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Abstract

In structural design of steel frames, in order to achieve proper safety, the effect of uncertainties in the design and loading parameters 

of the structure must be considered. This approach is obtained by defining a reliability index. In this study, the Modified Dolphin 

Monitoring (MDM) operator was used to evaluate the reliability index of three well-known steel frame structures based on the 

Hasofer-Lind method. The reliability index was evaluated using the EVPS and VPS algorithms and with considering the MDM 

operator on them. The constraint of the last story drift is considered as limit state function. The random variables consist of 

external loads, modulus of elasticity, moment of inertia and cross-sectional areas. According to the number of evaluations of the 

limit state function, the results show the efficiency of this method in comparison to the Monte Carlo simulation method. Also, the 

values of the most probable point (MPP) are examined.
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1 Introduction
Due to the random nature of the mechanical, geometri-
cal and external loading properties of the structures that 
cause uncertainties in the structural design, nowadays, 
it is essential to consider these uncertainties in structural 
engineering. To address these uncertainties, reliability 
assessment methods were developed [1–6]. Assessment of 
failure probability is one of the critical parts of this topic, 
which is performed by formalizing a Limit State Function 
(LSF) while considering random variables. To calculate 
the failure probability, there are two main categories, 
namely Moment and Simulation methods. The Monte 
Carlo Simulation (MCS) method is a very efficient method 
of calculating the failure probability, but it requires a lot of 
estimations of the LSF [7–9].

On the other hand, the FORM and SORM methods, 
which are part of the moment methods, are useful in 
structural engineering problems [10–16]. A reliability 
index, which defined as the shortest geometric distance 
between the origin of standard normal space and the LSF, 
is presented. The above definition can be considered as 
an optimization problem, such that the minimum distance 

between the LSF from the origin of the standard normal 
space is defined as the objective function and the limit state 
function as constraints. So, this problem can be solved by 
meta-heuristic algorithms [17–19].

The use of meta-heuristic algorithms has always been 
of interest and has been used successfully in various fields 
of structural engineering, such as optimal design, damage 
detection, and so on [20–25]. 

One of the meta-heuristic algorithms, which has recently 
been presented and successfully used in various fields, 
is the Vibrating Particles Systems (VPS) algorithm [26]. 
This algorithm presented by Kaveh and Ilchi Ghazaan in 
2017, an Enhanced version of the VPS (EVPS) algorithm 
introduced by Kaveh et al. [27] in 2019.

Improving the performance of meta-heuristic algorithms 
has always been considered, so the methods that enhance 
the performance of meta-heuristic algorithms are highly 
regarded. In 2016, Kaveh and Farhoudi [28] introduced 
Dolphin Monitoring (DM) Operator that can be applied 
to all meta-heuristic algorithms. In 2018, Kaveh et al. [29] 
enhanced the performance of the DM operator by making 
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some changes in the mechanisms of the operator. It should 
be noted that these two operators control the population 
distribution in each iteration and somewhat prevent to 
entrap in local optima. The Enhanced Dolphin Monitoring 
(MDM) operator has been used successfully in several 
investigations so far.

In the present study, the optimal design variables of 
well-known references were selected and the reliability 
index of the results was evaluated using the EVPS and 
VPS algorithms (by defining the objective function as the 
minimum distance between the limit state function from 
the origin of the standard normal space) and by adding the 
MDM operator on it (EVPS-MDM) under the impact of 
some constraints that described in each problem. Finally, 
the computed index value with the meta-heuristic algo-
rithms is compared with the MCS method. 

2 Metaheuristic algorithms and problem formulations
The EVPS and VPS (with MDM operator) algorithms for 
reliability assessment of frame structures. In this section, 
the EVPS algorithm and the MDM operator are briefly 
described. Then, in order to investigate the performance 
of the EVPS and VPS algorithm as well as to evaluate the 
effect of the MDM operator, an objective function based 
on the reliability assessment is formulated. Finally, the 
formulation of the reliability assessment and the objective 
function is presented.

2.1 Metaheuristic algorithms
This study uses the effect of the MDM operator on EVPS 
and VPS algorithms (EVPS-MDM and VPS-MDM, 
respectively) to solve the problems of reliability assess-
ment of frame structures. The following is a description 
of the EVPS and VPS algorithms and the MDM operator:

2.1.1 The Vibrating Particles System (VPS) and 
Enhanced Vibrating Particles System (EVPS) 
algorithms
The VPS algorithm is based on free vibration of single 
degree of freedom systems with viscous damping, this 
algorithm generates the next population bases on cur-
rent population and historically best position in order to 
have a proper balance between exploration and exploita-
tion phase [26]. The EVPS algorithm is an enhanced ver-
sion of the VPS algorithm and utilizes some new mecha-
nisms to reaching the optimal solution. In this approach, 
two new parameters, Memory and OHB (One of the 
Historically Best positions), were introduced to enhance 
the performance of the meta-heuristic algorithm, and 
changes were also made to create a new population for the 
next iteration. In fact, population generation is perform 
with three different mechanism, each of which is likely 
to be selected ω1, ω2 and ω3, respectively. The schematic 
image of the population generated for the next iteration is 
shown in Fig. 1.

Fig. 1 Schematic image of the population generated for the next iteration of the EVPS algorithm
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2.1.2 The MDM operator
The MDM operator is the modified version of Dolphin 
Monitoring (DM) [28]. The DM was presented by Kaveh 
and Farhoudi [28]. This operator can be applied to all 
meta-heuristic algorithms and tries to enhance the perfor-
mance of the meta-heuristic algorithms with its approaches.

Usually, each algorithm, along with the advantages, 
may have disadvantages. For example, an algorithm may 
reach a great answer for some group of problems and may 
be too weak for other groups, which may be due to incor-
rect setting of algorithm parameters for each problem, 
or the inability of the algorithm to solve some problems. 
By investigating how meta-heuristic algorithms converge, 
it can be concluded that early convergence in algorithms is 
usually the result of entrap in local optima. Therefore, the 
MDM operator qualifies the scattering of the population in 
each iteration and variable. This mechanism can be useful 
to get out of entrap in local optima. This operator defines 
an interval (shown in Fig. 2) and controls the population 
dispersion in this interval.

If the population distribution is more or less than the 
desired value in each iteration, this equilibrium is estab-
lished by some mechanisms. Fig. 3 illustrates how this 
operator works if the population distribution in the defined 
range is 60 % (As stated as Mp).

2.2 Reliability assessment
The parameters of the structure, such as material proper-
ties and geometric characteristics of elements, have proba-
bilistic uncertainties [30]. In the theory of reliability, these 
parameters are called random variables, each of which 

has a statistical distribution with characteristics includ-
ing mean and standard deviation (or coefficient of varia-
tion). The effect of these uncertainties on the satisfaction 
of various constraints such as stress of elements, applied 
force, drift of a story and etc. can be investigated. More 
likely to satisfy a constraint by the structure means the 
more reliable response of the structure to the considered 
constraint. In the reliability assessment, to investigate 
this issue, a function of random variables called the limit 
state function (g) is introduced. R and Q parameters are 
the strength of the structure (or the allowable limit of the 
constraint) and the applied load effect to it (or the result 
of structural analysis). For the constraint R > Q the LSF is 
defined as follows:

g R Q R Q( , ) = − . (1)

The positive (g > 0) and negative (g ≤ 0) value of the 
LSF represents safety and failure region, respectively. 
The probability of placing a structure in the failure region, 
the probability of failure, the probability of placing it in 
the safety region and the probability of safety of the struc-
ture are expressed by P[g ≤ 0], (Pf), P[g > 0] and (Ps), 
respectively.

Fig. 2 The defined interval for the MDM operator

Fig. 3 The operation of the MDM operator



Kaveh et al.
Period. Polytech. Civ. Eng., 65(3), pp. 702–716, 2021|705

In reliability analysis, the safety level of a structure 
can be determined based on the probability of failure 
(or safety) or an indicator called the reliability index (β). 
The following equation (Eq. (2)) represents relationship 
between this index and the probability of failure which is 
based on a linear approximation assumption:

β φ= −−1 1( )Pf , (2)

where ϕ–1 is the inverse of the cumulative density function 
of the normal distribution.

Different methods have been suggested to evaluate the β. 
A group of these methods calculates the reliability index 
based on the definition provided by Hasofer and Lind [31]. 
According to this definition, the β is equal to the smallest 
distance of points located on the boundary of safe space and 
failure (g = 0) from the center of the standard normal coordi-
nate of random variables. This point is called the most prob-
able point (MPP) of failure. Therefore, β can be defined and 
calculated according to the following equation (Eq. (3)):

β = ( )min dist , (3)

where, dist is the vector of the distance of points on the 
safe space boundary and failure from the center of the 
standard normal coordinate of random variables. This 
distance for the sth point on this boundary is calculated 
according to the following equation (Eq. (4)):
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where xi is random variable with normal distribution, σxi 
and μxi are the standard deviation and  mean, respectively.

The above definition, with linear approximation assump-
tion of LSF, called the First Order Reliability Method 
(FORM).

2.3 Objective function
To calculate the reliability index according to the Hasofer 
and Lind definition, an optimization problem based on 
random variables (X) can be defined as follows:
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By solving the above problem, the reliability index of 
the limit state function (g) is obtained by considering the 
probability variables X.

3 Numerical examples
Three well-known frame structures which optimized 
(weight optimization) by other researchers are selected 
for determining the reliability index, using EVPS, VPS, 
EVPS-MDM and VPS-MDM algorithms. The β index in 
all examples is calculated based on maximum lateral dis-
placement of the last story probability constraints. Random 
variables which assumed in all problems are consisting of: 
modulus of elasticity (E), external load (P) and cross-sec-
tional area (A) and moment of inertia (I) of the elements, 
respectively (the group of elements). A normal distribu-
tion are considered for all random variables. Coefficient of 
variations (COV) of external loads is 10 % and the other 
random variables are considered 5 %.

To guarantee the efficiency of the algorithms, the β index 
for all problems was obtained by both of the algorithms in 
30 independent runs. The maximum number of iterations 
and population size of all algorithms are 1000 and 100, 
respectively. The number of assumed instance (n) for all 
random variables in each problem is 106. Also, to measure 
the precision of each algorithm in assessing the β index, 
this index has been calculated 30 times in each problem 
using the Monte Carlo simulation (MCS) method, which 
is a common method for evaluating the β index. The aver-
age of MCS results obtained for each problem have been 
reported as MCS reliability index. It is note-worthy, the 
number of MCS instances in all cases is 2 × 105.

Reliability index in all three frames has been calculated 
to determine the probability that the amount of lateral dis-
placement of the roof (ΔT) is less than the allowable value 
of 1/300 of the frame height (H):

g H TX( ) = ( ) −300 ∆ . (7)

3.1 A 1–bay 10-story frame
Fig. 4 illustrates the schematic, applied loads and the num- 
bering of the member groups for this frame structure. 
This frame consists of 11 joints and 30 elements. The ele- 
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ment grouping results in 4 beam sections and 5 column 
sections. The material has a modulus of elasticity equal 
to E = 200 GPa (29 000 ksi) and the yield stress of 
fy = 248.2 MPa (36 ksi). The number of random variables in 
this problem are 23 variables (consisting of  9 cross-sectional 

area, 9 moment of inertia, 2 gravity load and 2 lateral load 
and modulus of elasticity) which their probabilistic proper-
ties are reported in Table 1. The reliability index for proba-
bilistic constraints is the maximum lateral displacement of 
the last story (less than allowable value equal to 12.5 cm). 
The reliability index is calculated for the optimal design 
obtained from the SDE algorithm presented in Table 2 [21]. 

Figs. 5 and 6 show the performance of the algorithms 
for best and mean results in 30 independent runs, respec-
tively. Fig. 7 shows the comparison of the results of all algo-
rithms in 30 independent runs for the 1-bay 10-story frame 
in descending order for both algorithms. The performance 

Table 1 The probabilistic properties of random variables for 1-bay 
10-story frame

Random Variable, 
unit

Type of 
probability 
distribution

Number 
of 

variables
Mean COV

Modulus of 
elasticity (E), GPa Normal 1 200 5 %

Gravity loads, 
kN/m Normal 2 87.56 and 

43.78 5 %

Lateral load, kN Normal 2 44.48 and 
22.24 5 %

Cross-sectional 
area (A) Normal 9 According 

to Table 2 5 %

Moment of  
inertia (I) Normal 9 According 

to Table 2 5 %

Fig. 4 Schematic of the 1-bay 10-story frame

Table 2 Selected design sections of 1-bay 10-story frame

Element group 
number Section Element group 

number Section

1 W14 × 233 6 W33 × 118

2 W14 × 176 7 W30 × 99

3 W14 × 145 8 W27 × 84

4 W14 × 99 9 W21 × 44

5 W12 × 65

Fig. 5 The convergence diagrams for the best run of the both algorithms for the 1-bay 10-story frame
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of the EVPS-MDM and VPS-MDM algorithms are bet-
ter than the EVPS and VPS algorithms, respectively, as 
shown in the Figs. 5, 6 and 7. The best, the worst, and the 
mean of the answers of both algorithm and the value of 
the β index achieved from the MCS method are reported 
in Table 3. In this table the capability of the EVPS-MDM 
and VPS-MDM to find the reliability index are better than 
EVPS and VPS algorithms, respectively and also, this 
algorithm has found a β index with an appropriate differ-
ence compared to the MCS method. Fig. 8 presents the sta-
tistical scattering of the solution of 30 independent runs of 
the algorithm for the 1-bay 10-story frame.

Fig. 9 shows the values of random variables at the MPP 
obtained from each algorithm on the Probability Density 
Function (PDF) of standard normal distribution diagram. 
According to this figure, it can be seen that the values of 
the cross-sectional areas and the moment of inertia of 
the group of elements are approximately the same as the 
mean values, and decreasing the modulus of elasticity and 
increasing the lateral load relative to their mean values has 
created the MPP.

3.2 A 3–bay 15-story frame
Fig. 10 illustrates the schematic, applied loads and the 
numbering of the member groups for this frame structure. 
This frame consists of 64 joints and 105 elements. The ele-
ment grouping results in 1 beam sections and 10 col-
umn sections. The material has a modulus of elasticity 
equal to E = 200 GPa (29 000 ksi) and the yield stress of 
fyv= 248.2 MPa (36 ksi). The number of random variables 
in this problem are 25 variables (consisting of 11 cross-sec-
tional area, 11 moment of inertia, 1 gravity load and 1 lat-
eral load and modulus of elasticity) which their probabilis-
tic properties are reported in Table 4.

Fig. 6 The convergence diagrams for the average runs of the both algorithms for the 1-bay 10-story frame

Fig. 7 Comparison of the results of all algorithms in 30 independent runs for the 1-bay 10-story frame

Table 3 Summary of the results obtained by algorithms for the 1-bay 
10-story frame

EVPS EVPS-MDM VPS VPS-MDM MCS

Best β 2.4581 2.4491 2.5946 2.5926 -

Average β 2.5140 2.4929 2.7548 2.7105 2.4174

Worst β 2.6658 2.6190 2.9265 2.9146 -

Std β 0.0571 0.0402 0.0821 0.0788 0.0186
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Fig. 8 Statistical scattering of the solution of 30 independent runs of the algorithm for the 1-bay 10-story frame

Fig. 9 The MPP in standard normal space (U-space) obtained from each algorithm for the 1-bay 10-story frame 
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The reliability index for probabilistic constraints is the 
maximum lateral displacement of the last story (less than 
allowable value equal to 6.94 in or 17.69 cm). The reli-
ability index is calculated for the optimal design obtained 
from the SDE algorithm presented in Table 5 [21].

Figs. 11 and 12 show the performance of the algorithms 
for best and mean results in 30 independent runs, respec-
tively. Fig. 13 shows the comparison of the results of all 
algorithms in 30 independent runs for the 3-bay 15-story 
frame in descending order for both algorithms. The perfor-
mance of the EVPS-MDM and VPS-MDM algorithms are 
better than the EVPS and VPS algorithms, respectively, as 
shown in the Figs. 11, 12 and 13. The best, the worst, and 

Fig. 10 Schematic of the 3-bay 15-story frame

Table 4 The probabilistic properties of random variables for 3-bay 
15-story frame

Random Variable, 
unit

Type of 
probability 
distribution

Number 
of 

variables
Mean COV

Modulus of 
elasticity (E), GPa Normal 1 200 5 %

Gravity loads, kN/m Normal 1 50 5 %

Lateral load, kN Normal 1 30 5 %

Cross-sectional  
area (A) Normal 11 According 

to Table 5 5 %

Moment of  
inertia (I) Normal 11 According 

to Table 5 5 %

Table 5 Selected design sections of 3-bay 15-story frame

Element group 
number Section Element group 

number Section

1 W14 × 90 7 W14 × 48

2 W36 × 170 8 W12 × 65

3 W27 × 84 9 W6 × 25

4 W24 × 104 10 W12 × 40

5 W14 × 61 11 W21 × 44

6 W30 × 90

Fig. 11 The convergence diagrams for the best run of the both algorithms for the 3-bay 15-story frame
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the mean of the answers of both algorithm and the value of 
the β index achieved from the MCS method are reported 
in Table 6. In this table the capability of the EVPS-MDM 
and VPS-MDM to find the reliability index are better than 
EVPS and VPS algorithms, respectively and also, this 
algorithm has found a β index with an appropriate differ-
ence compared to the MCS method. Fig. 14 presents the 
statistical scattering of the solution of 30 independent runs 
of the algorithm for the 3-bay 15-story frame.

Fig. 15 shows the values of random variables at the MPP 
obtained from each algorithm on the Probability Density 
Function (PDF) of standard normal distribution diagram. 
According to this figure, it can be seen that the values 
of the cross-sectional areas and the moment of inertia of 

the group of elements are approximately the same as the 
mean values, and decreasing the modulus of elasticity and 
increasing the lateral load relative to their mean values has 
created the MPP.

3.3 A 3–bay 24-story frame
Fig. 16 illustrates the schematic, applied loads and the 
numbering of the member groups for this frame struc-
ture. This frame consists of 100 joints and 168 elements. 
The element grouping results in 4 beam sections and 16 
column sections. The material has a modulus of elastic-
ity equal to E = 205GPa (29 732 ksi) and the yield stress 
of fy = 230.28MPa (33.4 ksi). The number of random vari-
ables in this problem are 46 variables (consisting of 20 
cross-sectional area, 20 moment of inertia, 4 gravity load 
and 1 lateral load and modulus of elasticity) which their 
probabilistic properties are reported in Table 7. 

The reliability index for probabilistic constraints is the 
maximum lateral displacement of the last story (less than 
allowable value equal to 11.52 in or 26.26 cm).The reli-
ability index is calculated for the optimal design obtained 
from the SDE algorithm presented in Table 8 [32].

Fig. 12 The convergence diagrams for the average runs of the both algorithms for the 3-bay 15-story frame

Fig. 13 Comparison of the results of both algorithms in 30 independent runs for the 3-bay 15-story frame

Table 6 Statistical optimization results obtained by algorithms for the 
3-bay 15-story frame

EVPS EVPS-MDM VPS VPS-MDM MCS

Best β 2.7144 2.7071 2.8841 2.7971 -

Average β 2.8086 2.8512 2.9744 2.9526 2.6366

Worst β 3.2652 3.2230 3.1513 3.0567 -

Std β 0.1263 0.1298 0.0733 0.0494 0.0115
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Fig. 15 The MPP in standard normal space (U-space) obtained from each algorithm for the 3-bay 15-story frame

Fig. 14 Statistical scattering of the solution of 30 independent runs of the algorithm for the 3-bay 15-story frame
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Figs. 17 and 18 show the performance of the algo-
rithms for best and mean results in 30 independent runs, 
respectively. Fig. 17 shows the comparison of the results 
of all algorithms in 30 independent runs for the 4-bay 
24-story frame in descending order for both algorithms. 

The performance of the EVPS-MDM and VPS-MDM 
algorithms are better than the EVPS and VPS algorithms, 
respectively, as shown in the Figs. 17–19. The best, the 
worst, and the mean of the answers of both algorithm and 
the value of the β index achieved from the MCS method 
are reported in Table 9. In this table the capability of the 
EVPS-MDM and VPS-MDM to find the reliability index 
are better than EVPS and VPS-MDM, respectively and 
also, this algorithm has found a β index with an appropri-
ate difference compared to the MCS method. Fig. 20 pres-
ents the statistical scattering of the solution of 30 indepen-
dent runs of the algorithm for the 3-bay 24-story frame.

Fig. 21 shows the values of random variables at the 
MPP obtained from each algorithm on the Probability 
Density Function (PDF) of standard normal distribution 
diagram. According to this figure, it can be seen that the 
values of the cross-sectional areas and the moment of iner-
tia of the group of elements are approximately the same as 
the mean values, and decreasing the modulus of elasticity 
and increasing the lateral load relative to their mean val-
ues has created the MPP.

Fig. 16 Schematic of the 3-bay 24-story frame

Table 7 The probabilistic properties of random variables for 3-bay 
24-story frame

Random Variable, 
unit

Type of 
probability 
distribution

Number 
of 

variables
Mean COV

Modulus of 
elasticity (E), GPa Normal 1 205 5 %

Gravity loads, 
kN/m Normal 4

4.378, 6.362, 
6.917 and 

5.954
5 %

Lateral load, kN Normal 1 25.63 5 %

Cross-sectional 
area (A) Normal 20 According to 

Table 8 5 %

Moment of  
inertia (I) Normal 20 According to 

Table 8 5 %

Table 8 Selected design sections of the 3-bay 24-story frame

Element group 
number Section Element group 

number Section

1 W30 × 90 11 W14 × 34

2 W14 × 68 12 W14 × 61

3 W27 × 84 13 W14 × 90

4 W10 × 39 14 W14 × 145

5 W14 × 159 15 W14 × 132

6 W14 × 82 16 W14 × 193

7 W14 × 90 17 W14 × 90

8 W14 × 53 18 W14 × 99

9 W14 × 61 19 W14 × 48

10 W14 × 90 20 W14 × 22
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Fig. 17 The convergence diagrams for the best run of the both algorithms for the 3-bay 24-story frame

Fig. 18 The convergence diagrams for the average runs of the both algorithms for the 3-bay 24-story frame

Fig. 19 Comparison of the results of all the algorithms in 30 independent runs for the 3-bay 24-story frame

4 Conclusions
In this paper, reliability index of the optimal answer of 3 
well-known frame structures were investigated. The objec-
tive function is defined as the minimum distance between the 
limit state function from the origin of the standard normal 
space; so, the EVPS, VPS, EVPS-MDM and VPS-MDM 
algorithms are utilized to solve these types of optimization 
problems. Results show the reliability index values obtained 
by meta-heuristic algorithms and the MCS method. It is 
worth noting that the results of the meta-heuristic algorithms 

Table 9 Statistical optimization results obtained by algorithms for the 
3-bay 24-story frame

EVPS EVPS-MDM VPS VPS-MDM MCS

Best β 1.5636 1.5599 2.4540 2.2322 -

Average β 1.7093 1.6861 2.7002 2.5697 1.5125

Worst β 2.1412 2.3381 2.9753 3.0894 -

Std β 0.15434 0.17093 0.1436 0.2121 0.0051
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Fig. 20 Statistical scattering of the solution of 30 independent runs of the algorithm for the 3-bay 24-story frame

Fig. 21 The MPP in standard normal space (U-space) obtained from each algorithm for the 3-bay 24-story frame

(according to less limit state function analysis) compared 
to those of the MCS method, are acceptable. This is a new 
capability of the meta-heuristic algorithms. The quality of 
the answers is also considered with and without the effect of 
the MDM operator on the EVPS and VPS algorithms.

It should be noted that one of the defining capabilities 
of Hasofer and Lind method is obtaining the MPP from the 
reliability index. The results show decreasing the modulus 
of elasticity and increasing the lateral load relative to their 
mean values has resulted in the MPP.
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