in Fig. 4, is employed to solve the fluid-flow 
problems in two-dimensional space.

By considering N as the vector of shape functions, the 
potential function, as Eq. (10), can be stated in terms of 
nodal potentials.

ϕ[ ] =  

















N N Ni j m

i

j

m

p
p
p

, (10)

where pi, pj, and pm are the nodal potentials. Note that for 
groundwater flow, φ is the piezometric fluid head function. 
The shape functions can be considered as Eq. (11).

N
A

x yi i i i= + +
1

2
( )α β γ , (11)

where the α, β, and γ can be calculated using Eqs. (12) to  
Eq. (14), respectively.

α α αi
j m

j m
j

m i

m i
m

i j

i j

x x
y y

x x
y y

x x
y y

= = =, ,  (12)

β β βi j m j m i m i jy y y y y y= − = − = −, ,  (13)

γ γ γi m j j i m m j ix x x x x x= − = − = −, ,  (14)

The gradient matrix g can be stated using Eq. (15).

g B{ } = [ ]{ }p , (15)

where matrix B is given by Eq. (16).

B[ ] = 









1

2A
i j m

i j m

β β β
γ γ γ

 (16)

Therefore, the gradient matrix g is equal to Eq. (17).

g
g
g{ } =











x

y
 (17)

Now, the velocity-gradient matrix relationship can be 
presented as Eq. (18).

v
v
x

y












= −[ ]{ }D g , (18)

where the material property matrix, D, is defined as Eq. (19).

D[ ] = 








K
K

xx

yy

0
0

 (19)

In the following, the stiffness matrix for each element 
should be driven. For a fundamental three-node triangular 
element, the stiffness matrix can be employed as Eq. (20).

[ ] [ ] [ ][ ]k B D B= ∫∫∫ T

V

dV  (20)

If the constant-thickness (t) is assumed and noting that 
the integrated terms are constant, then the Eq. (21) can be 
used rather than Eq. (20).

[ ] [ ] [ ][ ]k B D B= tA T  (21)

The above equation can be simplified to Eq. (22).
(22)

[ ]k =
















+

tK
A

tKxx
i i j i m

j i j j m

m i m j m

yy

4

2

2

2

β β β β β
β β β β β
β β β β β

44
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γ γ γ γ γ
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In dealing with the force matrices, it is possible to 
define Eq. (23).

f Q dV Q dVQ
T

V

T

V

{ } = =∫∫∫ ∫∫∫[ ] [ ]N N , (23)

for constant volumetric flow rate per unit volume over the 
whole element. By using FEM and shape function con-
cepts, Eq. (23) can be converted to Eq. (24).

f QV
Q{ } =















3

1

1

1

 (24)

Eventually, the second force matrix can be stated as 
Eqs. (25) and (26).

f q dS q dSq
S

T

S

i

j

m

{ } = =
















∫∫ ∫∫* *[ ]

2 2

N
N
N
N

, (25)

f
q L t

q
i j{ } =

















−
*

2

1

1

0

, (26)

where Li-j is the length of the element, and q* is the assumed 
constant surface flow rate.Fig. 4 Fundamental triangular element, including nodal potentials
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3 Optimization algorithms and objective function
As introduced in Section 1, in this paper, to determine the 
Critical Failure Surface (CFS), the Factor of Safety (FOS) 
of the probable CFSs is minimized using a meta-heuris-
tic algorithm. In the current paper, five novel meta-heu-
ristic algorithms are utilized to determine CFS in bench-
mark problems. All the employed methods contain some 
mathematical features in their optimizing procedure. Black 
Hole Mechanics Optimization (BHMO), Enriched Firefly 
Algorithm (EFA), Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES), Eigenvectors of the Covariance 
Matrix (ECM), and Sine Cosine Algorithm (CSA) consti-
tute the set of employed algorithms in this study. In the 
following, each of them is introduced in a nutshell. Also, 
at the end of the section, the corresponding objective func-
tion with the slope stability problem is presented.

3.1 Black Hole Mechanics Optimization
The Black Hole Mechanics Optimization (BHMO) is a newly
developed and released meta-heuristic algorithm by Kaveh 
et al. [19]. The algorithm was inspired by the mechanics 
of Schwarzschild and Kerr black holes. BHMO employs 
a robust Mathematical Kernel based on Covariance 
Matrix formed between each variable and its relative cost. 
This Covariance Matrix leads to finding the optimum 
orientation for increasing or decreasing the current vari-
able. By this technique, each variable is directed rapidly 
towards its relative best value.

Moreover, each variable is assumed independently of 
the others in comparison with the cost function. This prop-
erty leads to escaping from the local optimums that are 
present in the search space of some problems. Besides the 
Mathematical Kernel, a Physical Simulation helps the con-
duction of variables in each step. This physical simulation 
that is based on mentioned black hole Mechanics updates 
the variables in the vicinity of surmised global best in 
each step. Also, the elimination of weak variables is due 
to physical simulation after total navigation by the mathe-
matical kernel. For more computational details, respected 
readers are referred to [19]. The other well-known meta-
heuristic used in this paper is PSO that that is taken from 
Kalatehjari et al. [31].

3.2 Enriched Firefly Algorithm
The Firefly Algorithm (FA) is a meta-heuristic algorithm 
inspired by the flashing behavior of fireflies. There are two 
critical considerations in the FA. First, the variation of light 
intensity and second, the formulation of attractiveness. 

The appropriate assumption, for simplicity, is that the 
attractiveness of a firefly is indicated by its brightness that 
is, in turn, mapped to the encoded cost function. In mini-
mization cases, the brightness of a firefly at a location can 
be selected approximately.

The basic version of the Firefly algorithm (FA) was pre-
sented by Yang [32] and has been applied successfully 
in either continuous or discrete optimization problems. 
Although it is proved that FA is a better algorithm than 
many other optimization meta-heuristic algorithms [33], 
however, there are some drawbacks in its computational 
processes that increase the FA computational complex-
ity. For instance, Mai [34] indicated that the FA could not 
found the optimum solution in some problems and that 
it was trapped into the local optima. Therefore, Kaveh 
and Ilchi Ghazaan [35] proposed an Enriched Firefly 
Algorithm (EFA) in which by some minor tricks, the 
robustness of the basic FA is increased.

3.3 Covariance Matrix Adaptation Evolution Strategy
The Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) is a novel-mathematical-based meta-heuristic 
algorithm that is proposed by Hansen [20]. The CMA-ES 
is a particular type of strategy for numerical optimiza-
tion in which two main principles are considered for the 
adaptation of parameters of the search space distribution. 
Firstly, calculating the Maximum-Likelihood principle to 
increase the probability of successful candidate solution 
and search iterations. Secondly, recording two paths of the 
time evolution of the distribution mean of the strategy to 
contain relevant data about the correlation between con-
secutive iterations. Many meta-heuristic algorithms, such 
as BHMO, ECM, etc., are affected by the principal idea 
of the CMA-ES. Reference [20] includes an appropriate 
review of the Covariance Matrix Adaptation Evolution 
Strategy algorithm.

3.4 Eigenvectors of the Covariance Matrix
Pouriyanezhad et al. [21], by combining eigenvectors of 
the covariance matrix and random normal distribution, 
proposed a new method meta-heuristic method. The main 
idea of the Eigenvector Covariance Matrix (ECM) algo-
rithm is due to the CMA-ES method. The ECM generates 
some initial random solutions in each iteration, then by 
employing a dynamic penalty function assigns a value to 
the solutions. The most novelty in the ECM is to consider 
the least violated data as the desired one and employ the 
corresponding covariance matrix with the desire solutions 
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to conduct and improve initial solutions. This new and 
novel algorithm includes high performance, especially in 
structural engineering problems.

3.5 Sine Cosine Algorithm
The Sine Cosine Algorithm (SCA) is a novel popula-
tion-based meta-heuristic method that can be categorized 
as mathematical-based algorithms. The SCA is proposed 
by Mirjalili in which a set of initial random solutions is 
generated. Then the initial solutions are improved using 
trigonometry equations. There are some stochastic param-
eters in the SCA that play vital roles in its performance. 
According to a fluctuation behavior, the initial solutions 
converge to the global bests. Another algorithm in which 
the fluctuation behavior is utilized to optimize problems 
is the Vibrating Particles System proposed by Kaveh and 
Ilchi Ghazaan [35]. The SCA can obtain optimal solu-
tions in continuous problems. The most important note 
is that the problem should be unconstrained with one 
objective function.

3.6 Objective function
As introduced previously, the most appropriate CFS is one 
contains the minimum corresponding FOS. In the current 
study, Bishop's method, based on the Limit Equilibrium 
Technique (LET), is employed to obtain the Factor of 
Safety of slopes against failure. Generally, a Factor of 
Safety (FOS) can be defined as Eq. (27).

FOS
S
S
res

mob

= ∑
∑

.

.

, (27)

where Sresistance and Smobilized can be defined as Eq. (28) and 
Eq. (29), respectively.

S c N Ures. ' ( ) tan '= + − φ , (28)

S Wmob. sin= α , (29)

herein, c' is the effective cohesion, N is base normal force 
and is equal to N = W cos α, U is the total pore-water 
pressure, φ' is the effective frictional angle, W is the slice 
weight, and α is base inclination.

By considering a seismic pseudo-static stability analy-
sis of slopes and applying an acceleration that creates iner-
tia forces, Eqs. (30) and (31) can be defined.

F a W g k Wh h h= =( / ) , (30)

F a W g k Wv v v= =( / ) , (31)

where subscripts h and v indicate the effect in horizontal 
and vertical, respectively, also, F, a, and g represent force, 
acceleration, and gravitational acceleration, sequentially.

Eventually, the Factor of Safety (FOS) equation under 
lateral pseudo-static earthquake acceleration using 
Bishop's method, as the objective function, can be calcu-
lated using Eq. (32).

(32)

f
c l W c l

f
U F

m

W

h

nslice

=
+ − − −









∑ ' (

' sin
cos sin ) tan '

( sin

α α α φ
α

1

1

αα α+∑ Fh
nslice

cos )
1

where l is slice base length, nslice is the number of slices, 
and mα can be calculated using Eq. (33).

m
fα α

α φ
= +cos

sin tan '
 (33)

Therefore, the CFS determination aims to minimize 
Eq. (32) by changing the position of center of CFS and 
its corresponding radius within the search space or slope.

4 Numerical examples
The current section is dedicated to determining the CFS 
of the benchmark slopes using introduced meta-heuristic 
algorithms. For this purpose, firstly, some random solu-
tions are generated based on each algorithm approach. 
Each answer contains three individual data: x and y coor-
dinates of the CFS center and its radius, respectively. Then, 
the slope geometry should be divided into some slices. 
This partitioning is due to the cross points of the CFS 
and slope geometry. After that, an appropriate FEM mesh 
should be generated to obtain slice parameters, such as 
weight, pore-water pressure, etc., using finite element anal-
ysis. Herein, the objective function, i.e., Factor of Safety 
(FOS), should be evaluated. By repeating this procedure, 
the optimum position of the CFS and minimum FOS will 
be obtained. For simplicity, the CFS is considered a circu-
lar, and Fixed Slice Division Method (FSDM) is employed. 
The introduced procedure is illustrated in Fig. 5.

In the following, the optimization procedure for obtain-
ing Critical Failure Surface (CFS) is utilized to solve two 
geotechnical benchmark problems.

4.1 Benchmark problem I
The first example, as illustrated in Fig. 6, includes a homo- 
genous soil slope investigated previously by Malkawai 
et al. [24]. In this example, the geotechnical parameters 
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are as follows: effective cohesion c' = 9.8 kN/m2, angle 
of internal friction φ' = 10 degrees, and unit weight 
γ = 17.64 kN/m3.

The slope has been analyzed using the introduced opti-
mization procedure in Section 3. The population size of 
each algorithm is considered as N = 40, and the maxi-
mum number of iterations as IT = 60. To compare the final 
obtained results by different algorithms, each metaheuristic 
method solved the problem 30 times. Then the mean of the 
solutions is considered as the performance of the employed 
method. Also, the number of slices is regarded as 20. Fig. 7 
illustrates the obtained CFSs for benchmark problem 1.

As illustrated in Fig. 7, since all utilized meta-heuris-
tic algorithms are robust and powerful, they could opti-
mize the problem and obtain appropriate Critical Failure 
Surface (CFS). However, there are some differences in 
their procedure and results that are discussed in the fol-
lowing. The statistical results of the obtained CFSs and 
the final solution of each algorithm are reported in Table 1 

Fig. 5 The corresponding flowchart with the optimization procedure of 
CFS determination

Fig. 6 The geometry of the first benchmark slope

(b)
Fig. 7 The critical failure surfaces obtained by different meta-heuristic 

algorithms; a) overall view, b) details on the right cross point

(a)
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and Table 2, respectively. Also, the obtained results are 
compared to other efforts, as detailed in Table 3. Finally, 
the optimization procedure is shown in Fig. 8.

As reported in Table 3, meta-heuristics has been applied 
to this benchmark problem successfully. According to the 
type of the current problem and its mathematical princi-
ples, it seems that those of mathematically based meta-heu-
ristics should be more appropriate to employ as the opti-
mization method. Therefore, in this paper, all employed 
meta-heuristics are mathematically based. Through this 
type of algorithms, according to Table 1, it seems that those 
of methods that use statistical concepts, such as covariance 
matrix, in their procedure are more appropriate to solve 
this type of problem (i.e., structural and geotechnical prob-
lems). This may be due to the logical background of the 
engineering problems that may be modeled more suitable 
by mathematical based algorithms. 

Fig. 8 The optimization procedure by different meta-heuristic 
algorithms (benchmark problem 1)

Table 1 The statistical results of the first benchmark analysis

BHMO EFA CMA-ES ECM SCA

Benchmark 1

Best 1.30E + 00 1.31E + 00 1.73E + 00 1.32E + 00 2.13E + 00

Average 1.30E + 00 1.31E + 00 2.17E + 00 1.33E + 00 2.85E + 00

Std. 9.20E - 14 4.28E - 03 5.75E - 01 2.41E - 02 4.69E - 01

Table 2 The final solutions determined by the meta-heuristic algorithms

CFS Properties BHMO EFA CMA-ES ECM SCA

x Coordinate 8.5962 8.5964 8.6080 8.5767 8.6624

y Coordinate 14.1563 14.1325 14.1291 14.2398 14.1322

Radius 9.8345 9.8320 9.8412 9.9175 9.8613

Table 3 The FOS value of the benchmark problem 1

Researcher Method Number of Slices Limit Equilibrium Method FOS

Yamagami and Veta [36] BFGS - Morgenstern-Price Method 1.3380

Yamagami and Veta [36] DFP - Morgenstern-Price Method 1.3380

Yamagami and Veta [36] Powell - Morgenstern-Price Method 1.3380

Yamagami and Veta [36] Nelder-Mead - Morgenstern-Price Method 1.3480

Greco [37] Pattern Search - Spencer's Method 1.3300

Greco [37] Monte Carlo - Spencer's Method 1.3330

Malkawai et al. [24] Monte Carlo - Spencer's Method 1.2380

Cheng et al. [38] PSO 20 Spencer's Method 1.3285

Kalatehjari et al. [31] PSO 24 Bishop's Method 1.3128

Himanshu and Burman [39] PSO 25 Bishop's Method 1.3141

Present study BHMO 20 Bishop's Method 1.3044

Present study EFA 20 Bishop's Method 1.3140

Present study CMA-ES 20 Bishop's Method 1.7289

Present study ECM 20 Bishop's Method 1.3207

Present study SCA 20 Bishop's Method 2.1335
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4.2 Benchmark problem II
The second benchmark problem investigated in the cur-
rent study has been taken from the effort of Zolfaghari 
et al. [25]. The studied slope contains a homogenous soil 
slope, and the geometric layout for the soil slope is illus-
trated in Fig. 9.

For the mentioned slope, the geotechnical proper-
ties are as follows: effective cohesion c' = 14.71 kN/m2, 
angle of internal friction φ' = 20 degrees, and unit weight 
γ = 18.63 kN/m3. Other computational details are similar to 
the benchmark problem 1. Fig. 10 illustrates the obtained 
CFS by meta-heuristic algorithms. The optimization proce-
dure is shown in Fig. 11, finally, Tables 4 to 6 report the sta-
tistical and comparative results of the considered problem.

According to the reported data, it is possible to say that 
the related concluded remarks to the first example might be 
mentioned again. There is an important note that the pop-
ulation size, maximum number of iterations, and number 
of slices is decidedly smaller than other methods specified 
in Table 6. It is obvious that if these algorithm parameters 
(i.e., the maximum number of iterations, population size, 
and the number of slices) is increased, then all the employed 
methods will achieve the best solution due to their proce-
dure. However, in comparison with the mentioned method 
in Table 6, by less computational costs, the utilized algo-
rithm could achieve accepted results. This property is due 
to its robustness and its mathematical conductivity of ini-
tial solutions. In this study, among employed meta-heu-
ristic methods, the Black Hole Mechanics Optimization 
(BHMO) algorithm, contains the highest performance. 
This performance may be due to its procedure in which 
the covariance matrix is employed several to conduct ini-
tial solutions to the best one. Another note that affects the 

Fig. 9 The geometry of the second benchmark slope

(a)

(b)
Fig. 10 The critical failure surfaces obtained by different meta-heuristic 

algorithms; a) overall view, b) details on the right cross point

Fig. 11 The optimization procedure by different meta-heuristic 
algorithms (benchmark problem 2)
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Table 4 The statistical results of the second benchmark analysis

BHMO EFA CMA-ES ECM SCA

Benchmark 2

Best 1.71E+00 1.72E+00 1.94E+00 1.84E+00 1.98E+00

Average 1.72E+00 1.74E+00 1.98E+00 1.80E+00 2.10E+00

Std. 1.92E-12 1.74E-01 3.55E-01 3.60E-01 4.71E-01

Table 5 The final solutions determined by the meta-heuristic algorithms

CFS Properties BHMO EFA CMA-ES ECM SCA

x Coordinate 7.4386 7.4184 7.4057 7.7538 7.3752

y Coordinate 59.0521 58.8634 58.8734 58.6321 58.5241

Radius 18.1049 17.8615 18.0298 17.6034 17.5943

Table 6 The FOS value of the benchmark problem 2

Researcher Method Number of Slices Limit Equilibrium Method FOS

Zolfaghari et al. [25] GA - Bishop's Method 1.7400

Zolfaghari et al. [25] GA - Morgenstern Method 1.7600

Zolfaghari et al. [25] GA - Morgenstern Method 1.7500

Cheng et al. [38] PSO 40 Spencer's Method 1.7282

Kalatehjari et al. [31] PSO 40 Bishop's Method 1.7197

Himanshu and Burman [39] PSO 25 Bishop's Method 1.7218

Present study BHMO 20 Bishop's Method 1.7061

Present study EFA 20 Bishop's Method 1.7143

Present study CMA-ES 20 Bishop's Method 1.9436

Present study ECM 20 Bishop's Method 1.8401

Present study SCA 20 Bishop's Method 1.9834

efficiency of the utilized optimization procedure in the 
current study is the FEM employment. The utilization of 
the FEM helps the procedure to obtain FOS more accu-
rately than other approximately approaches.

5 Conclusions
In this paper, five robust meta-heuristic algorithms are 
utilized to optimize the slope stability problem. In order 
to obtain the Critical Failure Surface (CFS) and its cor-
responding Factor of Safety (FOS), the Finite Element 
Method (FEM) is employed. In addition to the general 
loading, seismic forces and seepage effect are considered, 
as well. The results are compared with other efforts men-
tioned in the literature. According to the results, it can be 
deducted that those of meta-heuristic methods which con-
tain some mathematical principles in their optimization 

procedure, probably are more successful in dealing with 
the current geotechnical problem. Therefore, all selected 
meta-heuristic methods in the present study contain some 
mathematical steps in their main algorithm. 

Among utilized meta-heuristic algorithms (all of them 
include mathematical theories), those executing statistical 
concepts, such as the covariance matrix among some vari-
ables, are more successful in optimizing benchmark prob-
lems. Based on statistical reports, it seems that the Black 
Hole Mechanics Optimization (BHMO) algorithm is more 
suitable in solving the slope stability problem. This can 
be due to the several utilization of the statistical concepts.
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