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Abstract

In this research, in order to evaluate the plastic limit load and also plastic design parameters of the long pile foundations subjected to 

horizontal loads, shakedown method is applied. In carrying out shakedown analysis and design methods, large plastic deformations 

and residual displacements could develop in the pile foundation which might lead to the failure of the structure. For this reason, 

complementary strain energy of residual forces proposed as a limit condition to control the plastic deformation of the pile structure. 

Furthermore, considering the uncertainties (strength, manufacturing, geometry) the limit conditions on the complementary strain 

energy of residual forces are assumed randomly and the reliability condition was formed by the use of the strict reliability index. 

The influence	of	the	limit	conditions	on	the	plastic	limit	load	and	design	parameters	of	the	long	pile	in	cohesionless	soil	subjected	

to lateral load were investigated and limit curves for shakedown load factors are presented. The numerical results show that the 

probabilistic	 given	 limit	 conditions	 on	 the	 complementary	 strain	 energy	 of	 residual	 forces	 have	 significant	 influence	 on	 the	 load	

bearing limit and the design parameters of pile foundations. The formulations of the reliability based problems lead to mathematical 

programming which were carried out by the use of non-linear algorithm.
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1 Introduction
In order to evaluate the uncertainties in engineering struc-
tures, two approaches have been improved in the recent 
years. The first method which is the deterministic design 
that considers the application of a global factor of safety 
or load factor. The second method which is the probabi-
listic design where the design information is character-
ized by having certain limits and recognized probabil-
ity distributions. Despite the fact that the deterministic 
design has been preferable to use for many decades, the 
proper safety is not clear for a specific factor of safety. 
In the probabilistic design, randomly distributed vari-
ables used to define the uncertainties as the contribution 
of appearance for every feasible value of the variable is 
tested and the random variable values with the most fre-
quent are related with the highest amounts in the proba-
bility density function. Generally, the uncertainties have a 
very extensive role and demand intensive computations in 
different fields of engineering. Kaveh and Seddighian [1] 
utilized robust meta-heuristic algorithms to optimize the 

slope stability problem. Csébfalvi [2–5] proposed new 
compliance minimization for robust topology optimiza-
tion of structures with uncertain loading directions. Wang 
and Cao [6] evolved a reliability based design method for 
drilled shafts that integrates a Monte Carlo Simulation. 
Klammler et al. [7] investigated an approach for intro-
ducing a criteria of pile driving regarding individual pile 
foundations under axial loading. Li et al. [8] used the reli-
ability based design method to calibrate the parameters of 
resistance considered in piles foundations design.

In the last decades, several studies were held about Pile-
soil interaction. Qin and Guo [9] considered the nonlinear 
response of rigid piles subjected to lateral loading in sand 
by applying elastic-plastic solutions. They offered critical 
parameters for the limiting force profile that are useful in 
nonlinear design of piles loaded laterally. Keawsawasvong 
and Ukritchon [10] applied a numerical solution to find 
the capacity of the ultimate lateral load along the major or 
minor axes of rectangular pile in clay. Giannakos et al. [11] 

https://doi.org/10.3311/PPci.17402
https://doi.org/10.3311/PPci.17402
mailto:majidmr%40sze.hu?subject=


762|Movahedi Rad and Ibrahim
Period. Polytech. Civ. Eng., 65(3), pp. 761–767, 2021

provided a nonlinear constitutive model for the cyclic 
behavior of piles in dry dense sand and a comparison 
was made between numerical and experimental results. 
Mucciacciaro and Sica [12] investigated the mechanical 
behavior of undrained clay by introducing a kinematic 
hardening model.

Considerable saving in material can be achieved by 
using the elastic-plastic analysis and design approaches. 
On the other hand, excessive residual displacements and 
large plastic deformations may develop, which can cause 
the failure of the structure. Over many years, literature 
reviews recommended several limit theorems for the 
residual displacements and plastic deformations (see e.g. 
Tin-Loi [13]; Liepa et al. [14]; Weichert and Maier [15] 
and Levy et al. [16]. In this research, a suitable compu-
tational method is presented when the complementary 
energy of the residual forces defined as a general mea-
sure of the plastic performance of the structures and the 
residual deformations need to be constrained by consid-
ering a limit for this amount of energy. This method was 
applied successfully for elastic-plastic analysis and for 
designing of several types of structures, Kaliszky and 
Lógó [17–21] introduced the application of the method for 
truss elements, while Movahedi Rad and Lógó [22] and 
Lógó et al. [23] applied the limit theorem in the case of 
framed steel structures, the method was applied for plastic 
limit analysis and design of pile foundation presented by 
Movahedi Rad [24]. In this paper, shakedown theorem for 
analyzing the plastic behavior of the laterally loaded piles 
is applied when the complementary energy of the residual 
forces defined as a general measure to control the plastic 
behavior of the pile foundation.

The remainder of this paper is prepared as follows: 
in Section 2 the elastic-plastic modelling of the long pile 
foundation is presented. The residual plastic limit equa-
tion is then introduced in Section 3 to control the plastic 
deformations. Moreover, reliability-based residual plastic 
limit is defined in Section 4 with applying complementary 
strain energy for residual forces. In addition, shakedown 
analysis and design methods are presented in Section 5. 
Then, an illustrated example is presented in Section 6 
while the final section concludes the paper. 

2 Elastic-plastic modelling of the pile foundation
Broms [25] assumed that different failure modes exist in 
short and long piles. A short pile with free head tilts or 
rotates about a point situated near its toe and passive resis-
tance extends above and below the point of rotation. As in 

the case of long free head pile, pile cannot rotate or tilt 
because of its large passive resistance while the lower part 
stays almost vertical and the upper part deflects in flex-
ure. Failure happens when the maximum bending moment 
exceeds the yield strength of the pile section and a plas-
tic hinge forms at the point having the maximum bending 
moments as shown in Fig. 1.

Consider a free-head long pile with a constant cross sec-
tion, at the depth l which has no shear force, a plastic hinge 
with a plastic moment of M p will be formed. That M p can 
be calculated using elastic-plastic solutions suggested by 
Guo [26].         (1)
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Where AL = γ'Ngd
1–n related to the limiting force pro-

file of cohesionless soil; γ' is the effective density of over-
burden soil; Ng is the gradient to correlate the strength of 
undrained soil; d is the outer diameter of the cylindrical 
pile; n is the limitation power for force profile; α0 is the 
equivalent depth taking in consideration the resistance at 
the surface of the ground; H is the lateral load and Me = He, 
e is the distance from the mudline to lateral load.

The instructions to find the values of the parameters are 
suggested by Guo [26, 27] and the limiting force profile are 
assumed as advised for cohesionless soil by Broms [25].

3 Theory of the residual plastic limit
Let us assume that the concept of plastic analysis and 
design methods has been used to define the structure. 
In a result the internal plastic forces Qp will appear in the 
structure by applying the load P0 . Moreover, elastic defor-
mations occur when the load is decreased under unload-
ing and then the elastic internal forces-Qe will occur in 
the structure. Thus, the residual forces will remain in the 
structure after completing the unloading.

Fig. 1 Failure mode of the long free head pile subjected to horizontal load 
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Q Q Qr p e= − , (2)

where

Q F G K Pe T= − −1 1

0 . (3)

Hereby, the flexibility matrix is denoted by F; G is the 
geometrical matrix; also the stiffness matrix is denoted 
by K. Let us assume the positive-definite function, and the 
residual forces are used to determine the complementary 
energy.
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As for here, Qi
e(s) and Qi

p(s) are the functions of elastic 
and plastic internal forces; Si expresses flexural stiffnesses 
and tensile stiffnesses for beam members and trusses, 
respectively.

A suitable computational method was suggested that 
the complementary energy of the residual forces can be 
explained as a general measure for the plastic performance 
of the structures and the residual deformations need to be 
constrained by considering limitations for this energy 
amount Kaliszky and Lógó [17] and Lógó et al. [23].
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where Cp0 is a suitable permissible energy value for Cp. 
And now let us consider the case of beam elements:
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the complementary energy is computed by the residual 
internal forces.

In here li, (i = 1, 2,…, n) indicates the members length 
of the beam, the moment of inertia of the beam elements 
is represented by, li while Mi

r(s) denotes to the residual 
moment of the beam members and E is the Young's modu-
lus. On the other hand, the moments Mi1

r and Mi2
r are apply-

ing at the ends of the members of the beam. The integral 
function in Eq. (4) can be expressed as:
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By applying the Eq. (6), the plastic deformations con-
strained as an appropriate limit value Cp0 is introduced.
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Also, a limit function G(.) can be produced by the use of 
Eq. (8):          (9)
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4 Theory of reliability-based residual plastic limit 
By assuming that XR presents the non-negative bound for 
the statically admissible forces XS with probability density 
functions fR(XR) and fS(XS), respectively. Failure probabil-
ity can be determined from the following equations:

P P X X f X f X dX dXf R S R R S S R SX XR S
= ≤[ ] = ( ) ( )

≤∫∫ . (10) 

The above equation has to be evaluated numerically for 
most of the distributions of XR and XS. Another alternative 
formulation of the above case is considered in the terms 
of the so-called limit state function which expressed by: 

G X X X XR S R S,( ) = − ≤ 0 . (11)

Observing that G ≤ 0 defines the failure event, conse-
quently the probability of failure is presented by:

P Ff G= ( )0 . (12)

Where the function of the cumulative distribution of the 
limit state surface is represented by FG(0) . Let us assume 
that the constrains for the complementary energy of the 
residual forces is specified by uncertainties and it follows 
the normal density function with given C̅ p0 that represent 
the mean value and the variance which denoted by Sw. 
The probability of the failure function can be found by the 
following equation:

P f C S dxf calc p w,
( , )= ∫

0
. (13)

A reliability boundary condition can be created by 
using the strict safety index as the following:

β βtarget calc− ≤ 0 . (14)

where βtarget and βcalc are determined as follows:

βtarget f targetP= − ( )−Φ 1

,
, (15)

βcalc f calcP= − ( )−Φ 1

,
. (16)

In both Eqs. (15) and (16), Φ represents the cumulative 
distribution function of the normal distribution function.

5 Shakedown analysis and design methods
Taking into consideration the parameters of the load 
m1 ≥ 0, m2 ≥ 0, shown in Fig. 2 that the long pile in cohesion-
less and it is under two separate constant loads P1 and P2. 
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A shakedown load parameter msh can be calculated for 
every loading combination, Wi = [m1P1, m2P2]. As a result, 
a limit state curves can be created in m1 and m2 plane by 
using these parameters as clarified in Fig. 3.

Taking in account the permissible bending moment 
fields Mj, achieving a statically admissible stable shake-
down load parameter msh from the condition that even the 
maximum bending moment does not exceed the fully plas-
tic moment, i.e. max|Mj| ≤ M P. 

Moreover, Mr satisfies the equilibrium equation as the 
solution approach is based on the static theorem of shake-
down analysis.

GM r = 0  (17)

During the loading, the structure will not undertake 
unlimited plastic displacements as it confirmed in Eq. (17), 
however, it doesn't give us any information about perma-
nent displacements remained in the structure after the 
shake down.

In order to restrict the permanent displacements com- 
plementary energy of the residual forces which is explained 
as a general measure of the plastic performance of the 
structures and the residual deformations are constrained 
by Eq. (8).

The equation of the elastic internal moment force can be 
derived from Eq. (18) as follows:

M F GK m We
sh i= − −1 1 . (18)

Also, Eq. (19) defines the yields condition while the M p  
can be calculated using Eq. (1) that proposed by Guo [26].

− ≤ + ≤M M maxM Mp r e p  (19)

The material redistribution is controlled by the follow-
ing equation:

i
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Where Ai and li represents the cross-sectional area and 
length of each element, respectively.

5.1 Deterministic shakedown problem
As for the deterministic method, residual plastic defor-
mations of the pile structures are bounded with applying 
allowable energy value Cp0:
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5.2 Probabilistic shakedown formulation
Nonlinear algorithm is used to execute this mathematical 
optimization problem and by considering the probabilistic 
method, the bound can be defined with the determining of 
the safety index β:
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5.3 Alternative design formulation
By altering the objective function and the last constraint, 
an alternative design formulation can be introduced as 
follows:

Fig. 2 Load combination on the pile

Fig. 3 limit state curve and safe domain
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Generally, the formulations of the reliability based prob-
lems lead into mathematical programming which were 
carried out by the use of non-linear algorithm. Moreover, 
the nonlinear mathematical programming formulation 
Eq. (23) leads to the same optimal solution presented in 
problem Eq. (22) which can be proved by the use of the 
optimality conditions.

6 Numerical examples
In order to evaluate the shakedown theories and the meth-
ods of solutions explained previously, a mathematical non- 
linear programming procedure is developed where the 
safe limit loading condition of a lateral loaded long pile 
for deterministic and probabilistic bounds on the magni-
tude of the complementary energy of the residual forces 
has to be calculated.

A numerical example is used to evaluate the application 
of these theories. This example demonstrates a long pile 
with free head and it is subjected to lateral load and bend-
ing moment that act at its top where the diameter of the pile 
is D = 0.4 m (Fig. 4). The constant loads are P1 = H = 0 KN, 
P2 = M = 24 KN, the flexural stiffness EI = 117.47 MN m2. 
The vertical pile embedded in cohesionless soil, the den-
sity of soil is 1900 kg/m3; Young's Modulus = 170 MPa 
poisson's ratio = 0.3 and friction angel = 41°.

The analyzing of the five loading cases (h = 1, 2…, 5) 
shown in Table 1 are taken into consideration. For each 
loading case a shakedown load multiplier ms can be calcu-
lated. Making use of these multipliers, a limit curve can be 
constructed in the plane m1 and m2.

Figs. 5 and 6 are showing the results and it can be seen 
that the limit load state domains are in two different func-
tions for deterministic and probabilistic problems. In Fig. 5 
as for deterministic problem, the state of limited load 
domains are considered in the case of different permissi-
ble energy value for Cp0 While in the case of probabilis-
tic problem the state of limited load domains are clarified 
for different mean values of the complementary energy of 
the residual forces C̅ p0(40; 45; 50; 55) with variance sw = 3, 
target reliability index βtarget = 3.2 and given probability of 

Table 1 Load combinations

h Multipliers Loads Load 
multipliers

1 m2 = 0 Q1 = P1 ms1

2 m1 = 0 Q2 = P2 ms2

3 m1 = 0.5 m2 Q3 = [0.5 P1, (0.5 P1 + P2), P2] ms3

4 m1 = m2 Q4 = [P1, (P1 + P2), P2] ms4

5 m1 = 2 m2 Q5 = [2.0 P1, (2.0 P1 + P2), P2] ms5

Fig. 4 Loads applied on the free head pile

Fig. 5 State of limited load domain for long pile

Fig. 6 Safe loading domain of shakedown load multipliers
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failure Pf = 0.00069. The Pile subjected to lateral loads does 
not fail, if the load parameters m1 and m2 locates inside or 
on the limit state curve.

Fig. 6 illustrates the deterministic solution technique 
results for piles with different diameters. In that figure 
we can notice the safe loading domain of shakedown load 
multipliers for given permissible energy value Cp0 = 50 .

7 Conclusions
The shakedown limit analysis is described in this paper 
in order to determine the lateral load capacity for long 
pile. Moreover, given bound on the complementary strain 
energy of the residual forces is applied in order to control 
the plastic behavior of the structure for deterministic and 

probabilistic problems. Also, limit curves are provided for 
the multipliers of the shakedown limit load. The numeri-
cal analysis demonstrates that the given mean values and 
different expected probability on the bound of the comple-
mentary strain energy of the residual forces can affect sig-
nificantly on the magnitude of the plastic limit load.
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