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Abstract

Performance of cost optimization program of composite steel deck-slabs (DS) and supporting castellated beams (CB) consisting of 

interior beams, edge beams and girders is proposed in this paper. The program applies the vibrating particle system (VPS) meta-

heuristic algorithm, which imitates the free vibration of ideal one-story frame structures with viscous damping. 

The program is also furnished with an advanced cost function, which takes into account both material and fabrication costs of all 

parts of the floor system. The effect of four major cost reduction procedures and additional cost-saving techniques are studied on 

the cost function. Considering various DS profiles, altering the dimensions of hexagonal openings, different number of floor divisions 

and choosing costlier DSs except the optimal deck are the major cost reduction procedures. Inclusion of partial composite action for 

CBs, infilling certain openings of CBs and applying camber are the supplementary economizing techniques. To realize the economy 

of LRFD method, a meticulous design theory of composite CBs in adherence with LRFD principles of AISC 360-16 specifications is 

applied to the formulation of the strength constraints. Due to excessive deflections and due emphasis on vibration control of CBs, 

we implement accurate design procedures for the formulation of the serviceability constraints. Performance and superiority of the 

proposed optimization program is validated by studying three distinct real-size design examples taken from the literatures.
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1 Introduction
1.1 General
Metaheuristics are computational intelligence methods 
that explore and exploit the search space iteratively, in 
order to find near-optimal solutions. Metaheuristics as 
compared to analytical approaches, are not confined to 
convergence into local minima or require derivatives of 
the objective function and the constraints. They are there-
fore suitable methods for inherently large search spaces 
and numerous constraints of real-size multivariable 
design problems. For size optimization of structural design 
problems, metaheuristics have mostly been focused on the 
minimum weight design. However, only a small portion 
of these approaches deal with the minimum total cost [1].

1.2 Application and aims
A composite DS (i.e. deck-slab) is an assemblage of steel 
decks and concrete slab connected by steel anchors to 
a base of supporting steel framing which is an assembly of 

interior beams, edge beams and girders. The combination 
of composite DSs and perforated supporting beams produce 
a structurally resource efficient flooring system for a range 
of applications. This is considered to be a sustainable and 
economic construction method for structures with long 
span requirements as well as the best solution for structures 
with long open spaces, such as carparks, garages, industrial 
and warehouse facilities, schools, and hospitals [2].

The proposed program optimizes not only the cost of 
composite DSs which is not a difficult task, but also the cost 
of all supporting beams that are destined to be built as CBs 
(i.e., castellated beams). The program selects the solid-web 
I  shaped members as a root beam of CBs intelligently, 
in such a way that the material cost of the predefined fram-
ing layout of a specific floor system turns out to be mini-
mized. While this is the main concern of the majority of 
articles, our model also examines a number of procedures 
for further reduction of the total cost of the floor system.
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1.3 Cost reduction procedures
A steel deck acts as permanent formwork of the concrete. 
Not only does it provide a safe working platform and 
speed up the construction process, but also utilizes proper 
embossments to provide sufficient shear bond with the con-
crete so that the two materials act compositely together.

It is evident from Fig. 1 that combination of decking 
sheet thickness (td) with three parameters regarding the 
deck ribs including the height (hr), average width (wr), and 
center to center distance (dr) in conjunction with total slab 
thickness (ts) together specify the variables for defining 
the geometry of a DS profile. As the first major cost reduc-
tion procedure, the program enables us to study the effect 
of dimensional variables of various DS profiles on the total 
cost by utilizing certain composite decks taken from fab-
ricator catalogues.

The supporting steel beams could be chosen as either 
plain-webbed or perforated I shape sections. In compar-
ison to the equivalent conventional plain-webbed beams, 
perforated beams offer many design and construction 
advantages while keeping the weight invariant. They pro-
vide a greater strong axis moment of inertia (Ix), section 
modulus (Sx) and depth-to-weight ratio. Thus the employ-
ment of perforated beams reduces the overall mass of the 
structure, resulting in lessened lateral design force and 
reduced foundation loads. Since the installation could run 
through their depth, they also decrease the overall height 
of the buildings which leads to more durable and economi-
cal construction method. Yet, these advantages come at the 
expense of more complex analysis and design procedures. 

The two common types of perforated steel beams are 
beams with hexagonal openings, referred to as CBs and 
those with circular openings known as cellular beams. 
Fabrication of perforated beams is an important viewpoint 
as it affects the structural behavior and the cost of the 
final product. In contrast to CBs, cellular beams require 
two cuts along their web centerline during the profile 
cutting fabrication procedure which leads to an increase 
in the  fabrication cost and amount of material wastage 
(Fig.  2). Additionally, researchers have proved that CBs 
are also superior to cellular beams from the material cost 
point of view [3]. 

Cutting height (h), cutting angle (θ), and horizontal 
cutting length (e) define the dimensions of the hexagonal 
cutting of CBs which are illustrated in Fig. 2(a). The sec-
ond major cost reduction procedure, intelligently find the 
optimal values of these variables within the corresponding 
admissible set in order to minimize the cost.

Participation of concrete in resisting the global shear 
reduces the Vierendeel moment in tees which is the merit of 
composite versus non-composite construction. The strength 
of stud anchors determine the ultimate strength of the com-
posite section as full composite action is generally not the 
most economical solution to resist the required strength [4]. 
Therefore, in spite of the plethora of articles which either 
exclude the steel-concrete composite construction or merely 
consider the full composite action, our program facilitates 
the design of either fully or partially steel-concrete com-
posite beams depending on the design parameters. These 
together with infilling certain holes and specifying camber 
are regarded as supplementary cost-saving techniques. 

The third major cost reduction mechanism examines the 
possibility of lightening the CBs by increasing the com-
posite action resulting from selecting costlier DSs. As the 
fourth major cost reduction mechanism, the model exam-
ines all possible floor division numbers incrementally and 
scrutinizes the results in order to find its optimal value.

1.4 Survey of the pertinent literature
Analytical and numerical optimization approaches have 
been conducted for cost minimization of concrete slab 
with conventional plain webbed beams. Adeli and Kim [5] 

Fig. 1 Basic variables of composite steel deck-slab

Fig. 2 Manufacturing and basic variables for fabrication of castellated 
steel beams
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formulated the optimal design of composite beams as 
a  mixed integer-discrete nonlinear programming prob-
lem and solved the problem by a neural dynamics model. 
They  showed that their patented cost optimization 
algorithm leads to substantial cost saving. Kaveh and 
Ahangaran [1] investigated the performance of social har-
mony search algorithm for cost optimization of compos-
ite beams. They illustrated good performance of their 
proposed algorithm for achieving minimum cost in least 
iteration. Klanšek and Kravanja  [6] presented the cost 
optimization of composite floor systems and proved its 
capability by solving a numerical example. They imple-
mented nonlinear programming for the purpose of opti-
mization and formulated the constraints according to 
Eurocode 4. They presented a detailed objective function 
which took the complete structure's manufacturing costs 
into account. Poitras et al. [7] incorporated both mass and 
cost objective functions into the particle swarm optimiza-
tion algorithm for minimizing the cost of composite floor 
systems whose components satisfy Canadian  CSA  S16 
standard requirements. They evaluated different degrees 
of composite action and interestingly, results revealed 
an increase in the percentage of composite action is not 
always proportional to the drop in cost. 

Utilizing perforated steel beams because of their 
numerous benefits is becoming more customary. However, 
less attention has been paid to optimal design of perfo-
rated steel beams. Tsavdaridis and D'Mello  [8] studied 
the optimization of novel elliptically-based web openings 
for perforated steel beams. Kaveh and Shokohi  [3] opti-
mized simply supported non-composite castellated and 
cellular beams by the rules of the European standard. 
Kaveh and Ghafari [9] utilized Enhanced Colliding Body 
Optimization algorithm for cost optimization of compos-
ite floor systems with castellated beams. They also stud-
ied the effect of the number of floor divisions and com-
pared the results of composite CBs with composite solid 
beams. They proved that utilizing CBs as compared to sol-
id-webbed beams can reduce the cost up to 14 %. 

1.5 Objectives
A state-of-the-art design theory of composite CBs in 
adherence with LRFD principals of 2016 version of AISC 
Specification for Structural Steel Buildings  [4] (hereaf-
ter called AISC provisions) is applied for the first time 
for optimal design of composite CBs. Since web perfora-
tions reduce the stiffness of a member at openings, limit 
states of serviceability taken on increased importance. 

Therefore, accurate design procedures for assuring func-
tional capability of the floor systems are also incorporated 
into the program.  

The principal object of this research is to put forward 
a reliable and comprehensive optimal design program of 
composite floor systems with castellated beams for appli-
cation in practical purposes. The program minimizes 
both the material and fabrication cost of the composite 
floor systems. 

An efficient meta-heuristic algorithm along with a num-
ber of cost reduction procedures are integrated to form an 
effective optimization program. These procedures involve 
inquiring into the effect of various steel deck profiles, find-
ing the optimum dimensions of hexagonal castellation, 
finding the effect of floor division numbers and investigat-
ing the effect of selecting costlier DSs. Moreover, consid-
ering the partial composite action, infilling certain holes 
and imposing camber to CBs are supplementary econo-
mizing techniques.

1.6 Outline
This paper is divided into 4 sections: In Section  2.1 
the design of composite castellated beam is outlined. 
In Section 2.2 statement of the optimal design problem is 
formulated. In Section 2.3, the implemented optimization 
algorithm is briefly described. In Section 3, the cost of three 
structural floor systems is optimized, and finally Section 4 
concludes the paper.

2 Methods
2.1 Design of composite castellated beams
2.1.1 General failure modes
The behavior of composite CBs (i.e. castellated beams) 
is not similar to solid-web composite members due to the 
substantial number of web openings. We cannot, therefore, 
utilize classical methods of analysis and design for these 
intermediate structural components. In contrast to solid 
web members, the web openings necessitate the assess-
ment of many additional failure modes in the design pro-
cess. CBs are composed of tee sections and web posts 
which require pertinent strength limit states. Moreover, 
significant deformation due to bending and shear stresses 
as a result of web openings increases the complexity of 
the assessment of serviceability limit states. 

The limit states that govern the design of composite 
CBs comprise: local buckling of tee components; flexural 
buckling of top tees and web posts; tensile yielding of bot-
tom tees; plastic moment of tees; LTB of tees; interaction 
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criteria of tees and posts; shear yielding and shear buck-
ling of tees, gross section and posts; web post lateral insta-
bility together with deflection; and vibration.

The following describes a state-of-the-art design theory 
of composite CBs largely based on AISC Design Guide 31, 
Castellated and Cellular Beam Design  [2], Design of 
Welded Structures [10] and additional research centering 
on lateral buckling of CBs [11]. The authors also completed 
the existing design theory by including the interaction cri-
terion for web posts subjected to combined compression 
and flexure. Thus the design checks of both components 
of  CB, namely tees and posts, are simply be performed 
through beam-column interaction equations.

2.1.2 Loads combinations
In order to prevent composite CBs to reach their ultimate 
load carrying capacity, the design strength must be equal 
to or greater than the effects of factored load in the follow-
ing load combinations [12]:

LC w wD L1
1 2 1 6= +. . .	 (1)

In regard to visually unacceptable deformations and other 
short term effects, the recommended load combination is:

LC w wD L2 = + ,	 (2)

where wD and wL are uniform dead load and live load, 
respectively.

2.1.3 Design for anchorage to concrete
The number of steel anchors required for full composite 
action, between the point of maximum positive moment 
and the point of zero moment is [4]:

N Q Q

f A F A A f E R R A F

s u n

c c y s sa c c g p sa u

= =

′( ) ′ ≤( )min . , . ( ) ,
.

0 85 0 5
0 5

	 (3)

where Qu is the shear forces transferred by installed steel 
anchors and Qn is the nominal shear strength of one shear 
stud; fc' is the compressive resistance of concrete; Ac is the 
area of concrete slab within the effective width, Fy is the 
minimum yield stress of steel, As is the area of steel net 
section; Asa is the area of shear stud; Ec is the modulus of 
elasticity of concrete; Rg and Rp respectively are the group 
and position effect factors of shear studs; Fu is the mini-
mum tensile strength of the shear studs.

Fig. 3 Terminology of (a) calculating axial forces in full composite beams; (b) calculating axial forces in partially composite beams; and  
(c) calculating Vierendeel moments in composite beams

(a) (b)

(c)
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2.1.4 Vierendeel bending in composite CBs
Vierendeel moment is a localized bending moment in the 
upper and lower tees developed from the passage of global 
shear force through the openings. The formation of plastic 
hinges at four areas in the portion of high shear forces in 
the vicinity of the openings may onset the Vierendeel fail-
ure mechanism.

Calculation of axial forces in tee sections
Firstly, it is assumed that there are sufficient studs at an 
opening under consideration to provide adequate amount 
of concrete such that the concrete flange carries all the 
compressive force and the bottom tee takes all the tensile 
force. Thus, if the beam at the specified opening is con-
sidered as full composite, the force (C̅ i) shown in Fig. 3(b) 
would vanish, and as depicted schematically in Fig. 3(a) 
the compressive force (Ci) in the concrete would equate 
the tensile force (Ti) in the bottom tee section and shall be 
calculated as follows [2]: 

T C
M
d

Qi i
r i

ec i
i= = ≤( )

( )

,	 (4)

where Mr(i) is the calculated global moment at the center 
of each opening; dec(i) is the effective depth of the com-
posite section which shall be determined in an iterative 
manner which for the first iteration shall be taken as 
d d y h tec i g r ctb( )

.= − + + 0 5 ; Where dg is the depth of the CB; 
y̅tb is the distance from the bottom fiber to the centroid of 
the bottom tee; tc is the depth of the concrete flange; and i 
is the numerator of the web openings.

The actual depth of the concrete block a(i) resisting the 
compressive chord force shall be recalculated as:

a T
f bi
i

c e
( )

.
=

′0 85
.	 (5)

The parameter a(i) must be replaced with the parameter 
tc iteratively until the convergence of the operation. As long 
as Eq. (4) is valid, the assumption that the ith opening acts 
as fully composite is also valid and the concrete has the 
strength to resist the compressive chord force. Otherwise 
the partial composite action exists at that opening.  

The total stud strength within the end of the beam and 
the intended opening is determined as: 

Q qX N Q
L

Xi i
t n

i= = 





 ,	 (6)

where q is the average stud density; Xi is the distance form 
the end of the beam to the center of the intended opening; 
Nt is the total number of studs.

According to Fig. 3(b), if a section at the web openings 
due to insufficient composite action acts as partially com-
posite, the supplementary compressive force that must be 
sustained by the top tees is calculated as follows:

C d M d Qi e r i ec i i= −( )−1

( ) ( )
.	 (7)

Hence, the revised tension force to be resisted by the 
bottom tees Ti-new (Fig. 3(b)) shall be recalculated as:

T Q C
C C

i new i i

i new i

−

−

= +

= + .
	 (8)

Design of bottom tee sections for tension
Design of the bottom tee under tension based on the limit 
state of tensile yielding shall be performed as [4]:

T T T F Au c t n t y g≤ = =φ φ ,	 (9)

where ϕt = 0.9; Ag = At-bot ; Tu = Ti
max is the required tensile 

strength calculated in previous subsection.

Design of top tee Sections for compression
If a section at a web opening is partially composite, design 
of compressive top tee sections based on the limit state of 
flexural buckling in the absence of any slender elements 
shall be performed as:

P P P F Au c c n c cr g≤ = =φ φ ,	 (10)

where ϕt = 0.9; Ag = At-top; Fcr is the critical stress that shall 
be obtained based on the AISC provision [4].

Calculation of Vierendeel moment of tee sections
Fig. 3(c) demonstrate the dimensions and forces used to 
calculate the Vierendeel moments in the CBs. The required 
Vierendeel bending moment is calculated as follows [2]:

M V A
A

e
vr i r net i

tee

n
( ) ( )

( )( )= −
2

,	 (11)

where V V Vr net i r i c− = −
( ) ( )

 is the net shear force; Vr(i) is 
the calculated global shear at center of each opening; 
V V t f h tc cv nc c c r c= = × ′ +φ 0 75 12. ( )  is the concrete deck 
punching shear strength. Atee is the area of the top or bot-
tom tee section.

Design of tee sections for flexure
Design of tee sections for flexure shall be performed in 
accordance with the following expression [4]:

M M M F Su c b n b y x tee≤ = = −φ φ ,	 (12)
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where ϕt = 0.9; Sx-tee is the elastic section modulus of the 
tee section; M Mu vr i=

( )

max  is the Vierendeel required flex-
ural strength calculated according to the previous subsec-
tion. Mn is the nominal flexural strength based on the limit 
states of plastic moment. The limit state of LTB shall also 
be checked in conformity with AISC provisions [4].

Design of tee sections for combined forces
All net sections along the length of the beam must be exam-
ined for combination of axial forces and bending moments 
by the resistance interaction equations [2]. If the interac-
tion criterion of either top tee or bottom tee at each of web 
openings is violated, that opening shall be filled by a single 
plate that is the same grade and thickness as the beam web. 

I c
F
F

c
M
Mi i

i

c
i

r i

c

=








 +









 ≤1 2

1
( )

r( )

( )

( ) ,	 (13)

where Fr(i) and Fc are the required and design axial 
strength; Mr(i) and Mc are the required and design flexural 
strength, at ith opening respectively. The constants are 
either c1(i) = 1 and c2(i) = 8/9 when Fr(i)/Fc ≥ 0.2 or c1(i) = 0.5 
and c2(i) = 1 when Fr(i)/Fc < 0.2.

2.1.5 Design of tee sections and gross sections for 
vertical shear
Supporting vertical shear in CBs is more critical than 
solid-webbed beams, since the vertical shear must pass 
through the perforated sections. The load that corresponds 
to web plate shear yielding or web plate shear buckling 
shall not be less than the required shear strength as [4]:

V V V F dt Cr c v n v y w v≤ = =φ φ 0 6. ,	 (14)

where d is the overall depth of the steel section which may 
equal 2dt for the net section or dg for the gross section; 
Vr = Vr

max is the required shear strength at the equivalent 
section. ϕv and Cv shall be determined in conformity to 
AISC provisions [4].

2.1.6 Web post lateral instability
Behavior
The web post of CBs surrounded by the holes is subjected 
to two equal and opposite ending moments and shearing 
forces. In areas of high shear forces, the web post may 
fail by lateral instability out of the plane of the beam. 
Conventional design procedures for stabilizing the posts 
of CBs have considered the elastic critical load and are 
proved to be conservative. Aglan and Redwood [11] have 
introduced a rapid design aid with the buckling of the web 

posts, considering plasticity and strain hardening which 
are verified with experimental data which will be covered 
in the following literature. Due to symmetry, only one half 
of the post is taken into account.

Calculation of internal forces
Consider a unit panel segment of composite castellated 
beam as shown in Fig. 4(a). Required flexural strength 
in end portions of the web posts is to be calculated as 
follows [11]:

M hV h T Trh j rh j L j R j( ) ( ) ( ) ( )
= = − ,	 (15)

where h is the cutting depth of hexagonal opening and j is 
the numerator of the web posts. 

Design procedure
The following equation governs the design of web post for 
lateral instability [2].

M M Mrh ch b p≤ =φ Ψ ,	 (16)

where M Mrh rh j=
( )

max  is the required flexural strength calcu-
lated as previous subsection. Ψ =M Mo cr p( )

, is the per-
centage of plastics moment which is the ratio of critical 
end moment of the web post to its plastic bending moment 
for which M t e b Fp w y= +0 25 2

2
. ( ) . Table 1 illustrates Ψ 

(b)
Fig 4 Terminology of (a) evaluation of web post lateral instability and 

(b) evaluation of web post flexural buckling for castellated beams

(a)
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equations as a function non-dimensional parameters of the 
web post including the ratio of hole height to minimum 
width of the post (η = 2h/e) and the ratio of minimum post 
width to web thickness (ξ = e/tw).

The values of resistance factors for three specific 
angles of hexagonal cutting are obtained as below. For 
intermediate values of actual θ, ϕb is determined by linear 
interpolation.

43 47 0 9

52 5 0 6

58 72 0 9

≤ ≤ =
= =
≤ ≤ =









θ φ
θ φ

θ φ

b

b

b

.

. .

.

2.1.7 Design of web posts for compression
As depicted in Fig. 4(b), the perforated web of CBs carries 
the vertical shear originated from direct transverse load-
ing. When the vertical shear is equally portioned out 
between top and bottom chords, half of the transverse 
loads pass downward through the web post to the bottom 
chord as compressive force. Normally the magnitude of 
this force is not significant except for girders that are sup-
porting the concentrated transverse shear arising from 
interior beams. The resultant compressive force is [10]: 

P V Vr j r L j r R j( ) ( ) ( )
.= −( )− −0 5 ,	 (17)

where VL and VR are the global vertical shear in the left 
and right hand side of the unit panel segment of the CBs. 
The design of web posts for compression shall be checked 
as Eq. (18) [4]:

P Pr c< ,	 (18)

where Pr = Pr( j)
max and Pc is determined based on the limit 

state of flexural buckling similar to top tee section.

2.1.8 Design of web posts for combined forces
The proportion of the web posts that are assumed to act as 
a beam-column element is such that the interaction equa-
tions are satisfied. If any of the openings in the vicinity of 
a web post is already filled, that post would be dismissed for 

interaction check. When the interaction criterion of a web 
post is not met, then the corresponding opening is filled.

J c
P
P

c
M
Mj

j

c
j

rh j

ch

=








 +









 ≤1 2

1
( )

r( )

( )

( ) ,	 (19)

where Pr( j) and Pc are the required and design compressive 
strength of the web posts, Mrh( j) and Mch are the required 
and design flexural strength of the web posts, respectively. 
The constants c1( j) and c2( j) are determined as before.

2.1.9 Design of web post for horizontal shear
The web openings in the vicinity of each web post amplify 
the horizontal shear crossing through the centerline of the 
beam. Thus horizontal shear check at the web posts is an 
essential criterion that shall be checked based on the limit 
state of shear yielding as [4]:

V V V F Arh ch v nh v y wh≤ = =φ φ 0 6. ,	 (20)

where ϕv = 1; Awh = etw; Vrh = Vrh( j)
max is the required horizon-

tal shear strength determined in accordance with the cal-
culated horizontal shear force for web post buckling.

2.1.10 Design of composite CBs for deflection
Methodology
Hexagonal perforations of CBs decrease the gross moment 
of inertia which is the reason for increasing the curvature 
at openings subjected to bending. They also cause the 
incompatibility of strain field and reduce the gross area for 
resisting shear between tees inducing Vierendeel deflec-
tions [13]. For each stage of construction pre and post con-
crete hardening, different approaches with utmost accu-
racy are adopted for estimating the maximum deflection 
of CBs. The deflection resulting from the dead loads and 
live loads should be calculated separately. The maximum 
deflection of girders subjected to concentrated load arising 
from connected interior beams is also noted.

Deflection of pre composite stage
Applying suitable stiffness reduction factor to the deflec-
tion equations of classical beam theory could imitate the 
reduced rigidity of web openings of CBs as follows [2]:

δ
τ1

1

4
5

384
=

w L
E Is sn( )

,	 (21)

where L is the total length of the beam; Isn is the moment 
of inertia of the steel net section and τ = 0.9 is the stiff-
ness reduction factor; w1 is either self-weight of the CB 
(i.e. steel beam weight together with the weight of wet con-
crete) or construction live load.

Table 1 Equations of percentage of plastic moment (Ψ) with respect to 
post non-dimensional parameters

No. ξ
Ψ Equations

1 10

2 20

3 30

Where, 10 ≤ ξ ≤ 30 and η ≤ 8; interpolate between equations 1 through 3 
based on actual ξ for each angle of hexagonal cut. Also, interpolate for 
45 ≤ θ ≤ 60 between two system of equations.

θ = ±45 2
 

( ) θ = ±60 2
 

( )

0 351 0 051 0 0026 0 26
2

. . . .− + ≤η η 0 587 0 917 0 493. ( . ) .
η ≤

3 276 1 208 0 154 0 0067
2 3

. . . .− + −η η η 1 96 0 699. ( . )
η

0 952 0 30 0 0319 0 0011
2 3

. . . .− + −η η η 2 55 0 574. ( . )
η
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Deflection of post composite stage 
Benitez et al. [13] have introduced a closed form equation 
for evaluation of maximum deflection of composite CBs 
verified by comparing with experimental data which will 
be covered accurately in the following literature.

δ κδ δ2 = +b s ,	 (22)

where δb
s cg

w L
E I

=
5

384

2

4

 and δ s
sg

w L
GA

= 2

2

8
 are the maximum

bending and shear deflection at gross section respectively; 
Icg is the transformed moment of inertia of composite gross 
section; Asg is the surface area of steel gross section; G is 
the shear modulus of elasticity of steel; w2 is either the 
dead surface load or super imposed live load.   

κ is an amplification factor which predict the increasing 
of bending deflection induced by embedded holes of CBs 
and is obtained based on the following expression.

κ α β β β β= + −( ) − − +( )1
1

5
1 3 4 6 12

4 3 2Nh ,	 (23)

where Nh is the total number of openings; α = Icg/Icn and 
β = (e + b)/L; Icn is the transformed moment of inertia of 
composite net section. 

Creep and camber 
The deflection of composite beams tends to increase with 
time as a result of long term creep effects. This increase 
is negligible except for long spans and large live loads. 
Roll [14] recommends using Ec/3 in lieu of sustained con-
crete modulus of elasticity (EC) for analyzing differential 
shrinkage and creep effects in deflection calculations.

CBs can be cambered in order to accommodate archi-
tectural or serviceability issues. Cambering contributes to 
significant depth and weight saving for a floor system [15]. 
In this paper, cambering would be specified to control the 
inordinate deflections. The value of the camber would be 
specified as the deflection of beam self-weight.

Deflection control relations
Accuracy of the following relations ensures that the floor 
system does not become unfit for its intended purpose due 
to excessive deflection [16]:

δ δL al1 ≤ ,	 (24)

δ δ δD L at1 1+ ≤ ,	 (25)

δ δL al2 ≤ ,	 (26)

δ δ δ δD D L at1 2 2
+ + ≤ .	 (27)

Deflection limits due to live load and total loads for 
floor members are δal = L/360 and δat = L/240, respectively.

2.1.11 Design for vibration
Although greater stiffness of CBs alleviates the effects of 
vibration of a floor system in comparison to conventional 
plain webbed beams, vibration remains a serious service-
ability problem in flexible floor systems with long spans or 
light weight constituents.

Calculation of first natural frequency
Natural frequency is a fundamental characteristic for the 
vibration evaluation of floor systems. Multiple vibration 
modes with proximate frequencies is a characteristic of 
two-way composite floor systems. The following describes 
Dunkerley method used to determine the first natural fre-
quency of simply supported beams corresponding to crit-
ical mode in resonance with a harmonic of step frequency 
according to treatments of AISC Design Guide 11, floor 
vibrations due to human activity [17].

f g
n

b g c

=
+ +

0 18.
δ δ δ

,	 (28)

where g = 9.86 (m/s2) is gravitational acceleration; δb and δg 
are the beam and the girder deflections due to the applied 
actual loads, respectively. δc is the axial shortening of the 
columns due to the applied actual loads, which is assumed 
to be negligible.

In order to represent the higher stiffness of concrete 
slabs under dynamic loading against static loading, it 
is recommended that the sustained concrete modulus of 
elasticity (Ec) be taken as the 1.35 Ec. Since the additional 
mass of the floor desensitize the oscillation, only a frac-
tion of the superimposed live load referred as actual live 
load shall be considered for vibration evaluation. Reckon 
with the intended occupancy of the floor system, the sug-
gested actual live load for office and residential floors are 
0.5 (kN/m2) and 0.25 (kN/m2) respectively. In order to val-
idate the use of Dunkerley equation for girders, which vio-
late the assumption of uniform loading due to the presence 
of mid span concentrated mass, their calculated deflection 
should be multiplied by the amplification factor of 4/π.

Calculation of required damping
The following relation defines the required level of damp-
ing for restricting excessive vibration [18]:

ζ req o nA f= +35 2 5. ,	 (29)
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where Ao = Aot/Ne is the initial amplitude of the floor 
system; A DL EIot cn= 3

80( )  is the initial amplitude of 
a single beam; D is the maximum dynamic load fac-
tor; Ne = − + × −

2 97 0 0578 2 56 10
8

. . .υ µ  is the number of 
effective beams as a function of dimensionless factors of  
υ = B/de and ; μ = L4/Icn ; de = wc/γc is the effective slab 
thickness; B is the beam spacing; wc is the actual slab 
weight and γc is the concrete density. The force and length 
units of the Eq. (29) shall be kips and inches, respectively. 

Vibration control procedure
A 3-step design aid is utilized to assure that the composite 
CBs members does not violate the vibrational limit state 
as follows [19]: 

Step 1: The following criterion is sufficient for ade-
quacy of vibration assessment of the floor system which 
could be utilized when defining some observation based 
parameters possible for the designer.

ζ c ≥10% 	 (30)

The empirical damping (ζc) in complete floor system is 
a function of multiple parameters including the condition 
of concrete (1–3 %), type of ceiling (1–3 %), condition of 
mechanical systems (1–10 %) and partitions (10–20 %). 

Step 2: The following criterion ensures a satisfactory 
vibration evaluation.

f Hzn ≥10 	 (31)

Step 3: If neither of above criteria is satisfied, the accu-
racy of the following equation is adequate for controlling 
the vibration limit state.

ζ ζreq c≤ 	 (32)

The 4 % value of theoretical available damping is almost 
reasonable except for very quiet office environments or the 
operation of sensitive equipment. 

2.1.12 Composite deck-slab design
Behavior and composite action of steel deck-slabs (i.e. DSs) 
are moderately complex subjects. In addition, geometrical 
properties of DSs differ according to their manufacturing 
companies. Manufacturers' catalogues are therefore gen-
erally considered to be the source of determining their 
dimensional and mechanical characteristics. 

Although arbitrary DS profiles could be implemented, 
for comparison with other reference examples the DS pro-
files are taken from the Canam Group fabricator. Canam 
steel deck catalogue  [20] introduces four deck profiles 

named P-3615, P-3606, P-3623 and P2432. Each deck pro-
file is fabricated in three nominal thicknesses (i.e., td) of 
0.79 mm, 0.91 mm and 1.21 mm steel sheets. Also six dif-
ferent slab thicknesses (i.e. ts) are considered for each profile 
within values of 90, 100, 115, 125, 140, 150, 165, 190, and 
200 mm in either lightweight or normal density concrete. 
Therefore, the catalogue introduces 144 individual DSs. 

Each candidate DS is designed for its intermediate 
spans and is expected to act as simply supported beam 
with unit width. The lengths of the spans are equal to 
beam spacings. Each span, with respect to the condition of 
its neighboring spans, will be considered as either a single, 
double, or triple span condition.  

Strength and deflection criteria of each span shall be 
checked as follows:

W Wf r< ,	 (33)

∆ ≤
max

∆al ,	 (34)

where Wf is the total factored load and Wr is the specified 
factored resistance; ∆max is the maximum deflection due 
to service live load and ∆al = B/360 is the corresponding 
deflection limit. 

2.2 Model formulation
The three reasons that led us to implement a sub-optimi-
zation technique are: reducing the complexity of the prob-
lem, resolving the problem of decreasing the convergence 
rate due to large number of optimization variables, and 
analyzing the conditions around the optimum result. Thus, 
the entire design project was broken down into multiple 
subproblems that are treated independently. 

To identify the number of sub-optimization problems 
(np) pertaining to supporting steel framing, the configu-
ration of the floor system must be considered. Based on 
the symmetry of the floor system, each group of interior 
beams, edge beams and girders was treated as an individ-
ual subprobelm. Composite DS optimization was catego-
rized as another subproblem. The well-known three stages 
of formulation process for every single sub-optimization 
problem are described in detail in the following literature.

2.2.1 Identification of optimization variables
First the optimization variables of CB (i.e. castellated 
beam) subproblems are identified. Four independent vari-
ables including the depth of the web (h), the web thickness 
(tw), the flange width (bf), and the flange thickness (tf) define 
the initial plain-web section of CBs. In order to reduce the 
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complexity, these variables combined into a single steel 
section variable denoted by (PB). The variables that define 
the dimensions of hexagonal openings of each CB are the 
height of the hole or post from the center  (h), minimum 
width of the hole or post (e), and angle of inclination of the 
hexagonal castellation (θ). Other variables of CBs are the 
number of filled holes (Nfh), number of shear studs (Ns) and 
the magnitude of the applied camber (δc). Thus the number 
of optimization variables of each CB shrinks to seven.

DS profiles are characterized by four independent 
variables. Each deck profile is defined by three variables 
including the depth of the ribs (hr), average width of the 
ribs (wr), and center-to-center distance of the ribs (dr) all of 
which are merged into a single DS profile variable denoted 
by (P-No.). Total slab thickness (ts), steel deck thick-
ness (td) and floor division number (Nfd) are other variables 
for describing of DSs. 

All in all, in this study 25 optimization variables are 
required for the statement of the design problem. The opti-
mization variables of each subproblem and the entire opti-
mization problem take the following form:

CB subrpoblems :

( , , , , , , ); , ,x PB h e N N b i e gb b b b b fh s cb b b
= =θ δ

	 (35)

DS subproblem : ( ., , , )x P No t t NDS s d fd= − 	 (36)

Composite floor system with CBs :

[ , , , ]x x x x xi e g DS= ×1 25

	 (37)

2.2.2 Advanced cost function
The formulation of the problem was equipped with an 
advanced cost function that takes into account both fab-
rication and material costs of all constituents of the floor 
system. The costs are closely related to the dimensional 
properties defining the good relationship between the opti-
mization variables and the cost function. The cost function 
is formulated in an open manner facilitating user specific 
inputs based on an arbitrary production line.

The advanced cost function of each subproblem takes 
the following form. Individual cost contributions will be 
briefly described in the following literature.

C C C i ni i i
p= + =

material fabrication
1 to; 	 (38)

Material cost of steel CBs depends on the weight of 
steel elements as:

C W k i ni
j
i
j

j
pmaterial

to= = −
=
∑ ;

1

3

1 1 ,	 (39)

where j = 1 to 3 corresponds to steel components of CBs 
including the root beams, fillers, and the shear studs, 
respectively; W GL W Vi i i

s
i

1 1 2 3 2 3
= =( )

, ,
and γ  are the weight 

of steel components; Gi is the weight per unit length of the 
root beams; V2,

i
3 are the volume of fillers and shear studs, 

respectively; γs is the steel density; and kj is the cost factors 
of steel components.

Fabrication cost of CBs beams is directly related to the 
length of the manufacturing operations as follows: 

C L k i ni
m
i

m
m pfabrication

to= = −
=
∑

1

3

1 1; ,	 (40)

where m = 1,2 and 3 represent the individual operation 
of the fabrication process consisting of cutting, welding, 
and cambering, respectively. L1

i is the cutting length; L2
i is 

the welding length and L I Ii
o cn c

i
3

1= −
( )δ  is the normalized 

length of cambering; Io is the minimum moment of iner-
tia of standard sections within the considered design pool; 
Km is the cost factor of each fabrication operation. 

Material cost of composite DSs depends on the weight 
of steel elements and the volume of the concrete elements 
as follows:

C W k V k i ni
j
i
j r

i
r

rj
pmaterial

= + ′ =
==
∑∑

11

; ,	 (41)

where W1 = Abaywd is weight of the steel plates and 
V1 = Abay(wc/γc) is concrete volume; k1 and k1' are the cost 
factors for steel decking sheets and concrete; wd and wc are 
the steel deck and concrete weight per unit area.

On site fabrication cost of composite DSs is related to 
the area of the construction operation as follows:

C A k i ni
m
i
m

m
pfabrication

= =
=
∑

1

; .	 (42)

A1 is surface area of the bay and k1 is the fabrication cost 
factor of the DS.

It should be noted that the cost function is formulated in 
a way that could be rewritten based on the index notation.

2.2.3 Constraints
We manipulated the mathematical relations of elucidated 
limit states to formulate the unilateral constraints that 
govern the optimization problem. The constraints fall into 
4  categories; the first type represents the limitations for 
the dimensions of the hexagonal openings and the web 
posts of CBs. The second and third types correspond to 
strength and serviceability limit states of composite CBs 
respectively. The constraints of the composite DS sub-
problem are classed as Type 4.



Kaveh and Fakoor
Period. Polytech. Civ. Eng., 65(2), pp. 353–375, 2021|363

Type 1 constraints: 

h h d tg f1
3 8 2= − − ×( / )( ) 	 (43)

h d t d tg f t f2
2 10= − − −( ) ( ) 	 (44)

h b e
3

2 3= −( ) 	 (45)

h e b
4

2= − 	 (46)

h b e h
5

2 2= + − 	 (47)

h
6

8= −η 	 (48)

h
7

10= −ξ 	 (49)

h
8

30= −ξ 	 (50)

h
9

43= −θ 	 (51)

h
10

62= −θ 	 (52)

Type 2 constraints:

g f top tee1 0
0 56= −λ λ

-
. 	 (53)

g s top tee2 0
0 75= −λ λ

- -
. 	 (54)

g f tees3 0
0 38= −−λ λ. 	 (55)

g s tees4 0
0 84= −−λ λ. 	 (56)

g T Tu bottom tee c bottom tee5
= −

- -
	 (57)

g P Pu top tee c top tee6
= −

- - 	 (58)

g M Mu tees c tees7
= −

- -
	 (59)

g N Nfh I h8
0 5= −

( )
. 	 (60)

g P Pu post c post9 = −− − 	 (61)

g M Mu post c post10
= −

- - 	 (62)

g N Nfh J h11
0 5= −

( )
. 	 (63)

g V Vu ver tees c ver tees12
= −− − − − 	 (64)

g V Vu ver gross c ver gross13
= −− − − − 	 (65)

g V Vu hor post c hor post14
= −− − − − 	 (66)

Type 3 constraints:

g L al1 1= −δ δ ,	 (67)

g T at2 1
= −δ δ ,	 (68)

g L al3 2
= −δ δ ,	 (69)

g T at4 2
= −δ δ ,	 (70)

g u c5 = −ζ ζ .	 (71)

Type 4 constraints:

s W Wf r1 = − ,	 (72)

s L al2 = ∆ −∆ .	 (73)

2.2.4 Constraint handling approach
Due to simplicity and ease of implementation, penal-
ization approaches have been extensively developed for 
constraint-handling of engineering design problems. 
Penalization is a transformation method which solves the 
constraint optimization problem by transforming it into an 
unconstrained problem through employing a penalty func-
tion as follows [21]:

eval x n P x C xi i
i

i

nP
( ) ( ) ( )=

=
∑

1

,	 (74)

P x
if x
otherwisei ( ) =

= ∈
>




1

1


,	 (75)

where n1 = Nfd – 1; n2 = n3 = 2; n4 = 1 and Pi(x) is the penalty 
function. We utilized the dynamic approach for defining 
the penalty function in our formulation as follows:

P xi i( ) ( )= +1
1

2ε υ ε ,	 (76)

υi n i
n

n

g x
c

=  
=
∑max , ( )

( )
0

1

,	 (77)

where υi denotes the sum of the violations of the con-
straints and nc the total number of the constraints. Here, ε1 
is set to unity and ε2 is calculated as:

ε
2

1 5 1= +. ( )
IN
IN

i

m
,	 (78)

where INi is the current iteration number and INm is the 
maximum iteration number.
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2.3 Optimization method
2.3.1 Composite deck-slabs optimization
Throughout the optimization process, all possible num-
ber of floor divisions are examined for each candidate DS. 
The acceptability criteria of the candidate DS with respect 
to the selected span length is checked and all the feasible 
solutions are sorted in ascending order. For optimization of 
supporting steel framing system, an intriguing meta-heu-
ristic algorithm is utilized. Also in order to observe the 
impact of selecting higher cost decks, the entire optimiza-
tion process of supporting CBs is repeated for some other 
decks in the vicinity of the best deck. Here, we considered 
the first 6 decks.

2.3.2 Composite castellated beams optimization
Meta-heuristics are the recent generation of optimization 
methods suited to optimal design of real-size structures [22]. 
To take advantage of these methods an established and effi-
cient algorithm, composed of simple rule which initially 
mimic the free vibration of mass–spring–damper system 
known as Vibrating Particle System (VPS) [23] algorithm 
is utilized in our research. The authors rephrase the phys-
ical background of the VPS based on the free vibrations 
of ideal one-story frame structures which are described in 
detail in the following literature.

Structural vibration context of VPS algorithm
The formulation of VPS algorithm is inspired by the vis-
cously damped free vibration of ideal one-story frame 
structures. We assume that the reader is familiar with the 
formulation of structural dynamics problems and the anal-
ysis of damped free vibration. Thus the presentation here is 
brief and limited to those aspects that are essential [24, 25].

Free vibration occurs when a structure vibrates sub-
ject to actions of forces inherent in the system itself and 
in the absence of any external excitation. Damping is an 
inevitable nature of real systems that makes the deforma-
tion response in free vibration decay with time, eventu-
ally returning the system back to its initial undisturbed 
position. A number of mechanisms such as the thermal 
effect of recurrent elastic straining of materials, internal 
friction of deformed medium, and friction at steel connec-
tions and friction between structural and non-structural 
elements lead to energy dissipation of the vibrating sys-
tem. Damping can be mathematically idealized via a lin-
ear viscous damper i.e., dashpot.

An idealized linearly elastic one-story structure is illus-
trated in Fig. 5. It consists of a concentrated mass at the 
floor level (m), axially rigid massless columns that provide 
lateral stiffness (k) for the structure, and a dashpot with 
damping coefficient c. If the floor system is displaced later-
ally through some distance u0 and led to vibrate freely, the 
structure will oscillate around its initial equilibrium posi-
tion with a progressively decreasing amplitude. The mass 
of the structure is in equilibrium state under the actions 
of these forces, at each instant in time. This condition of 
dynamic equilibrium in terms of dynamic response u(t) is:

 u t u t u tn n( ) ( ) ( )+ + =2 0
2ζω ω ,	 (79)

where ζ = c/ccr is the damping ratio that represents the 
damping level of a dashpot; ccr = 2mωn is the critical damp-
ing coefficient which defines the boundary of oscillatory 
and nonoscillatory motion and ωn = (k/m)0.5 is the natural 
circular frequency.

In the motion of underdamped systems (ζ < 1), damping 
diminishes the amplitude of deformation exponentially 
while the system is oscillating about its equilibrium posi-
tion. In contrast, the motion of critically damped (ζ = 1) or 
overdamped (ζ > 1) systems is non-oscillatory. The solu-
tion of the equation of transient motion of under-damped 
system is as follows:

u t e tnt
D( ) cos( )= +−ρ ωζω ϕ .	 (80)

In which ρ ζω ω= + +( )



u u u n D0

2

0 0

2
0 5

( )

.

  is the amplitude 
of deformation response; and ϕ ζω ω= − +( )−

tan ( )
1

0 0 0
u u un D  

is the phase angle. The graphical representation of vis-
cously damped free vibration is shown in Fig. 6, in which 
the envelope curves ± −ρ ζωexp( )nt  are approximately in 
contact with peak values of deformation response curve.

Fig. 5 Schematics of ideal one-story frame structure
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The natural frequency of a damped vibration is ωD = rωn, 
where r = (1 – ζ 2)0.5 is a reduction factor which indicates 
that damping reduces the natural frequency of an unreal-
istically undamped structure. However, this reduction for 
most structures (e.g. buildings and bridges) is insignifi-
cant, since their damping ratios are below 0.2.

A more important effect of damping is on the rate at 
which the free vibration decays or in the other words the 
rate of energy dissipation at deformation amplitude is dom-
inated by damping ratio. This effect is graphically depicted 
in Fig. 7, for four structures with different fractions of crit-
ical damping but identical natural frequencies.

Logarithmic decrement (δ) is the natural logarithm of 
the ratio of two consecutive peaks of damped free vibra-
tion. Mathematical representation of the domination of 
damping ratio on the rate of exponential decay of free 
vibration is given by logarithmic decrement which for 
most practical structures (ζ < 0.2) is defined as:

δ πζ=
+

ln
u
u
i

i 1

2 .	 (81)

Performance of the VPS algorithm
VPS [23] is a population-based optimization algorithm 
that contains a number of agents instead of a single agent 
which enable the algorithm to explore different regions of 
the search space simultaneously. Each agent is modeled as 
a free vibrated ideal one-story frame structure with dashpot 
that is called particle. The performance of VPS is clearly 
elaborated in stages, in the following literature.

•	 Initialization phase
Step 1: VPS initialize the position of all particles ran-

domly within the n-dimensional search space in order to 
form the Vibrating Particle matrices (VPs) as:

x x rand x xinitial j
i

j
i

j
i

j
i

( ) min( ) max( ) min( )
.= + −( ) ,	 (82)

where xi
initial( j) is the initial position of the jth variable of the 

ith particle; xi
max( j) and xi

min( j) are the side limits of the jth 
variable and rands are random numbers drawn from the 
standard uniform distribution on the closed interval [0,1]. 

Step 2: After the initial randomization of the particles, 
the evaluation function which is the penalized objective func-
tion of the particles is calculated to form the cost matrix (CM).

•	 Search Phase
Step 3: VPS utilizes a record memory to save the 

improvements of the population (VPM) and the corre-
sponding cost matrix (RM) throughout the evolution. This 
mechanism aided by the implementation of an appropri-
ate strategy, improves the performance of VPS without 
increasing computational cost. Throughout the evolution, 
VPS scrutinizes the variations of the calculated cost of all 
particles and if any improvement is detected in the CM, 
the upgraded value will be substituted with the previous 
deficient cost in the RM, followed by the substitution of its 
equivalent improved position in the VPM.  

Step 4: Similar to free vibration of an ideal one-story 
frame with dashpot, VPS improves the position of the par-
ticles consecutively by oscillating them toward the equi-
librium position. Individual particle of the population is 
regenerated by learning from three equilibrium states with 
different weights (ωi) including: interim optimum particle 
(PO) that is the optimum solution of the population so far 
along with intermediate particles called superior particle 
(PS) and inferior particle (PI). To determine the intermedi-
ate particles at each iteration, CM is sorted in ascending 
order and PS and PI are selected randomly from the first 
and second halves respectively except the particle itself.

As previously stated, the rate at which the deformation 
response history of free vibration decays is governed by 
the damping ratio. VPS simulates this behavior by intro-
ducing a scalar function that is proportional to the iter-
ation number which decrease gradually as the evolution 
proceeds. c is a constant. 

Fig 6 Response of an underdamped system subjected to an initial 
displacement u0 and 0 initial velocity

Fig 7 Free vibration of systems with four levels of damping but 
identical natural frequencies
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	 (83)

In VPS parameter A is introduced to model the ampli-
tude of free-vibration response (ρ) expressed as [23]:

A P P P P P Po i S i i I i i= − + − + −ω ω ω
1 2 3
( ) ( ) ( )

( ) ( )
.	 (84)

VPS regeneration formula simulates the envelope func-
tion of realistic free-vibration response i.e., ρ ζωexp( )− nt by 
the multiplication of parameters, A and D as [23]:

P AD rand P AD rand P

AD rand P

new i S i

I i

O( ) ( )

(

. . . .

. .

= +( ) + +( )
+ +

ω ω

ω

1 2

3 ))
,( )

	 (85)

where Pi and Pnew(i) respectively are the current and updated 
positions of the ith particle.

Weight coefficients are defined to coordinate the diver-
sification and the intensification mechanism of VPS, which 
weigh the interim optimum and intermediate particles rela-
tive to their importance.

ωk
k

=
=
∑ 1

1

3

	 (86)

In order to hasten the rate of convergence, prior to 
applying the regeneration formula a stochastic model for 
elimination the role of PI shall be checked as below. Pro is 
a parameter within an open interval (0,1).

If pro rand w
If pro rand

< ⇒ =
≥ ⇒





3
0

do nothing
	 (87)

•	 Handling boundary constraints
Step 5: As stated before, VPS implements RM only for 
the regeneration process and utilizing this strategy may 
cause, the arbitrary regenerated components of a particle 
to violate the side constraints. In order to deal with this 
deleterious possibility, VPS employs a harmony search-
based handling approach, adopted form Charged System 
Search Algorithm (CSS) [26]. In this technique, a sto-
chastic model specifies whether the violating component 
should be interchanged with a corresponding component 
of a random particle in RM or should it be determined ran-
domly in a search space.

If HMCR rand
If HMCR rand

< ⇒
≥ ⇒

choose a random value from 

choose


  a random value from RM





	 (88)

where HMCR is the harmony memory considering rate 
variable between 0 and 1. 

•	 Termination
Step 6: The optimization process from step 2 to 4 is 

performed successively and the population of solutions 
improves progressively throughout the evolution. After 
the preset maximum number of iterations, the optimiza-
tion process is terminated and the particle with the lowest 
price becomes the final solution of the problem, and can be 
readily extracted from the VPM.

3 Results and discussion
3.1 General statements
Three distinct design examples are studied to evaluate the 
validity of the proposed optimization program. As shown 
in Fig. 8, the optimum design of a single bay is considered 
in the examples and this can be repeated in different direc-
tions to cover a complete floor plan. In order to simulate the 
effect of adjacent bays and exterior walls the additional uni-
form dead and live loads may be applied to exterior beams.

MATLAB software is used for both modeling the opti-
mization process and performing the structural design. Cost 
coefficients are given in Table 2 [7, 9]. In order to allow for 
long term creep and shrinkage effects in the deflection cal-
culation, one must set the creep coefficient δper equal to 1 
and for ignoring its effect it must be taken as 0. The value 
of δper is set to 1 for all of the examples. All connections 
are supposed to be simple connections and the span of both 
interior beams and edge beams are assumed to be identical. 

Fig. 8 Structural framing layout of the floor systems to be optimized
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The result of sensitivity analysis on population size, c, 
ω1, ω2 and pro reveals that values 20, 0.05, 0.3, 0.3 and 0.7 
give rise to the most suitable performance of the VPS [27]. 
The value of HMCR is set to 0.95 [26]. Regarding the steel 
decks, either one or both of P-2432 and P-3623 Canam 
deck profile with normal weight concrete is utilized for 
the examples. The triple span condition is assumed for 
all spans and the shoring spans are not considered. Also, 
a value of 4.2 % of theoretical available damping is used 
for all the examples. 

3.2 Example 1
3.2.1 Problem statement
In order to validate the performance of the proposed opti-
mization program, we optimized a 50 ft × 32 ft rectangular 
floor system adopted from the AISC Design Guide 31 [2]. 
Although no optimization technique is utilized in the refer-
ence example, due to similarity of the utilized design theories 
of composite CBs, it is recognized as the most appropriate 

benchmark example. The steel beams are supposed to be 
fabricated by ASTM A992 steel type and are sized from a set 
of 233 W-shapes sections given in ASTM A6 chosen based 
on area and inertia properties [28]. For consistency with the 
benchmark example, only the 5-inch slab thicknesses of 
P-3623 Canam deck profile are utilized. The corresponding 
input design parameters are summarized in Table 3. 

3.2.2 Presentation and assessment of the results 
Performance validity of our proposed program is evi-
denced by the results presented in Table 4. Overall, it  is 
clear that our solution compared to a classical design 
method, with the intention to utilize cross sections as fully 
as possible, has reduced the cost of the whole floor system 
by about 15 %. The convergence history for the optimal 
solution is plotted in Fig. 9.

In composite construction of castellated beams, the top 
tee works in conjunction with concrete slab, thus the top tee 
is not usually subjected to considerable amounts of axial 
force. Interestingly, while the AISC Design Guide 31 [2] 
utilized a classical design approach, the optimum cost of 
interior beams in our solution yields only a 2 % reduction. 
This is because the benchmark example specifies asym-
metric sections for interior beams, using a  smaller root 
beam for the top tee.

For the purpose of a fair analogy, if we assume that the 
design guide also uses symmetrical sections, the price of 
interior beams increases from $10050 to $12500. Our solu-
tion for interior beams therefore greatly boosts cost-reduc-
tion from 2 % to 21 %.

Table 2 Cost factors of various floor components

Floor components Cost factors ($) Units

Steel beams 2.86 per kg

Steel deck 2.25 per kg

Shear studs 2.4 per kg

Concrete 131 per m3

Welding 1 per m

Cutting 0.8 per m

Cambering 1.25 per mm

Construction (DS) 10.8 per m2

Table 3 Input design parameters for the 50 ft × 32 ft floor system

Bay Size (ft) Material properties (ksi) Material Density (pcf) Deal Loads (psf) Live Loads (psf) Misc.

L = 50 E = 29000 γs = 491 Wds = 20 Wl = 100 ds = 0.75

W = 32 Fy = 50 γc = 145 + Wc Wlc = 0 δal = L/360

- Fu = 65 - + Wsd Wla = 11 δat = L/240

- Fus = 65 - + Wb - δper = 1

- fc = 3 - - - ζc = 4.2 %

E = modulus of elasticity of steel; Fy = minimum yield stress ; Fu = minimum tensile strength; fc = compressive strength of concrete; Wds = dead 
surface load; Wdc = dead weight of the concrete; Wdd = dead weight of the steel deck; Wdb = dead weight of the steel beam; Wl = minimum live load; 
Wlc = construction live load; Wla = actual live load

Table 4 Comparison of cost distribution for the 50 ft × 32 ft floor system with literature data

Publication Design 
method

Num. of 
Limit states

Floor height 
(in)

Cost of steel beams ($) Cost distribution ($)

Interior beams Edge beams Girders Steel beams Deck Slab floor system

Design guide [2] Classical 
design 18 35.8 10050 6700 6550 23300 8100 31400

Present Work Optimum
design 21 28.7 9845 4605 5200 19650 6975 26625
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By altering the point of observation, the benchmark 
example assigned similar sections to both groups of inte-
rior beams and edge beams, but our program treats edge 
beams as an individual subproblem. Table 5 shows that, 
compared to interior beams, 15 (Ib/ft) lighter sections are 
chosen for the edge beams and $1960 is saved which leads 
to an almost 31 % cost reduction compared to that in the 
design guide (Table 4). 

As it has emerged from our optimum solution, the struc-
tural depth of the floor system is 7.1  inches and almost 
20 % more shallow than that in the AISC Design Guide. 
This reveals the fact that our program is able to reduce the 
floor to floor height of each story level, leading to a more 
economical construction method. 

In terms of basic variables, optimal design demon-
strated a significant reduction of horizontal cutting length 
by about 31 %, while in turn a moderate average variation 
of about 13 % and 18 % is observed in cutting angle and 
cutting height of interior beams, respectively (Table 5).

3.3 Example 2
3.3.1 Problem statement
For the purpose of comparison, an interior 10 m × 8 m floor 
configuration optimally designed by Poitras et  al.  [7] is 
solved by our proposed optimization program. The struc-
tural beams are supposed to be fabricated by EU S355 steel 
type and are sized using a set of 125 economical W-Shapes 
found in the Canadian Institute of Steel Construction (CISC) 
Handbook [29]. Both P-2432 and P-3623 composite deck 
profiles of Canam catalogue are utilized for this example. 
The pertinent input design parameters are shown in Table 6. 

3.3.2 Presentation and assessment of the results 
In order to conduct an impartial comparison, the cost factor 
for shear stud is equated with that used in the benchmark 
example. The optimum solution reached by Poitras et al. [7] 
for the floor layout using conventional plain-webbed beams 
and our optimum solution using high stiffness castellated 
beams are both illustrated in Table 7. 

The difference between the final cost of our study com-
pared to the first study does not exceed 0.6 %. Plus the fact 
that, our solution reduced the structural depth of the floor 
by 16.8 %.

Table 5 Comparison of basic variables of castellated beams for the 50 ft × 32 ft floor system

Basic 
variables

Interior beams Edge beams Girders

AISC design guide 31 [2] Present 
work

AISC design guide 31 [2] Present 
work

AISC design guide 31 [2] Present 
workTop Bottom Top Bottom Left Right

PB W21 × 44 W21 × 57 W21 × 50 W21 × 44 W21 × 57 W18 × 35 W24 × 55 W27 × 102 W24 × 62

h(in) 9.7 10.1 11.7 9.7 10.1 9.6 N/A 7.6

θ° 60.41 61.4 53.1 60.41 61.4 53.3 N/A 56.4

e(in) 8 5.9 8 4.9 N/A 5

Nss 54 48 54 34 18 34

Nb 3 3 2 2 2 2

Fig. 9 The cost history graph for the 50 ft × 32 ft floor system

Table 6 Input design parameters for the 10 m × 8 m steel floor

Bay Size (m) Material properties (MPa) Material density (kg/m3) Deal Loads (kPa) Live Loads (kPa) Add. Loads (kN/m) Misc.

L = 10 E = 205000 γs = 7850 Wds = 1.6 Wl = 4.8 wdg = 10 ds = 19

W = 8 Fy = 3550 γc = 2400 + Wc Wlc = 0 wlg = 14 δal = L/360

- Fu = 470 - + Wsd Wla = 0.5 wde = 4 δat = L/240

- Fus = 450 - + Wb - wle = 4 δper =1

- fc = 20 - - - - ζc = 4.2%
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If we compare the deck variables of the present study 
with the benchmark example, we find out that a 0.15 mm 
increase in steel deck thickness for a constant concrete 
depth (Table 8) produces a 9.3 % increase in the deck cost 
(Table 7 ). On the other hand, a 15 mm reduction in con-
crete thickness with the deck thickness unchanged, yields 
only a 4 % cost reduction (Table 9). This analogy high-
lights the fact that the total cost of the floor system is more 
sensitive to variation of steel deck thickness as compared 
to concrete depth. 

The optimum costs obtained by Poitras et al. [7] for the 
present floor configuration with respect to predefined 50 %, 
60 % and 75 % partial composite actions are $15360, $15225 
and $15210 respectively. Curiously they also eliminate the 

composite action by removing the stud anchors. The cost of 
this non-composite floor system dropped to $14832. 

According to Salmon et al. [30] elimination of the com-
posite action between concrete slab and steel beams con-
tributes to discontinuity in strain distribution at the plane 
of contact and nullifies the interaction of the two materials. 
Nullifying the interaction of two materials contradicts the 
objective of structural composite systems whose mechani-
cal performances are designed to be superior than to those 
monolithic materials acting independently. Therefore, this 
anomaly is discarded in the performance comparison. 

They also state that if a full interaction exists in a struc-
tural composite beam, the corresponding strain distribu-
tion will retain single natural axis and no discontinuity 

Table 7 Comparison of cost distribution for the 10 m × 8 m floor system with literature data

Researchs Design methods Number ofconstraints Floor height (mm) Deck cost($) Beam cost ($) Total cost ($)

Poitras et al. [7] PSO, LSD - CSA 16 4 668 3615 11595 15210

Peresent Study VPS, LSD - AISC 16 31 555 3950 11350 15300

Table 8 Comparison of basic variables of 10 m × 8 m floor system with the literature data

Researches Root sections Composite status h (mm) e (mm) θ° Nfd Deck profile td (mm) ts (mm)

Poitras et al. [7]
W460 × 60
W460 × 60
W530 × 82

Partial
Partial
Partial

N/Aa N/A N/A 3 P-2432 0.76 140

Peresent Study
W310 × 60
W250 × 45
W410 × 100

Full
Full

Partial

160
143
163

95
82
118

55.4
54.6
58

3 P-2432 0.91 140

a Not applicable

Table 9 Basic variables and cost distribution of our first six solutions for the 10 m × 8 m floor system

Basic variables of CB Basic variables of DS Cost distribution ($) [order]

Initial 
sections

h
(mm)

e
(mm) θ° Nfh

Camber
(mm)

Deck
profile

td

(mm)
ts

(mm) Nfd
deck
slab

Steel
beams

floor 
system

W310 × 60
W250 × 50
W410 × 100

160
143
163

95
82
118

55.5
54.6
58

1 0 P-2432 0.091 140 3 3950
[6]

11350
[1]

15300
[1]

W310 × 60
W310 × 60
W410 × 100

157
164
170

95
88
125

55.3
54

57.7
0 0 P-2432 0.091 125 3 3790

[5]
11945

[2]
15735

[2]

W310 × 60
W310 × 60
W410 × 100

160
150
143

99
83
106

55.5
54.2
58

0 0 P-3623 0.091 125 3 3715
[3]

12020
[3]

15735
[3]

W250 × 39
W250 × 45
W460 × 113

134
143
203

80
76
133

55.1
53.8
56.2

0 26 P-3623 0.076 125 4 3435
[1]

12490
[6]

15925
[4]

W250 × 33
W250 × 39
W410 × 100

142
130
167

78
69
141

54.2
54.2
60

1 25 P-3623 0.091 125 5 3720
[4]

12270
[4]

15990
[5]

W250 × 33
W250 × 39
W410 × 100

139
143
153

77
75

124

54
54
59

0 0 P-3623 0.076 150 5 3700
[2]

12330
[5]

16030
[6]
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would be observed at the plane of contact. Also the chord 
forces in full composite action are larger than those in par-
tial action [30]. Hence it is recognized as a structurally 
more efficient status of composite action. However, it does 
not always give rise to the most economical solution as it 
is clear from the results of the 1st study.

In the study of Poitras et  al.  [7], the desired percent-
age of composite action within the specified range must be 
entered as input data for the optimization program. On the 
contrary, in our study, if a candidate steel-concrete beam 
violates the assumption of full composite action the pro-
gram is able to design that section as partially composite 
to save costs. At this point the radical difference between 
our program and that in the work done by Poitras et al. [7] 
becomes more comprehensible, in that the cost of $15210 
is obtained by the assumption of predefined 75 % compos-
ite action for all groups of beams which deviates from our 
treatment regarding the composite action. 

The first six solutions of the present study for the 
8 m × 10 m floor layout based on the cost of the complete 
floor system is illustrated in Table 9 in ascending order. 
Also the order of the cost of the floor constituents namely 
the deck-slab and the steel framing is shown in brackets. 
It can be deduced from the table that the order of the final 
price does not necessarily follow the order of the deck-
slab cost. The results of the best floor which possess the 
worst deck is clear evidence for this fact. Hence one can 
conclude that obtaining the minimum cost of the compos-
ite floor system without considering the higher cost decks 
other than the best deck is not attainable.

We can also change our perspective and highlight the 
fact that the same statement is valid for the supporting steel 
framing. Basically, the order of the total cost of the floor 
system is not essentially identical to that of the steel beams. 
This statement emphasizes that a simultaneous optimiza-
tion considering the reciprocal effects of the constituents of 
the steel-concrete floor systems is an inevitable procedure 
for obtaining the most economical design solution.

An individual deck profile has its own specified range 
of span (i.e. distance of the beams). Thus utilizing a vari-
ety of deck profiles in contrast to single deck utilization, 

enables the optimization program to examine higher num-
bers of floor divisions (i.e. Nfd). This statement can be 
intelligibly deduced from Table 9 in which the floors with 
the P-3623 deck profile possess  4,  5 and even  6 interior 
beams as compared to the floors with P-2432 deck profile 
which only have 4 interior beams.  

The variables of the 4th and the 5th floor systems reveal 
that the program could effectively save costs by reduc-
ing excessive deflection by specifying 26 mm and 25 mm 
camber respectively. Furthermore, the optimum dimen-
sions of hexagonal openings for all types of beams effec-
tually identified. 

As in the case of 2nd and 3rd floor systems with prox-
imate final prices, each of the floor systems can be arbi-
trarily selected for a specific construction project after due 
consideration of different factors like structural depth, 
number of floor divisions, constructional concerns or 
availability of materials.

Table 10 shows both filling pattern and composite status 
of the web openings of castellated beams considering ver-
tical symmetry. It is noteworthy that utilizing W410 × 100 
as root section of girders necessitates partial interaction of 
composite sections at all web openings as opposed to edge 
and interior beams which manifest complete steel-con-
crete interaction. The same results could be presented for 
other beams omitted for brevity.

This example is also solved by ASTM A6 W-sections 
and European standard beams. The optimum cost of the 
floor for each set of sections dropped significantly to 
$11950 and $12885 showing a 20 % and an almost 14 % 
reduction respectively compared to Canadian sections. 

3.4 Example 3
3.4.1 Problem statement
The optimal design of 6 m × 7 m floor layout is examined 
as the last example. The structural beams are fabricated 
by DIN 17100 St 37.2 and St 52.3 steel types and are sized 
within the complete set of  217 European standard wide 
flange H beams and universal I beams chosen based on 
area and inertia properties. P-2432 and P-3623 of Canam 
composite steel decks are utilized for this example. 

Table 10 Filling pattern and composite status of girders for the 10 m × 8 m floor system

Girders

xi (cm) 0 28 72 116 160 204 248 291 335 379 CL

Filling pattern End 0 0 0 0 0 0 0 0 0 0

Composite status NA P P P P P P P P P P

0 = opening is not filled; 1 = opening is infilled; F = full composite action; P = partial composite action
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This example is solved twice. First the input is adjusted 
to be identical to that in the work done by Kaveh and 
Ghaffari  [9]. In  conformity with their work St 37.2 steel 
type and I sections from IPE140 to IPE600 are utilized as 
the design pool for steel sections. They also utilized the 
P-2432 Canam deck profile. In order to simulate the effect 
of wall loads and neighboring bays, twice the typical loads 
of the existing bay are applied to the side beams. The design 
parameters for the first solution are listed in Table 11.

3.4.2 Description of the results
Tables 12 and 13 compare the cost distribution and basic 
variables pertaining to the optimum solutions of the two 
researches respectively. Disregarding the construction 
cost which is invariable, the rate of change of the com-
posite deck-slab cost is more sensitive to an increment of 
deck thickness rather than incremental changes of concrete 
thickness. Hence a 0.015 cm reduction in deck thickness 
resulted in an 8.5 % drop in deck-slab cost. At the same 
time, a 15 % improvement could be observed in our solu-
tion pertaining to the castellated beams as compared to that 
of the 1st study. Overall a significant reduction of 17.2 % 
was observed in the final price of complete floor system as 
compared to the solution of Kaveh and Ghaffari  [9]. Our 
program also decreased the structural depth of the floor 
system by 14 cm- equivalent to 22.4 %. 

3.4.3 Discussing the results 
The AISC specification [4] for determination of design 
positive flexural strength of composite beams with stud 
anchors, have introduced two methods including plastic 
stress distribution for compact webs and elastic stress dis-
tribution for either noncompact or slender webs. Kaveh 
and Ghafari [9] utilized the latter approach in which the 
elastic properties and effect of shoring shall be taken into 
account. In this method the maximum global moment is 
verified to be smaller than the ultimate moment capacity 
determined by elastic flexural formulas such that the com-
pressive stress is 0.7fc' in the top fiber of the transformed net 
section and Fy in the bottom fiber. On the other hand, we 
assume that the beam at the net sections is fully compos-
ite such that all of the compression forces resulting from 
global moments are resisted by the concrete sections and 
that the bottom tees resist all tension forces. The resultant 
axial forces are calculated by dividing the global moments 
by the distance between the centroids of the concrete 
flanges and the bottom tees assuming a Whitney rectan-
gular stress distribution in the topping concretes and uni-
form tensile stress distribution in the bottom tees. Validity 
of this assumption is to be verified in the design process. 

In the treatment of Kaveh and Ghaffari [9] regarding 
Vierendeel bending the summation of elastic stresses 
resulting from global moments at the bottom fiber of the 

Table 11 Input design parameters for the 6 m × 7 m floor system for the first solution

Bay Sizes (m) Material properties
(kg/cm2)

Material densities
(kg/cm3) Deal Loads (kg/m2) Live Loads (kg/m2) Add. Loads (kg/m) Misc.

L = 6 E = 2039000 γs = 7850 Wds = 163 Wl = 490 wdg =326 δal = L/360

W = 7 Fy = 2350 γc = 2400 + Wc Wla = 51 wlg = 980 δat = L/240

- Fu = 3400 - + Wsd Wlc = 0 wde = 326 δper = 1

- Fus = 4500 - + Wb - wle = 980 ζc = 4.2%

- fc = 250 - - - - ds = 19

Table 12 Comparison of cost distribution for the 6 m × 7 m  floor system

Researches Design methods No. of constraints Floor Heights (cm) Deck costs ($) Beams costs ($) Total costs ($)

Kaveh & Ghafari [9] ECBO [22], LRFD - AISC 10 14 62.5 1980 5535 7515

Peresent study VPS, LRFD - AISC-16 31 48.5 1825 4700 6525

Table 13 Comparison of the basic variables for the 6 m × 7 m floor system

C
B

s b
as

ic
 v

ar
ia

bl
es

PB

Interior beams Edge beams Girders

D
S 

ba
si

c 
va

ria
bl

es

Nfd

Deck-slabs

Kaveh &
 Ghafari [9]

Present 
study

Kaveh &
 Ghafari [9]

Present 
study

Kaveh &
 Ghafari [9]

Present 
study

Kaveh &
 Ghafari [9]

Present 
study

IPE 240 IPE 240 IPE 240 IPE 270 IPE 500 IPE360 3 3

h (cm) 7.95 11.65 7.95 13.4 13.93 10.9 PS P-2432 P-2432

e (cm) 7.63 7.7 7.63 8.6 11.34 8.4 td (cm) 12.5 12.5

θ 63.8 56.5 63.8 56.6 62.48 58.7 ts (cm) 0.091 0.076
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transformed net sections and the Vierendeel moments at 
the bottom fiber of the bottom tee sections is regulated 
to be smaller than 0.9Fy. In contrast, we take the con-
crete shear strength for calculation of required Vierendeel 
moments into account which leads to the reduction of 
Vierendeel moments, hence realizing a more economical 
design method. Then, we regulate the value of reduced 
Vierendeel moments to be smaller than the ultimate flex-
ural strength of the tee sections determined based on the 
limit states of plastic moment and lateral-torsional buck-
ling. Finally, the tee sections are checked for combined 
effect of global and Vierendeel bending.

In order to control the buckling of the web post, Kaveh 
and Ghafari [9] employed the traditional wedge method, 
while our model implemented a rapid design aid having 
taken into account plasticity and strain hardening. 

3.4.4 Second solution of the problem
The design of the present floor system is repeated by utiliz-
ing the St 52.3 steel type and observing the complete set of 
European H beams and I beams. Both P-2432 and P-3623 
Canam deck profiles are used for this solution. The exte-
rior beams are supposed to sustain the wall load applied 
by ribbon window glazing system with brick spandrels. 
Foam concrete is selected to cover the structural floor sys-
tem. The specified live load is reduced in accordance with 
ASCE/SEI 7-16 [12] and the uniform construction live load 
is taken into account. All design parameters other than 
those similar to the first solution are listed in Table 14. 

The first six floors with least total cost are sorted in 
an ascending order in Table 15 and the convergence his-
tory for the optimal solution is plotted in Fig. 10. A sin-
gle observation to emerge from the data comparison is 
that implementation of multiple deck profiles appears to 
be effective for reducing the total cost of the floor. If we 
eliminate the P-3623 deck profile, a 5 % increase will be 
observed in the final cost of the floor. 

The correlation between the 1st and the 5th deck is note-
worthy as it highlights the effect of floor division num-
bers (Table 15). The two floors share identical deck prop-
erties but their numbers of interior beams are different. 
Increasing single number of interior beams for the 1st floor 
increases the cost of interior beams directly and also leads 
to a rise in the cost of supporting girders. Overall, this 
seemingly small variation, could improve the total cost by 
about 9.1 % that defines the final solution to the current 
design problem. 

Table 14 Input design parameters of the second solution for the 
6 m × 7 m floor system

Material
Properties (kg/cm2)

Deal 
loads (kg/m2)

Live
Loads (kg/m2)

Additional
Loads (kg/m)

Fy = 3340 Wds = 50 Wl = 300 wdg = 0

Fu = 4500 + Wc Wlc = 98 wlg = 0

+ Wsd wde = 750

+ Wbz wle = 0

Table 15 Basic variables of the second solution for the 6 m × 7 m floor system

Material distributions Cost distributions ($) & [order]

Initial sections Nfh Deck profiles td (cm) ts (cm) Nfh Decks Beams Floor systems

IPE AA 220
IPE AA 220
IPE AA 220

3 P-3623 0.076 10 3 1665 [1] 2515 [1] 4185 [1]

IPE AA 220
IPE AA 220
IPE AA 240

0 P-3623 0.091 10 3 1815 [3] 2555 [2] 4370 [2]

IPE AA 220
IPE AA 220
IPE AA 240

0 P-2432 0.076 12.5 3 1825 [4] 2568 [3] 4395 [3]

IPE AA 220
IPE AA 220
IPE AA 240

0 P-2432 0.091 12.5 3 1990 [5] 2570 [4] 4560 [4]

IPE AA 220
IPE AA 220
IPE AA 240

0 P-3623 0.076 10 4 1670 [2] 2935 [6] 4605 [5]

IPE AA 220
IPE AA 220
IPE AA 240

0 P-2432 0.091 14 3 2075 [6] 2570 [5] 4645 [6]
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4 Summary and conclusions
Due to the light weight and complicated design method of 
castellated beams, our computerized cost optimization pro-
gram optimized the floor systems supported by castellated 
beams in a technically meticulous manner. Performance of 
the program has been outlined in great detail encompass-
ing the efficient VPS algorithm and several cost-reduction 
practices, as well as an accurate and comprehensive design 
method considering 31 applicable constraints.

Optimizing various floors taken from the literature 
revealed indisputable evidence that the proposed pro-
gram meets the economic requirements, ensures safety 
and structural performance, and provides a reliable and 
cost-effective design tool for practical purposes. This ver-
ification has presented positive outcomes that advance 
the current knowledge. A number of salient concluding 
remarks can be drawn as follows:

•	 For long floor systems e.g. 15 m (50 ft) the program 
as compared to traditional classical design method 
is able to effectively reduce the cost of the complete 
floor by about 20 %.

•	 For medium span length e.g. 6 m (c. 20 ft) the pro-
gram as compared to other non-deterministic optimi-
zation models could reduce the final cost up to 17 %. 

•	 The program in some instances was able to reduce the 
structural depth of the floor system more than 20 %.

•	 For attaining optimum cost, simultaneous optimiza-
tion of the deck-slab and supporting steel beams is 
vital. This treatment in some instances of long floor 
systems could reduce the final price up to 12 %. 

•	 Increasing the number of deck profiles efficiently 
improves the solutions. We could manage to improve 
the solutions by about 10 % by means of adding a 
single deck profile. 

•	 If the cost function is adjusted to be a function of the 
number of floor divisions, finding the optimum value 
of floor divisions could reduce the cost significantly. 
We were able to reduce the final cost up to 9 % by 
using the same deck profile but the optimum number 
of floor divisions.

•	 Implementation of cost saving strategies like consid-
ering partial composite action, infilling web open-
ings and specifying camber could successfully pre-
vent an increase in the final price of the floor system. 

•	 The proposed program is able to determine the opti-
mal cutting pattern for individual castellated beam.

•	 As a result of investigating 150 optimization prob-
lems, the optimal cutting pattern for fabrication of 
castellated beams described by non-dimensional 
parameters of dg/d, s/h, and θ appears to be 1.5, 2.6 
and 55.5° respectively. These values for commercial 
Litzka and Anglo-Saxon cutting patterns are 1.5, 3, 
63.5° and 1.5, 2.16, 60° respectively. 

Future works should mainly cover the development of 
additional features, enabling the program to compare dif-
ferent conditions in order to find the optimum state, for 
instances:

•	 Comparison between a variety of stud anchors and 
channel anchors considering both economical and 
strength issues.

•	 Comparison between a wide spectrum of fractions of 
composite actions.

•	 Comparison within the broad range of material prop-
erties of steel and concrete components.

•	 Reinforcing the program such that the user could 
arbitrarily utilize various deck profiles.

•	 Inclusion of slab reinforcements into the optimiza-
tion procedure.

•	 Enabling the program to specify asymmetric sec-
tions for composite application of castellated beams.

•	 Comparison between two conditions of deck ribs 
perpendicular to edge beams and deck ribs perpen-
dicular to girders from both economical and strength 
aspects.

•	 Conduct a similar study by utilizing the cellular beams 
and comparing the results with the current study.

•	 Developing the program with a view to facilitate the 
optimization of asymmetrical floor layouts.

•	 Conducting a similar study by exploring multi-bay 
floor systems for real simulation of reciprocal effects 
of neighboring bays and proposing a rational method 
for accurate simulation of the effect of the adjacent 
bays.

Fig. 10 The cost history graph for the 6 m × 7 m floor system
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•	 Comparing different dimensions of bays in principal 
directions of the multi-bay floor system from both 
strength and economical aspects. 

•	 Comparing different classifications of beam to col-
umn connections, namely simple, PR and FR.

It is observed that we cannot achieve the optimum solu-
tion without the integrated optimization of the main con-
stituents of steel-concrete composite floor systems. This 

finding seems to show that for attaining the synergy ben-
efits, the merger of the optimal cost design of steel frames 
with composite floor systems is an essential approach. 
Hence for the purpose of the further development of the 
structural optimization into practice, future work will 
involve proposing a robust optimization program for 
simultaneous optimization of real size steel frames with 
the steel-concrete composite floor system.
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