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Abstract

In this paper, recently developed set theoretical variants of the teaching-learning-based optimization (TLBO) algorithm and the 

shuffled shepherd optimization algorithm (SSOA) are employed for system reliability-based design optimization (SRBDO) of truss 

structures. The set theoretical variants are designed based on a simple framework in which the population of candidate solutions 

is divided into some number of smaller well-arranged sub-populations. In addition, the framework is applied to the Jaya algorithm, 

leading to a set-theoretical variant of the Jaya algorithm. So far, most of the reliability-based design optimization studies have focused 

on the reliability of single structural members. This is due to the fact that the optimization problems with system reliability-based 

constraints are computationally expensive to solve. This is especially the case of statically redundant structures, where the number 

of failure modes is so high that it is impractical to identify all of them. System-level reliability analysis of truss structures is carried out 

by the branch and bound method by which the stochastically dominant failure paths are identified within a reasonable time. At last, 

three numerical examples, including size optimization of truss structures, are presented to illustrate the effectiveness of the proposed 

SRBDO approach. The results indicate the efficiency and applicability of the set theoretical optimization algorithms to solve the SRBDO 

problems of truss structures.
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1 Introduction
Truss optimization is one of the most interesting topics 
in structural optimization. Optimization of truss struc-
tures can be classified into three categories of size opti-
mization, shape optimization, and topology optimiza-
tion [1]. Moreover, two or all three of the aforementioned 
categories can be considered simultaneously. The gen-
eral purpose for truss optimization problems is to obtain 
a truss structure with minimum weight that satisfies a set 
of predefined constraints. In the last three decades, the 
application of metaheuristic algorithms to deterministic 
design optimization of truss structures has attracted the 
interest of many researchers. For example, Dhingra and 
Bennage [2] applied simulated annealing (SA) algorithm 
for topological optimization of truss structures. Kaveh 
and Khayatazad [3] applied ray optimization (RO) algo-
rithm to solve truss optimization problems. Hasançebi 
and Kazemzadeh Azad used a refined version of the big 

bang-big crunch (BB-BC) algorithm [4] and the adaptive 
dimensional search (ADS) algorithm [5] for discrete truss 
sizing optimization problems. Recently, Kaveh et al. [6, 7] 
applied set theoretical variants of some of population-based 
metaheuristic algorithms to solve frequency-constrained 
truss optimization problems. Nonetheless, most of the 
published researches are limited to deterministic design 
approaches where partial safety factors are used to design 
sufficiently safe structures. Although deterministic design 
approaches provide appropriate degrees of structural reli-
ability, they cannot model uncertainties of the structure. 
However, it has been recognized for many decades that 
material properties, loads, and geometrical dimensions 
are in general associated with some uncertainties. Hence, 
deterministic design approaches cannot provide means to 
assess the reliability and safety of the structures, which 
may result to overestimated designs in many cases. On the 
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other hand, reliability-based design approaches make it 
possible to directly take into account the aforementioned 
uncertainties in the design process. As a consequence, in 
recent years, several studies have been focused on the reli-
ability-based design optimization (RBDO) approaches in 
which the structural failure probability is directly con-
sidered as the optimization constraint [8–10]. For exam-
ple, Nakib and Frangopol [11] performed reliability-based 
optimization of structures using a nonlinear mathematical 
programming package. Murotsu and Shao [12] presented 
an approach to the optimum shape design of truss struc-
tures based on reliability constraints. Murotsu et al. [13] 
proposed an optimum design procedure for redundant 
structures based on the constraints on formation proba-
bilities of failure modes. Nakib [14] reported analytical 
investigation into both deterministic and reliability-based 
optimization of truss bridges. Stocki et al. [15] studied on 
discrete optimization techniques in reliability-based opti-
mization of truss structures. Burton and Hajela [16] inves-
tigated the efficiency of a number of reliability-based opti-
mization techniques in the shape optimization of truss 
structures. Dimou and Koumousis [17] employed the par-
ticle swarm optimization method for the reliability-based 
optimal design of statically determinate truss structures. 
Liu et al. [18] proposed a new hybrid method for system 
reliability-based optimization of truss structures based on 
genetic algorithm and neural network. Lopez et al. [19] 
employed a firefly algorithm and presented an approach for 
reliability-based design optimization of truss structures. 
Cheng and Jin [20] developed a reliability-based optimi-
zation approach and applied it to minimize the weight of 
steel truss arch bridges subject to deterministic and proba-
bilistic constraints. Truong and Kim [21] used an improved 
differential evolution algorithm for sizing reliability-based 
design optimization of nonlinear inelastic truss structures. 
Palizzolo and Tabbuso [22] presented a framework for the 
RBDO of dynamically loaded elastic perfectly plastic truss 
structures. Zaeimi and Ghoddosian [23] performed system 
reliability based design optimization of truss structures 
with interval variables. Some recent RBDO studies have 
focused on the uncertainties related to the loading direc-
tion and magnitude [24–26].

It should be pointed out that achieving a sufficiently satis-
factory estimate of the reliability of real structural systems 
requires a system approach [27]. In general, the approaches 
for reliability analysis of complex structural systems can 
be classified into three main categories: (a) numerical inte-
gration-based methods, (b) simulation-based methods, and 

(c) failure path-based methods [28]. System-level reliabil-
ity analysis of structures is a time-consuming and com-
plicated process, especially for the case of real redundant 
structures. Consequently, most of the RBDO problems 
have been solved based on the reliability of single struc-
tural members [15–16]. Only some simple structures have 
been solved based on system reliability constraints [12, 27]. 

In order to provide a practical tool for reliability-based 
design of truss structures, this research presents a SRBDO 
approach by employing: (1) a set theoretical framework 
for population-based optimization algorithms proposed by 
Kaveh et al. [6, 7]; and (2) the branch and bound method 
for system-level reliability analysis of truss structures. 
The loads and the strengths of structural members are 
considered to be normally distributed uncorrelated ran-
dom variables. The structural members can be considered 
perfectly ductile or perfectly brittle. Moreover, buckling 
failure of the compression members is included. Some 
numerical examples of size optimization of truss struc-
tures are carried out to provide evidence to support the 
applicability and validity of the approach. 

The rest of this paper is organized as follows: In Section 2 
set theoretical variants of three population-based optimi-
zation algorithms are presented. Section 3 is devoted to 
system reliability analysis of truss structures. Section 4 
presents formulation of system reliability-based design 
optimization problems for truss structures. In Section 5, 
the set theoretical variants of the optimization algorithms 
are utilized to solve some SRBDO problems of truss struc-
tures. Finally, the last section concludes the paper. 

2 Set theoretical variants of the population-based 
optimization algorithms
Set theory is a branch of mathematics concerned with the 
study of properties of sets. A set is a well-defined collection 
of distinct objects. The objects of a set are called its elements 
or members. Any mathematical concept can be modelled by 
set theory. Thus, set theory can be employed as a foundation 
for mathematics. Set theory has found applications in struc-
tural engineering. For instance, Kaveh et al. [29] employed 
the set theory concepts to generalize the SSOA algorithm, 
and Kaveh et al. [6, 7] proposed a set theoretical framework 
for population-based metaheuristics. 

Metaheuristics can be classified based on many differ-
ent criteria, the most common of which is population-based 
search versus single-solution-based search. Population-
based metaheuristics (P-metaheuristics) require a set of 
candidate solutions to operate their own search process, 
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while single-solution ones manipulate a single candidate 
solution during the search process. The initial population 
of P-metaheuristics can be viewed as a set with a certain 
number of elements. Recently, Kaveh et al. [6, 7] proposed 
a set theoretical framework for P-metaheuristics and 
developed set theoretical variants of two P-metaheuristics, 
the teaching-learning-based optimization algorithm and 
the shuffled shepherd optimization algorithm. The main 
idea of the framework is based on the division of the ini-
tial population into a number of smaller well-arranged 
sub-populations through which the search process con-
tinues. The framework aims to improve the compromise 
between exploration and exploitation of the search [6]. 
In the next two subsections, set theoretical variants of 
the teaching-learning-based optimization algorithm and 
shuffled shepherd optimization algorithm are presented 
briefly. Subsequently, set theoretical variant of the Jaya 
algorithm is developed. 

2.1 Set theoretical variants of the teaching-learning-
based optimization algorithm
The teaching-learning-based optimization (TLBO) algo-
rithm is one of the most well-known P-metaheuristics 
developed by Rao et al. [30] in 2011. The TLBO algo-
rithm is inspired by the traditional process of education 
in schools. A set or a class of learners is considered as 
the population of candidate solutions. The main body of 
the TLBO algorithm consists of two sequential phases of 
teacher and learner. The main idea of set theoretical vari-
ants of the TLBO algorithm is to divide the main class 
into a number of smaller well-arranged sub-classes of the 
same size. Kaveh et al. [6] developed two set theoretical 
variants of the TLBO algorithm, ordered set theoretical 
TLBO (OST-TLBO) and set theoretical multi-phase TLBO 
(STMP-TLBO). The set theoretical variants of the TLBO 
algorithm are presented as follows: 

2.1.1 Ordered set theoretical teaching-learning-based 
optimization (OST-TLBO) algorithm
The OST-TLBO algorithm is stated in the following four 
steps [6]:
• Step one (initialization): The initial population is gen-
erated randomly. 
• Step two (forming the sub-populations): The sub-pop-
ulations are formed based on a procedure proposed by 
Kaveh et al. [29] as follows: Let us consider an initial pop-
ulation containing nE candidate solutions. The aim is to 
form a certain number (e.g., m) of sub-populations of the 

same size. First, the population is sorted in ascending order 
of their penalized objective function values. Next, in the 
first step of forming the sub-populations, the first m can-
didate solutions of the sorted population are selected and 
each element is placed randomly in one of the sub-popu-
lations. In the second step, the next m candidate solutions 
are placed randomly in the sub-populations. The process 
continues until the entire candidate solutions are placed in 
the sub-populations. After completing the process, each 
sub-population contains nS = nE/m candidate solutions. 
• Step three (main body of TLBO): The main body of the 
TLBO algorithm is performed for all of the sub-popula-
tions. In other words, the teacher and learner phases are 
performed once for all of the sub-populations. After each 
phase, the replacement strategy is performed to keep the 
old solutions or replace them with the new ones. 
• Step four (termination criteria): If the termination cri-
terion of the algorithm is fulfilled, the algorithm termi-
nates; otherwise, the algorithm returns to the second step. 

Fig. 1 shows the steps of the OST-TLBO algorithm. 

Fig. 1 Steps of the OST-TLBO algorithm
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2.1.2 Set theoretical multi-phase teaching-learning-
based optimization (STMP-TLBO) algorithm
The STMP-TLBO algorithm is a multi-phase version of the 
OST-TLBO algorithm. Within each phase of the STMP-
TLBO algorithm, a self-contained OST-TLBO algorithm 
with a specific number of sub-populations is executed. 
The output of each phase is used as the input of its next 
phase. Each phase continues until the number of objec-
tive function evaluations (NFEs) reaches a predefined 
value. The only difference between the phases is the num-
ber of sub-populations. The number of sub-populations 
decreases from an integer number (e.g., n0; 2 < n0 ≤ nE) at 
the first phase to two at the last (e.g., k-th) phase. The steps 
of the STMP-TLBO algorithm are shown in Fig. 2. For 
more details, please refer to [6]. 

2.2 Set theoretical variant of the shuffled shepherd 
optimization algorithm
The shuffled shepherd optimization algorithm (SSOA) is 
a P-metaheuristic which mimics the herding behaviour of 
shepherds. Kaveh et al. [29] generalized the SSOA algo-
rithm employing the concepts of set theory. Kaveh et al. [7] 
proposed two enhanced versions of the SSOA algorithm, 
parameter-free shuffled shepherd optimization algorithm 
(PF-SSOA) and set theoretical multi-phase shuffled shep-
herd optimization algorithm (STMP-SSOA). The STMP-
SSOA is a multi-phase variant of PF-SSOA. In each 
phase of the STMP-SSOA, a self-contained PF-SSOA 
with a specific number of sub-populations is performed. 
In other words, the phases of the STMP-SSOA differ in the 
number of sub-populations. As the optimization process 
continues, the number of sub-populations decreases. Each 
phase continues until the number of objective function 
evaluations (NFEs) reaches a predefined value. For more 
details, please refer to [7]. The steps of the STMP-SSOA 
are shown in Fig. 3. The PF-SSOA is stated in the follow-
ing four steps [7]:
• Step one (initialization): The initial population is gen-
erated randomly. 
• Step two (forming the sub-populations): The sub-popu-
lations are formed based on the procedure described in the 
second step of the OST-TLBO algorithm.
• Step three (solutions movement): The new position 
of the j-the candidate solution of the i-th sub-population 
(newELi, j) can be obtained as follows:

newEL EL stepsizei j i j i j, , ,= + , (1)

stepsize EL EL EL EL

i nS j
i j B j i j i j W j, , , , ,

,

, , ,

= × −( ) + × −( )
=

β α

1 2 and ==1 2, , , m
 (2)

where

β = [ ]( )× ( )randi rand nV1 2 1, , (3)

α β= ( ) −ones nV1, . (4)

In the above equations, ELi, j is the current position of 
the j-the candidate solution of the i-th sub-population; 
stepsizei, j is the step size of movement of the j-the can-
didate solution of the i-th sub-population; ELB, j and ELW, j 
are the better and worse candidate solutions compared to 
the j-th candidate solution of the sub-population; nV is the 
number of design variables; α and β are the parameters of 
the algorithm; nS is the number of sub-populations; and m 
is the number of solutions of each sub-population.
• Step four (termination criteria): If the termination con-
dition is met, the algorithm terminates; otherwise, the 
algorithm returns to step two. 

Fig. 2 Steps of the STMP-TLBO algorithm
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2.3 Set theoretical variant of the Jaya algorithm 
The Jaya algorithm is a simple population-based optimi-
zation algorithm developed by Rao [31] in 2016. The Jaya 
algorithm works based on a simple concept: moving toward 
the best candidate solution and getting away from the worst 
one. The candidate solutions are updated as follows:

A i j k A i j k r i j A i j b A i j k

r i j A i

+( ) = ( ) + ( ) ( ) − ( )( )
− ( )

1 1

2

, , , , , , , , , ,

, , ,, , , , ,j w A i j k( ) − ( )( )
 (5)

where i, j, and k are the indices of iteration number, design 
variable, and candidate solution, respectively; A(i, j, k) 
means the j-th design variable of k-th candidate solution 
of i-th iteration; r(i, j, 1) and r(i, j, 2) are uniformly distrib-
uted random numbers in the range of [0, 1]; and A(i, j, b) 
and A(i, j, w) are the j-th design variable of the best and 
worst candidate solutions of i-th iteration, respectively. 

Like other P-metaheuristics, the Jaya algorithm starts 
with a set of randomly generated candidate solutions. Once 
the candidate solutions are updated, the newly generated 
candidate solutions are compared with the corresponding 

old ones in a greedy manner so that the more qualified 
ones are selected for the next generation. The process con-
tinues until the termination criterion is satisfied.

Based on the framework used for the OST-TLBO algo-
rithm, the ordered set theoretical Jaya algorithm (OST-JA) 
is developed in five steps:
• Step one (initialization): The initial population is gener-
ated randomly within the search space. 
• Step two (forming the sub-populations): This step is 
similar to the second step of the OST-TLBO algorithm. 
• Step three (updating the candidate solutions): The can-
didate solutions are updated by using Eq. (5). It should be 
noted here that, for the purpose of updating a candidate 
solution, the best and worst candidate solutions must be 
chosen from the sub-population containing the candidate 
solution. Therefore, each sub-population has its own best 
and worst candidate solutions. This allows keeping the 
diversification of the search process.
• Step four (replacement strategy): The candidate solu-
tions are updated via a simple greedy manner so that 
a newly generated candidate solution with better quality is 
preferred to the corresponding old one. 
• Step five (termination criteria): If the termination crite-
rion of the algorithm is fulfilled, the search process termi-
nates; otherwise, the algorithm returns to the second step. 

The steps of the OST-JA are shown in Fig. 4.

3 System reliability analysis of truss structures
In case of a statically determinate truss structure, calcu-
lation of support reactions and member forces can easily 
be made by the static equilibrium equations [32]. In such 
a truss structure, failure of any one of the structural mem-
bers causes the total structure to fail. However, this is not 
necessarily true for redundant truss structures due to the 
fact that the remaining structural members may still be 
able to withstand the structural loading. When a mem-
ber fails, the internal forces are redistributed among the 
remaining members. It must be mentioned that after failure 
of a member, its residual strength is applied to the struc-
ture and its stiffness matrix is put to zero. The residual 
strength of a member depends on the type of failure and 
the material the member made of. Afterwards, the next 
member to fail is determined. The process continues until 
the simultaneous failure of a certain number of structural 
members leads to the structural failure. The most common 
criterion of failure of a structural system is formation of 
a collapse mechanism, which is characterized by singular-
ity of the structure stiffness matrix formed by the remain-
ing members [33]. The criterion is given by:

Fig. 3 Steps of the STMP-SSOA 
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K pq = 0 , (6)

where |. | is the determinant of a matrix; and Kpq is the 
structure stiffness matrix formed with the (n – pq) remain-
ing members. In the following section, a systematic pro-
cedure for generation of collapse mechanisms for truss 
structures is expressed briefly.

3.1 Generation of collapse mechanisms for truss 
structures
Consider a space truss structure consisting of n members. 
A member fails if the internal force exceeds the strength 
of the member. Therefore, the safety margin of the i-th 
member can be expressed as follows:

Z R A S A A P P E E l l

A

i i i i i n l n n

i i
j

= ( ) − ( )

= −
=

, , , ; , , ; , , ; , ,σ

σ

1 1 3 1 1

1

   

33l

ij jb P∑ ,
 (7)

where Zi, Ri, and Si denote the safety margin, strength, 
and internal force of the i-th truss member, respectively; 
Ai, σi, Ei, and li present the cross-sectional area, allowable 

stress, modulus of elasticity, and length of the i-th mem-
ber, respectively; n is the number of truss members; Pj is 
the external load applied to the j-th degree of freedom of 
the structure; l is the number of nodes of the structure; 
|x| is the absolute value of x; and bij is the internal force of 
the i-th member caused by applying a unit load to the j-th 
degree of freedom in the same direction of Pj. In case of 
tensile or compressive failure, the yield stress σy is consid-
ered as the allowable stress, while the buckling stress σb 
is taken when the buckling failure in compression is con-
sidered to occur. The structural failure criterion of a stati-
cally determinate truss is defined as:

Z i ni ≤ ∀ ∈{ }0 1 2; , , , . (8)

If Ri and Si are normally distributed and independent 
random variables, the probability of failure can be calcu-
lated as [34]:
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µ µ

σ σ2 2
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where μSi and σSi are the mean value and standard devia-
tion of the internal of the i-th truss member, respectively; 
μRi and σRi are the mean value and standard deviation of the 
strength of the i-th truss member, respectively; Pfi is the 
probability of failure of the i-th truss member; β is the reli-
ability index of the i-th truss member; and Φ is the stan-
dard normal cumulative distribution function and is cal-
culated as:

Φ X exp x dx
X

( ) = −







−∞
∫
1

2

1

2

2

π
. (10)

In case of a statically redundant truss structure, the 
structural failure criterion is defined as follows: 
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In the above equations, (m1, m2, …, mpq) denotes a set 
of members whose simultaneous failure leads to the for-
mation of a collapse mechanism, also known as failure 
mode; (m1, m2, …, mp–1) is the set of failed members and the 
order of failure; Z

i m m m
p

p1 2 1, , , −( )
( )  is the safety margin of the i-th 

Fig. 4 Steps of the OST-JA 
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member at the p-th stage of failure; bij
(p) is the internal force 

of the i-th member at the p-th stage of failure, which is 
caused by applying a unit load to the j-th degree of freedom 
in the same direction of Pj; and aij

(p) is the internal force of 
the i-th member at the p-th stage of failure, which is caused 
by applying a unit load to both end nodes of the failed mem-
ber mj in the opposite direction of the internal force of mj.

A structural system fails as soon as any of its failure 
modes occurs. The number of possible failure modes of 
a real redundant structure is so astronomically large that it 
is impossible in practice to take into account all of them in 
estimating the reliability of the structure. In such a case, 
only the stochastically dominant failure modes are consid-
ered in the structural system reliability analysis. The dom-
inant failure modes of structural systems can be identified 
using the failure path-based methods, such as the branch 
and bound method, the β-unzipping method, and the incre-
mental loading method. 

3.2 The branch and bound method
In failure path-based methods, the structural reliabil-
ity analysis takes place in two main steps: (a) identifica-
tion of the stochastically dominant failure modes, and (b) 
estimation of failure probabilities of the identified failure 
modes and the structural system. The branch and bound 
method is one of the well-known failure path-based meth-
ods developed by Murotsu et al. [35] in the late 1980s and 
early 1990s. The branch and bound method has three main 
steps as follows: 
• Step one (partitioning): All the potential failure mem-
bers are added to the incomplete failure path under con-
sideration. Unlike a complete failure path, an incomplete 
one does not lead to the formation of a collapse mecha-
nism. Add the newly partitioned failure paths to the set of 
candidate failure paths for branching. Next, calculate the 
upper bounds of the probabilities of failure of the parti-
tioned failure paths by using the following upper bound:

P

P Z Z

fp m m m U

j p m m m m
j

m

p

j j

1 2

1 2 112

1
0

�
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∩

( )( )

∈{ }
( )

( )= ( )≤
−
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, , , , ,

(( ) ≤( )





0 .
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• Step two (branching): Select the failure path which 
gives the largest upper bound among the partitioned fail-
ure paths. Next, investigate whether a collapse mechanism 
is formed or not. If a collapse mechanism is not formed, go 
to step one and proceed the partitioning process by add-
ing all the potential failure members to the selected failure 
path; otherwise, go to step three for bounding operation. 

• Step three (bounding): Remove the selected failure path 
from the set of candidate failure paths for branching and 
add it to the set of the selected complete failure paths. Next, 
calculate the lower bound of the selected complete failure 
path probability by using the following equation (Eq. (14)):

(14) 
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j
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Update the reference value for bounding. For this pur-
pose, find the maximum lower bound of probability of the 
complete failure paths selected so far. The reference value 
for bounding is updated as follows:

if RF P RF P
fp m m m L fp m m m Lp p

< ⇒ =( )( ) ( )( )1 2 1 2 

. (15)

Next, identify the partitioned failure paths which have 
the probabilities of failure lower than RF × 10–δ and remove 
them from the set of candidate failure paths for branching. 
δ is the bounding constant which is determined based on 
the desired accuracy in estimation of failure probabilities. 
In general, the larger the bounding constant, the fewer 
failure paths are discarded, and thus the more accurate the 
failure probability. If the set of candidate failure paths for 
branching is empty, it means that there are no further fail-
ure paths for branching. In such a case, the branch and 
bound method is terminated; otherwise, go to step two. 

At the end of the branch and bound method, the set of 
the selected complete failure paths contains the stochas-
tically dominant failure modes of the structure. Finally, 
the probability of failure of the structural system is esti-
mated employing the bounding techniques and based on 
the dominant failure modes. 

3.3 Evaluation of the system reliability
As mentioned earlier, a structural system will fail when 
the weakest failure mode occurs. Therefore, the structural 
system can be modelled based on a series system where the 
elements in the series system are failure modes. Generally, 
exact calculation of the probability of failure of such sys-
tems involves multi-dimensional integrals, which are com-
plicated or even impossible to solve [36]. However, compu-
tationally simple bounding techniques exist to estimate the 
probability of failure of series systems, such as Cornell's 
bounds [37], Ditlevsen's bounds [38], and Vanmarcke's 
upper bound [39]. The lower and upper Cornell's bounds 
for the probability of failure of series systems are given by:
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where PfS
 is the probability of failure of the series system; 

nM is the number of stochastically dominant failure modes 
identified by the branch and bound method; and Pfp(U)i

 is the 
upper bound of the probability of failure of the i-th domi-
nant failure mode, which is determined by using Eq. (11). 

4 System reliability-based design optimization of truss 
structures
The main goal of structural reliability theory is to make it 
possible to design structures based on the reliability con-
cepts. It has been recognized that the actual load-carry-
ing capacity of a structural system is usually much higher 
than what is obtained by the design of individual struc-
tural members, which may be attributed to the interaction 
between the structural members forming the structural 
system [40]. Therefore, the SRBDO approaches should be 
used. The SRBDO approaches mainly aim to minimize 
the structural weight under the constraint on the probabil-
ity of failure of the structural system. The problem of sys-
tem reliability-based design optimization of truss struc-
tures can be expressed mathematically as follows:

Find X{ } = [ ] ∈x x x x DnDV i i1 2
, , , ; ,  (17)

to minimizeW Al
i

n

i i iX{ }( ) =
=
∑
1

ρ ,  (18)

so that:
1. The truss structure would be geometrically stable;
2. The following constraints would not be violated.
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In the above equations, {X} is the candidate solution 
vector containing the design variables; xi denotes the i-th 
design variable; nDV is the number of design variables; 
Di is the allowable set of continuous values for the design 
variable xi; W({X}) presents the total weight of the struc-
ture; pi is the material density of the i-th truss member, 
respectively; xi

L and xi
U are the lower and upper bounds 

of the design variable xi, respectively; Pf{X} denotes the 
upper bound of the probability of failure of the structure, 
which is obtained by the branch and bound method; βt is 
the target system reliability index; and Pf

t is the target fail-
ure probability of the structure. The design variable xi can 
vary continuously within a certain range as follows: 

D x x x xi i i i
L

i
U= ∈ { }| , .  (20)

5 Case study
To investigate the performance of the proposed SRBDO 
approach, three truss optimization problems with con-
straints on the target failure probability are considered 
as follows: size optimization of a statically indeterminate 
16-member planar truss; size optimization of a statically 
indeterminate 65-member truss bridge; and size opti-
mization of a statically indeterminate 67-member truss 
bridge. It should be noted that since there are no direct 
comparative SRBDO studies available in the literature for 
some of these truss structures, the results are compared 
with deterministic solutions, if possible. The aim of opti-
mization is to minimize the structural weight while sat-
isfying constraint on the structural probability of failure. 
The cross-sectional areas of the members and the coor-
dinates of the nodes are considered as continuous design 
variables. The members are assumed to be circular solid 
sections made of a perfectly ductile material. The loads 
and the strengths of structural members are considered to 
be normally distributed uncorrelated random variables. 
Buckling failure mode in compression members is also 
considered. In the case of including buckling failure mode, 
the mean and coefficient of variation of buckling stress of 
the member with initial deflection under compression are 
evaluated by the following formulas [35]:

(21)
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where μσy
 and CVσy

 are the mean and coefficient of vari-
ation of the yield stress; μW0

 and CVW0
 are the mean and 

coefficient of variation of the initial deflection of the 
members; S is the radius of gyration of the cross-sectional 
area of the members; and σ πE E l S= ( )2 2

/ /  is the Euler 
buckling stress. In the above equation, initial deflection 
and yield stress are treated as normally distributed uncor-
related random variables. The termination criterion of the 
algorithms is considered to be the maximum number of 
objective function evaluations (MaxNFEs). The optimiza-
tion algorithms, as well as structural reliability analysis 
codes, are implemented in Matlab. 
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5.1 Statically indeterminate 16-member planar truss
The first example is size optimization of a 16-member 
truss with three degrees of redundancy shown in Fig. 5. 
Reliability analysis of this structure was previously done 
by many researchers such as Murotsu et al. [35], Biabani 
Hamedani and Kalatjari [27], and so on. The layout of 
the structure is kept unchanged during the optimization 
process. Truss members are divided into eight groups of 
design variables. The design optimization is carried out for 
both the cases of with and without considering the effect 
of buckling failure in compression members. Table 1 lists 
the numerical data of the structure, such as design vari-
able bounds, material properties, statistical data of ran-
dom variables, etc. The optimum design solutions for the 
case of neglecting the effect of buckling failure are listed 
in Table 2 for various set theoretical optimization algo-
rithms. Table 3 presents the optimum design solutions for 
the case where buckling failure is included. As Tables 2 
and 3 prove, constraint on the probability of failure is sat-
isfied in all cases. The results show that, in the case where 
buckling failure is not considered, the best designs of 
OST-TLBO, STMP-TLBO, STMP-SSOA, and OST-JA are 
very close to each other, while, in the case where buckling 
failure is considered, STMP-SSOA and OST-JA perform 
better than OST-TLBO and STMP-TLBO in terms of the 
best weight. A comparison between the two cases results 
(with and without considering buckling failure) indicates 
that considering buckling failure mode in compression 
members significantly affects the optimal values of design 
variables. Consequently, buckling failure mode should 
be taken into account in the optimum design of truss 

structures. The convergence histories of the best optimum 
designs are presented in Figs. 6 and 7. It can be observed 
from both Figs. 6 and 7 that STMP-SSOA and OST-JA 
converge faster than OST-TLBO and STMP-TLBO. 

Table 1 Data of statically indeterminate 16-member truss

Property / Unit Value

E (Modulus of elasticity) / GPa 206

ρ (Material density) / kg/m3 2700
μσy (Mean value of yield stress) / MPa 276

CVσy
 (Coefficient of variation of yield stress) 0.02

μP (Mean value of applied loads) / kN 44.45

CVP (Coefficient of variation of applied loads) 0.02
μW0

0.1

CVW0
 (Coefficient of variation of initial deflection) 0.1

Lower bound of design variables / cm2 0.1

Upper bound of design variables / cm2 15

Pf
t (Target failure probability) 10–5

Table 2 Comparison of optimization results for the 16-member truss 
(buckling failure is neglected)

Element 
groups Ai(cm2)

OST-
TLBO

STMP-
TLBO

STMP-
SSOA OST-JA

1 A1 3.59 3.60 3.62 3.62

2, 5 A2 7.58 7.56 7.58 7.58

3, 4, 14 A3 3.26 3.26 3.26 3.26

6 A4 1.54 1.51 1.54 1.55

7, 8, 10 A5 3.47 3.48 3.47 3.47

9 A6 2.59 2.63 2.59 2.59

11, 12, 15 A7 1.81 1.80 1.81 1.81

13, 16 A8 0.10 0.11 0.10 0.10

Pf 10–5 9.96 × 10–6 9.96 × 10–6 9.92 × 10–6

Best Weight (kg) 15.23 15.24 15.23 15.23

No. of analyses 5000 5000 5000 5000

Table 3 Comparison of optimization results for the 16-member truss 
(buckling failure is included)

Element 
groups Ai(cm2)

OST-
TLBO

STMP-
TLBO

STMP-
SSOA OST-JA

1 A1 2.41 3.20 3.13 3.13

2, 5 A2 12.66 12.11 12.09 12.09

3, 4, 14 A3 11.26 11.24 11.28 11.29

6 A4 5.96 0.15 0.10 0.10

7, 8, 10 A5 7.16 6.70 6.62 6.61

9 A6 11.33 14.36 14.28 14.25

11, 12, 15 A7 1.87 1.96 1.94 1.94

13, 16 A8 0.11 0.17 0.10 0.10

Pf 9.94 × 10–6 9.94 × 10–6 9.94 × 10–6 9.99 × 10–6

Best Weight (kg) 35.67 34.66 34.49 34.49

No. of analyses 5000 5000 5000 5000
Fig. 5 Statically indeterminate 16-member truss
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5.2 Statically indeterminate 65-member truss bridge
The next example is size optimization of a 65-member truss 
bridge with eight design variables as presented in Fig. 8. 
The layout and geometry of the structure are taken from 
Nakib [14]. The structure has only one degree of redun-
dancy. The structural members are assumed to fail only in 
tension or compression. Employing the symmetry of the 
structure, the structural members are categorized into eight 
different groups of design variables. Table 4 summarizes 
the material properties, design variables bounds, and statis-
tical data of random variables of the truss bridge. The tar-
get failure probability of the structure is equal to 10–5. This 
example was previously studied by Nakib [14] in terms 
of deterministic optimization. Table 5 compares the opti-
mum designs of the 65-member truss bridge obtained by 
various set theoretical optimization algorithms. As can be 

seen from the table, the optimum designs of the 65-member 
truss bridge are very close to each other in terms of struc-
tural weight and cross-sectional areas of members. Fig. 9 
compares the convergence histories of the best optimum 
designs of 65-member truss bridge. It is found that OST-JA 
converges significantly faster than the other set theoretical 
metaheuristics in this problem.

5.3 Statically indeterminate 67-member truss bridge
The last example investigates the effect of ductile redun-
dant members added to the 65-member truss bridge. 
Fig. 10 shows a 67-member statically indeterminate truss 
bridge which is formed by adding two redundant members 
to the 65-member truss bridge. In such a case, the resulting 
structure has three degrees of redundancy. Therefore, this 
is a size optimization problem with nine groups of design 
variables (see Table 6). The numerical data are the same 
as those of the previous example (see Table 4). Table 6 
presents the SRBDO results of the 67-member statically 
indeterminate truss bridge. The optimum designs found 
by OST-TLBO, STMP-TLBO, STMP-SSOA, and OST-JA 
have the weights of 2368.29 kg, 2373.39 kg, 2378.60 kg, 
and 2368.03 kg, respectively, which are 15.27 %, 15.09 %, 
14.90 %, and 15.27 % less than those of the 65-mem-
ber truss bridge, respectively. The results prove that the 
addition of ductile redundant members to the 65-member 
truss bridge significantly decreases the optimized struc-
tural weight. This is due to the fact that the load carrying 

Fig. 6 Convergence histories of the statically redundant 16-member 
truss (buckling failure is neglected)

Fig. 7 Convergence histories of the statically redundant 16-member 
truss (buckling failure is included)

Fig. 8 Statically indeterminate 65-member truss bridge

Table 4 Data of statically indeterminate 65-member truss bridge

Property / Unit Value

E (Modulus of elasticity) / GPa 206

ρ (Material density) / kg/m3 2700
μσy (Mean value of yield stress) / MPa 276

CVσy
 (Coefficient of variation of yield stress) 0.02

μP (Mean value of applied loads) / kN 44.45

CVP (Coefficient of variation of applied loads) 0.02
Lower bound of design variables / cm2 0.1

Upper bound of design variables / cm2 15

Pf
t (Target failure probability) 10–5
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capacity of a structure that is designed with a high degree 
of redundancy is often much larger than that of a struc-
ture with lower degree of redundancy. Fig. 11 shows con-
vergence histories of the best designs of 67-member truss 
bridge. As can be seen from the figure, OST-JA has better 
convergence performance compared to the other set theo-
retical optimization algorithms in this problem. 

Table 5 Comparison of optimization results for the statically indeterminate 65-member truss bridge

Element groups Ai(cm2)
Reliability-based approach Deterministic approach

OST-TLBO STMP-TLBO STMP-SSOA OST-JA Nakib [14]

2, 6, 10, 14, 50, 54, 58, 62 A1 8.35 8.35 8.34 8.35 6.53

18, 22, 26, 30, 34, 38, 42, 46 A2 7.24 7.26 7.24 7.24 5.57

4, 8, 12, 16, 52, 56, 60, 64 A3 0.65 0.65 0.65 0.65 0.65

20, 24, 28, 32, 36, 40, 44, 48 A4 19.07 19.04 19.09 19.07 16.21

1, 5, 9, 13, 53, 57, 61, 65 A5 0.80 0.80 0.80 0.80 0.88

17, 21, 25, 29, 33, 37, 41, 45, 49 A6 6.80 6.80 6.81 6.80 5.37

3, 7, 11, 15, 51, 55, 59, 63 A7 0.89 0.89 0.89 0.89 0.95

19, 23, 27, 31, 35, 39, 43, 47 A8 8.71 8.72 8.71 8.71 6.83

Pf 10–5 10–5 10–5 10–5 -

Best Weight (kg) 2794.94 2795.23 2794.98 2794.87 2286.16

No. of analyses 6000 6000 6000 6000 -

Fig. 9 Convergence histories of the statically redundant 65-member 
truss bridge

Fig. 10 Statically indeterminate 67-member truss bridge

Table 6 Comparison of optimization results for the statically indeterminate 65-member truss bridge

Element groups Ai(cm2)
Reliability-based approach

OST-TLBO STMP-TLBO STMP-SSOA OST-JA

2, 6, 10, 14, 50, 54, 58, 62 A1 9.61 9.48 9.63 9.60

18, 22, 26, 30, 34, 38, 42, 46 A2 9.11 8.93 9.08 9.13

4, 8, 12, 16, 52, 56, 60, 64 A3 1.07 0.99 1.05 1.07

20, 24, 28, 32, 36, 40, 44, 48 A4 9.17 9.82 9.16 9.16

1, 5, 9, 13, 53, 57, 61, 65 A5 1.12 1.07 1.11 1.12

17, 21, 25, 29, 33, 37, 41, 45, 49 A6 2.91 2.97 2.99 2.91

3, 7, 11, 15, 51, 55, 59, 63 A7 1.27 1.22 1.30 1.27

19, 23, 27, 31, 35, 39, 43, 47 A8 6.32 6.44 6.37 6.32

66, 67 A9 7.96 7.61 8.28 7.97

Pf 9.96 × 10–6 9.85 × 10–6 9.68 × 10–6 10–5

Best Weight (kg) 2368.29 2373.39 2378.60 2368.03

No. of analyses 6000 6000 6000 6000
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6 Conclusions 
This paper presents an approach to solve the SRBDO 
problem of truss structures by employing a failure path-
based method, called the branch and bound method, for 
structural system reliability analysis and a general set 
theoretical framework proposed by Kaveh et al. [6] for 

population-based metaheuristics. The main idea of the 
framework is to divide the population of candidate solu-
tions into a number of smaller well-arranged sub-popula-
tions, with the aim of improving the compromise between 
exploration and exploitation of the search. Furthermore, 
searching via several sub-populations allows keeping the 
diversity of the search and thus improves the ability to 
escape from local optima. The set theoretical variants of 
three P-metaheuristics, including TLBO, SSOA, and Jaya 
algorithm, are employed for solving the considered prob-
lems. The robustness of the approach is validated through 
three truss structure examples. The results show the effec-
tiveness and applicability of the set theoretical optimiza-
tion algorithms for the optimum design of truss structures 
subject to system reliability constraints. A major advan-
tage of the proposed SRBDO approach is that, due to the 
use of a systems approach for calculation of structural reli-
ability, a more accurate estimation of the load-carrying 
capacity of truss structures is made, and thus more realis-
tic optimization results can be obtained. This would effec-
tively help to strike a suitable balance between minimum 
weight and target safety. 

Fig. 11 Convergence histories of the statically redundant 67-member 
truss bridge
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