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Abstract

Track geometry measurements are essential for day-to-day activities of railway maintenance and play an important role in vehicle-

track simulations. The generally applied forms of longitudinal level and alignment recordings do not reflect the real shape of the 

track. Both the versine measurement method and the band-pass filters according to European regulation cause significant amplitude 

modification and pattern change. In addition, the distortion behavior of repetitive and isolated defects is fundamentally different. In 

this contribution, simulated measurements of various reference shapes, which represent repetitive and isolated track deformations, 

were investigated. Comprehensive functions for amplitude change and for other distortion factors were developed with analytical 

and numerical methods. For chord measurements, rules were found for zero points and distortion-free ranges. Regarding the 

standardized filters, a significant amplitude reduction of isolated defects was observed in all wavelength ranges. Since derailment and 

track degradation depend not only on the amplitude of the defect, also the derivatives of the original and filtered forms of reference 

shapes were investigated and, as a new approach, the defect features called 'hypothetical additional force', 'speed of hypothetical 

wheel lift-off', 'hypothetical deterioration impulse' and 'hypothetical deterioration energy' were introduced.
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1 Introduction
The principal track geometric parameters, immediate 
action limits of which are regulated by the technical speci-
fications for interoperability relating to the 'infrastructure' 
subsystem of the rail system in the European Union  [1], 
are: alignment, longitudinal level, track gauge, cant, and 
track twist. In this contribution, alignment and longitudi-
nal level are investigated because it is not a trivial task to 
reconstruct their real values from the recordings provided 
by track measurement cars. 

In some countries of the world, for example in Japan [2], 
the versine method is used for track maintenance purposes 
by track recording cars without further treatment. Moreover, 
versine method plays an important role in pre-measure-
ments of tamping. Such signals are heavily dependent on 
the features of the chord establishing them. Equations for 
calculating the versines in horizontal and vertical curves 
were derived and published in  [3]. The  known formulae 
for amplitude and phase distortion of chord system trans-
fer function [4] can be clearly attributed to the amplitude 

change and phase shift of the measurement signal of spa-
tially periodic track deformation shapes. However, in real-
ity, the most dangerous track defects are not periodic but 
isolated. Amplitude change and longitudinal peak shift of 
an isolated shape are not trivial and are fundamentally dif-
ferent from the aforementioned formulae. Therefore, this 
contribution investigates the amplitude and phase change 
as well as the full mathematical representation of distorted 
signal via different reference shapes, which represent both 
repetitive and isolated track deformations.

In the European Union, a 'decoloring' of the versine sig-
nals is obligatory in order to eliminate the influence of the 
transfer function of the chord system. Although there are 
a number of methods for decoloring, for example the tradi-
tional way based on the inverse transfer function of versine 
system [5] or the newly developed restoration model based 
on linear equations [6], the handling of zero points or low 
values of transfer functions remain a challenge in the prac-
tice because of, inter alia, numerical instability problems, 
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background of which is detailed in  [7]. Therefore, this 
contribution investigates zero points of the transfer func-
tions and creates formulae which describe their occur-
rences comprehensively.

The already decolored signal may not be used on its 
own. According to the European regulations, different 
wavelength ranges shall be considered [8] which requires 
filtering methods. This is also the case for inertial mea-
surements, which should also be filtered for the standard-
ized wavelength domains. The use of these standardized 
filters is problematic because, in the reality, vehicles react 
to the full wavelength range. As Haigermoser et al. high-
lighted in [9], more vehement vehicle reaction is expected 
in a situation where two separate wavelength domains 
show high values than in a situation where only one of 
them shows even higher values. In addition, filters modify 
the original pattern of the track shape, including its ampli-
tude. Therefore, this contribution investigates the distor-
tive effect of the standardized filters D1 and D2 from the 
point of view of amplitude and other features by the help 
of the aforementioned reference track shapes.

In the international track maintenance practice, the 
tolerance limits refer usually only to amplitude values. 
However, theoretical considerations and simulations show 
that shorter waves lead to much higher forces than lon-
ger ones with the same amplitude [10, 11]. Therefore, the 
investigated features and their distortion are calculated as 
a function of wavelength or, more specifically: as a func-
tion of the length of the considered reference defect shape.

It can furthermore be noted that derailment risk, which 
is crucial for track maintenance, depends primarily on 
the wheel-rail forces and not on defect amplitudes  [12]. 
Considering a modern approach, track geometry quality 
evaluation can be made based on vehicle response predic-
tion which focuses on vehicle accelerations and wheel-rail 
forces considering track wavelengths  [10]. Such studies, 
for example [13], often use track geometry recordings fil-
tered for wavelength domain D1 as an input. Filtered track 
geometry measurements are also used for assessing track 
degradation, for example in [14]. 

Since wheel-rail forces are determined by the second-or-
der derivative of track shape [15, 16], and other effects are 
determined by the first-order derivative of track shape, in 
this contribution, the distortive effects of the standardized 
filters D1 and D2 were investigated also from the point of 
view of the derivatives on the corrupted shape (filtered sig-
nal of the reference track defect). In  addition to the pure 
vertical wheel-rail force changes, as a  new approach, the 

'lift-off speed', 'deterioration impulse' and 'deterioration 
energy' were introduced and calculated based on the deriva-
tives of the unfiltered and filtered longitudinal level signals.

It should be noted, incidentally, that there are many 
alternative methods in the literature for evaluating align-
ment defects: for example the 'spline method' [17], which 
was developed for evaluation of end points of transition 
curves (clothoide, hyperbolic [18], cosine). 

2 Methods
2.1 Considered reference track defects
In this paper, three reference track shapes with wavelength λ 
and amplitude α, which are illustrated via Fig. 1 and defined 
in the following subsections, were investigated.

2.1.1 Shape A (cyclic waving)
Most of scientific contributions in this field investigate this 
periodic sinusoidal type of track deformation because it is 
mathematically simple, and its Fourier series can be easily 
handled. However, in practice, such a cyclic track defor-
mation is not common, although the phenomenon called 
'cyclic top', mentioned as a track geometry defect type 
in [8] and in [19], is in connection with it. Formula of this 
shape (Fig. 1(a)) is
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2.1.2 Shape B (isolated deformation)
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Fig. 1 Considered reference defect shapes 
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is often the case in practice and called as 'local defect'. 
Since this function is non-periodic, it is more difficult to 
manage it with tools of mathematical analysis.

2.1.3 Shape C (dipped rail joint)
Dipped joints, also mentioned in the standard [8] create 
elbows in the rail. This was modeled by two parts of 
cosines. To make the elbow point differentiable infinite 
times, the edge was replaced by a very small half cosine 
shape (with a length of ϵ / 2, all derivatives of which fit into 
the neighboring function parts' derivatives. Thus, defini-
tion of reference shape C (Fig. 1(c)) is: 		      (3)
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where ϵ → 0. 

2.2 Considered measurement methods
2.2.1 Chord measurement
Asymmetric chord measurement system, also called 
'versine measurement', illustrated on Fig. 2(a) can be con-
sidered as a linear system, transfer function of which 
only depends on its chord length (L) and chord division 
(a and b). Complete characteristics of a linear system are 
described by its impulse response [20].

Hence, a chord measurement system realizes a convolu-
tion on the track shape p(x) and its output e(x) is calculated 
in the following way:

e x p h x d( ) = ( ) −( )
=−∞

+∞

∫
ξ

ξ ξ ξ� ,	 (4)

where function h(x) represents the unit impulse response 
of the system, illustrated in Fig. 2(c) as follows:
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Since each sample of the output signal is equal to a sum 
of weighted inputs, to put Eq. (4) more simply, yields

e x p x b
L
p x a a

L
p x b( ) = ( ) − −( ) − +( )� � ,	 (6)

where

L a b b a= + ≥ >and 0 .	 (7)

Examination of Shape A
Substituting Eq. (1) into Eq. (6), yields		  (8)
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Applying trigonometric sum-to-product identity, Eq. (8) 
can be rewritten in following form:
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Fig. 2 Chord measurement system with measurement result e (a); unit 
impulse on the track (b); unit impulse response h of the system (c) 
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As Eq. (9) represents phasors and it is known that sum 
of multiple phasors produces an another phasor. Based on 
the identity illustrated on Fig. 3 yields: 

e x c d d
cA A A
A

A
( ) = + +


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α γ2 2

sin arctan .	 (13)

Some examples are presented via Fig. 4. In Fig.  4(a), 
the  actual combination of wavelength, chord length and 
chord division leads to an amplitude magnification. By con-
trast, Fig.  4(b) represents an amplitude reduction and 
Fig. 4(c) shows total amplitude destruction. Comprehensive 
diagram of amplitude modification and phase modification 
factors is given in section 'Results'.
Examination of Shape B
Substituting Eq. (2) into Eq. (6) is more complicated. 
It  is necessary to distinguish the following seven cases 
(Table 1), depending on the actual position of the leading, 
central, and trailing chord points, considering the tree parts 
of the track function .

If all three chord points are on the undeformed part of 
the track, the measurement result remains zero.

e xI ( ) ≡ 0 	 (14)

When the first chord point Pb arrives at the cosine defor-
mation, measurement result function can be written as
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which represents a cosine in the opposite direction with 
amplitude factor of a/L and phase shift of 2πb/λ. Similarly, 
when trailing Pa point leaves the cosine: 
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If both Pb and Pc points are on the cosine,	 (17)
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which can be rewritten as
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where γ is according to Eq. (10) and
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Eq. (18) can be transformed, in the same manner as 
shown via Fig. 3, into a form which represents an oppor-
tunity to demonstrate the amplitude and phase distortion:
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Similarly,
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where

Fig. 3 Explanation of transformation of Eq. (9) into Eq. (13)

Fig. 4 Amplitude magnification (a); amplitude reduction (b) and 
amplitude destruction (c) of measurement (red) due to various 

asymmetrical chords (black continuous) over shape A (black dotted)

Table 1 Partitions of chord measurement graph in case of track shape B

segment 
name

position 
of Pa

position 
of Pc

position 
of Pb

illustration

eI 0 0 0

eII 0 0 cosine

eIII 0 cosine cosine

eIV cosine cosine cosine

eV cosine cosine 0

eVI cosine 0 0

eVII 0 cosine 0
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By calculation of eIV, analyzing the equation
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it can be recognized that the situation emerged is simi-
lar to shape A, however, cosine is shifted upwards by one 
amplitude. Therefore 

e x c d d
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It is an interesting situation, when only Pc experiences 
the cosine and the chord ends are constantly at level 0. 
In this case eVII reflects the uncorrupted shape, defined by 
Eq. (2), of the track:

e x xVII ( ) = 

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 −α

π
λ

αcos
2 .	 (27)

Fig. 5 shows two examples of measurement results 
with indication of function partitions I–VII mentioned 
above with different colors. Fig. 5(b) illustrates a situation 
where the absolute maximum value of the base-to-peak 
evaluation is fully compliant with the real defect size. 
Comprehensive visualization of amplitude modification 
and peak shift factors are given in section 'Results'.
Examination of Shape C
As in the case of shape B, equations can be created for 
chord measurement result partitions of shape C (Fig. 6). 
But, for space reasons, they are not written in this contri-
bution. Instead, distortion factors were calculated only via 
numerical simulations. A comprehensive visualization of 
amplitude modification factors is given in section 'Results'.

2.2.2 D1 and D2 filtered measurement according to 
standard
In this case, it is assumed that longitudinal level and align-
ment data series were recorded by an inertial system or 
by a chord measurement system, results of which had 
been already decolored. According to European regula-
tions [1], railways should consider D1 and D2 wavelength 
domains, band-pass filters of which are standardized. 

The zero phase Butterworth filters for D1 and D2 used in 
this contribution (Fig.  7) fulfill the requirements of the 
tolerance tables given in Annex C of European standard 
EN 13848-1:2019 [8].

Sampling interval of 0.25 meter is common practice on 
the field of track geometry recording. Therefore, the con-
sidered spatial sampling frequency in this contribution is 
4 m–1. Cut-off frequencies (damping of –3 dB where signal 

Fig. 5 Example measurement graphs eI-VII (colored) of asymmetrical 
chord systems (black continuous) in case of track deformation reference 

shape B (black dotted)

Fig. 6 Example measurement graph (colored) of asymmetrical chord 
system (black continuous) in case of track deformation shape C  

(black dotted)

Fig. 7 Used filters for D1 and D2 wavelength domain
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power is halved and amplitude factor is 2–½) of D1 and D2 
filters correspond to wavelengths 3…25 m and 25…70 m, 
respectively. By simulations for all shapes A, B, C an 
interval of [–5λ, 5λ] was considered because investigations 
showed that longer 'zero lines' before and after the track 
deformations B, C would not change the results. Fig.  8 
shows examples of D1 filter results.

Comprehensive visualization of amplitude modification 
factors and the change of derivatives are given in section 
'Results'.

2.3 Calculated features
In this section, traditional and new evaluation methods of 
aforementioned track geometry graphs are listed. They 
serve as a basis for distortion representation of chord mea-
surement and standardized filtering. Numerical calcula-
tions were made by the Octave software.

2.3.1 Base-to-peak values and peak-to-peak values
The simplest evaluation method of track alignment and 
longitudinal level recordings is the so called 'base-to-peak' 
feature which considers positive or negative extrema rela-
tive to the zero line. European regulation [1] makes the use 
of this method compulsory for EU Member States regard-
ing immediate action limits for isolated defects. Original 
'base-to-peak' values for the reference shapes are easily 
readable in Fig. 1: for shape A, the maximum/minimum 
deviation relative to the zero line is ±α, for shape B is 
–2α, for shape C is –α. Other evaluation method of track 
geometry recordings is the so called 'peak-to-peak' value. 
It considers the absolute difference between the maximum 
positive and the maximum negative values of every two 
consecutive local extrema. For both shape A and shape B 
the deviation of consecutive maxima and minima relative 

to each other is 2α, and for shape C is α (Fig. 1). Using the 
notations of Fig. 4 and Fig. 8(a), the amplitude distortion 
factors for shape A are 

K K
e e

KA bp A pp
bp pp

A, ,
= = = =

α α2
,	 (28)

for isolated track defects with shape B, considering nota-
tions of Fig. 5 and Fig. 8(b), distortion factors are calcu-
lated as

K
e

B bp
bp

,
=
2α

,	 (29)

K
e

B pp
pp

,
=
2α

,	 (30)

and for shape C, considering notations of Fig.  6 and 
Fig. 8(c):

K
e

C bp
bp

, =
α

,	 (31)

K
e

C pp
pp

, =
α

.	 (32)

The '40-m-moving-average' method, which is often used 
for filtering curves, is not considered in this contribution.

2.3.2 Longitudinal peak shift (phase shift)
In this contribution, the longitudinal peak shift (or phase 
shift) is the angle Φ in radians that the waveform has 
shifted from the certain reference point along the x axis. 
Considering the notations of Fig. 4 and Fig. 5, phase shift 
for shapes A and B can be calculated based on the distance 
between the negative peak point of the track and the cor-
responding negative extremum in the transformed signal, 
relative to track wavelength λ:

Φ = ( ) − ( )2π
λ
x p x emin min .	 (33)

2.3.3 Hypothetical additional force
Track geometry measurements are used for assessing the 
safety risk of track geometry defects. From the point of 
view of derailment safety, components of wheel-rail force 
are a central issue to consider. As it was mentioned in sec-
tion 'Introduction', vertical wheel-rail forces are deter-
mined by second-order derivatives of the function of the 
vertical track shape. It should be noted that this method 
cannot be applied in conjunction with alignment defects 
directly because wheel's lateral movement deviates from 
alignment of track. Assuming a rigid wheel following the 
vertical track shape p, with mass m, the additional vertical 
force Fz acting between rail and track can be written as

Fig. 8 Example measurement graphs of D1 filter (light blue) calculated 
on track reference track shapes A, B, C (black dotted)



858|Ágh
Period. Polytech. Civ. Eng., 65(3), pp. 852–865, 2021

F a v
t

z
t
t

z
t

p
tz z

z= = =








= =m m

d

d
m

d
d

d

d
m
d

d
m
d

d

2

2

2

2
,	 (34)

where vz and az are the vertical speed and vertical acceler-
ation of the wheel, respectively. If dx is the length of the 
horizontal path travelled by the wheel during time dt, fur-
thermore dp is the length of the vertical path travelled by 
the wheel during time dt, following equation can be found:

d d dt x
v

p
vx z

= = ,	 (35)

where vx is the horizontal travelling speed. Since vx is 
considered to be constant along the track, Eq. (34) can be 
rewritten as

F v p
xz x= m
d

d

2

2

2
.	 (36)

Negative values of Fz represent unburdening of track, 
relative to the original weight of wheel. During the numer-
ical simulations, the second-order derivative was substi-
tuted in the following way:

d

d

2

2 2

2p
x

p
p x x p x p x x

x
≈ =

−( ) − ( ) + +( )
′′

∆ ∆

∆
,	 (37)

where Δx is 0.25 m. 

2.3.4 Speed of hypothetical wheel lift-off
When vertical wheel-rail force Fz equals to zero, wheel 
leaves the rail (Fig. 9). Such a situation also poses derail-
ment risk and therefore it is worth investigating. Normally, 
vertical force acting on the wheel due to gravity is bal-
anced by track in its entirety. In case of track deformation, 
additional negative vertical acceleration az can reduce the 
weight of the wheel. At a theoretical critical lift-off situa-
tion, when the independent, rigid wheel just leaves the rail, 
following equation is fulfilled:

mg m− =az 0 ,	 (38)

where 'g' is –9.81 m∙s–2. Considering Eqs. (34)–(36), the 
critical horizontal travelling speed vx,lift of the train is 
determined by the minimum value of second-order deriv-
ative of the track longitudinal level:

v
p
x

x lift, .=
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
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


g

min
d

d

2

2

	 (39)

It should be noted that a lot of longitudinal level defects 
measured under loaded track condition originate from 
local deviation of foundation coefficient. In such a case 
there is no deformation in unloaded condition. In addition, 
springs of the railway vehicle improve safety against wheel 
lift-off, and this is not considered in this model. So, in the 
practice, lift-off cannot occur according to Eq. (39).

2.3.5 Hypothetical deterioration impulse
Assuming that gradual track deterioration is caused by 
additional vertical impulses J acting on the wheel, and 
considering a simple wheel with constant speed as in the 
previous section, using the Newton-Leibniz formula and 
substituting Eq. (35):
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	 (40)

It can be concluded that the distortion impulse, in the 
terms of this paper, depends only from the change of the 
first-order derivative of the track shape which equals to the 
change of the vertical speed of wheel. Vertical speeds vz 

passing by reference shapes are the followings: 
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	 (43)
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where ϵ → 0. 

Fig. 9 Hypothetical 'wheel lift-off' over a longitudinal level defect
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During the numerical simulations, the first order deriv-
ative was substituted in the following way:

d
d
p
x

p
p x p x x

x
≈ =

( ) − −( )
′

∆

∆
,	 (44)

where Δx is 0.25 m. An example is shown in Fig. 10.

2.3.6 Hypothetical deterioration energy
Similar to the impulse, vertical kinetic energy change ∆Ek 
imparted to the wheel from the vehicle-track system while 
passing the track deformation can be calculated as:

W E F z F pkin
z

z
z

p

p
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1

2

1

2

d d .	 (45)

Substituting Eq. (36) and assuming a constant travelling 
speed:

W v p
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Integration over vertical distance can be changed to the 
integration over horizontal distance in the following way:
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Searching for an appropriate primitive function, it can 
be found based on the product rule of calculus that

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

p
x
x

p
x

p
x

p
x

p
x

p
x

p
x









= + =

2

2

2

2

2

2

2
2 .	 (48)

Therefore, using the Newton-Leibniz formula, it yields
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which can be rewritten using Eq. (35) as

W v x v xz z= ( ) − ( )
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2

2
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.	 (50)

It can be concluded that the distortion energy change, 
in terms of this contribution, depends on the change of 
the square of vertical speed of wheel which is determined 
by the first-order derivative of the track shape. During the 
computations, the first-order derivative was substituted in 
the aforementioned way.

As an example, Fig. 10 represents the zero-order, 
first-order and second-order derivatives (via original and 
D1, D2 filtered forms) of all three reference shapes with 
wavelength of 18 meters. Because neither filtering nor 

differentiation is sensitive to the multiplication of the 
amplitude, vertical axes contain dimensionless numbers. 

A comprehensive evaluation of derivatives (from the 
point of view of hypothetical additional force, speed of 
hypothetical wheel lift-off, hypothetical deterioration 
impulse and hypothetical deterioration energy) covering 
all wavelengths is presented in section 'Results'.

3 Results
3.1 Distortion of base-to-peak and peak-to-peak values
Amplitude distortion factors were investigated according 
to the methods of Section 2.3.1.

3.1.1 Amplitude distortion factor of chord method
Shape A
Comparing Eq. (1) with Eq. (13), it can be recognized that 
chord measurement transforms original sine into a sine 
with the same period but changed amplitude of

K c dA
chord

A A= +2 2 .	 (51)

Amplitude distortion function KA
chord, which equals to 

the absolute value of the transfer function of the chord 
system [4], is only dependent on the chord measures and 
their ratio to the wavelength. Distortion values were plot-
ted in two different manners: as a function of variables 
λ/L, a/L (Fig. 11(a)) and as a function of variables a/λ, b/λ. 
(Fig. 11(b)). Both representations are comprehensive.

Fig. 10 Original and D1/D2 filtered form (first row) of reference 
shapes A, B, C with wavelength λ = 18.0 m, amplitude α = 1, and their 
first-order (second row) and second-order (third row) derivatives with 

discretization step of Δx = 0.25 m
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Under certain conditions, the value of the amplification 
factor is 0. These zero points occur where the magnitude 
of the measurement result disappears (Fig. 4(c)). On  the 
basis of Eq. (51), zero points of function KA

chord have been 
analyzed. Trivial zero points appear when chord part 
length a or b is 0. Non-trivial zero points can be defined as 
followings. Function takes the value of 0 if both Eq. (52) 
and Eq. (53) are fulfilled:

a = ∈ +ζ λ ζ
1 1
,  ,	 (52)

b = ∈ +ζ λ ζ
2 2
,  .	 (53)

This means that all symmetric and asymmetric chord 
measurement systems have infinite number of zero points 
in the transfer function. Zero points occur where both 
chord parts a and b are positive integral multiples of the 
wavelength λ. This fact is illustrated via Fig. 11(b), where 
zero points occur in grid points.
Shape B and C

Fig. 5 presents distorted function segments of shape B 
listed by Table 1 and Eqs. (14)–(27), with different colors.

Amplitude modification factors for shape B were visu-
alized in Fig. 12(a) and Fig. 12(b). It can be stated that 
base-to-peak amplitude in the versine measurement of 

shape B equals to the original amplitude (it means that 
KB bp
chord
,

=1) if inequation of 2a ≥ λ is fulfilled. This phe-
nomenon was illustrated also via Fig. 5(b).

For shape C, the distortion factors were visualized in 
Fig 12(c) and Fig. 12(d) and a similar statement can be 
made: base-to-peak amplitude in the versine measure-
ment of shape C equals to the original amplitude (it means 
that KC bp

chord
,

=1) if inequation of '2a ≥ λ/2' is fulfilled. 
Summarizingly, base-to-peak evaluation of isolated defect 
is free of distortion if the length of the shape is not longer 
than twice of the shorter chord part. In all other cases the 
amplitude factor KB bp

chord
,

=1  or KC bp
chord
,

=1  is less than 1.

3.1.2 Amplitude distortion factor of D1 and D2 filter
Using the method written in Section 2.3.1, amplitude dis-
tortion factors were calculated on discretized 'filtered ref-
erence track shapes' illustrated via Fig. 8, using the filters 
detailed in Section 2.2.2.

The related results are shown in Fig. 13. It was found 
that for periodic sinusoidal track deformations (shape A) 
the filtered amplitudes correspond to the filter character-
istics. However, for isolated defects (shapes B and C) the 
filtered amplitudes are always smaller, and the reduction is 
significant. 

Following statements regarding maximum and min-
imum amplitudes apply to filtering for domain D1. The 
filtered base-to-peak amplitudes of shape B represent 77 
%, 83 % and 29 % of the original amplitudes in case of 

Fig. 11 Amplitude distortion factor of shape A due to chord measurement 
with wavelength λ, chord length L and chord part lengths a, b as a 

function of λ/L and a/L (a), furthermore as a function of a/λ and b/λ (b)

Fig. 12 Amplitude distortion factor of shapes B and C due to chord 
measurement with wavelength λ, chord length L and chord part length a 

in the cases of base-to-peak (bp) and peak-to-peak (pp) evaluation
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defect wavelengths 3 m, 4.5  m and 25  m, respectively. 
The filtered peak-to-peak amplitudes of shape B represent 
92 %, 100 % and 50 % of the original amplitudes in case 
of defect wavelengths 3  m, 5  m and 25  m, respectively. 
The filtered base-to-peak amplitudes of shape C represent 
40 %, 72 % and 64 % of the original amplitudes in case 
of defect wavelengths 3 m, 12 m and 25 m, respectively. 
The filtered peak-to-peak amplitudes of shape C represent 
47 %, 87 % and 84 % of the original amplitudes in case of 
defect wavelengths 3 m, 17 m and 25 m, respectively.

3.2 Longitudinal peak shift (phase shift)
Comparing Eq. (1) with Eq. (13), it can be recognized that 
chord measurement method transforms original sine into a 
sine with the same period but with phase shift of

ΦA
chord

A Ad c= ( )arctan / ,	 (54)

where cA and dA were defined via Eqs. (11)–(12).
According to method described in Section 2.3.2, values 

of ΦA
chord  calculated by the help of Eq. (54) and values of  

ΦB
chord calculated by the help of a numerical simulation are 

shown by Fig. 14, considering Eq. (33).
In the case of chord measurement of shape C, there is 

no longitudinal peak shift because negative peak of mea-
surement graph is always at the negative peak of the track.

D1 and D2 filters are zero-phase filters, therefore they 
do not cause any phase shift.

Summarized in formulae:

Φ Φ ΦC
chord

A B C
D

A B C
D≡ ≡ ≡

, , , ,

1 2
0 .	 (55)

3.3 Distortion effect of filtering on hypothetical 
additional force maximum
Substituting Eq. (1) into Eq. (36), for shape A yields
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In the same way, based on Eq. (2) for shape B yields

F x
m v x x

x x
z B

x
,

cos ,

, ,

( ) = − 





 ≤ ≤

< <









4 2
0

0 0

2

2

2π
λ

α
π
λ

λ

λ

	 (57)

For shape C, vertical speed of wheel at x = λ/4 (at the 
deepest point of dipped joint) is determined by the first 
derivative of Eq. (3) which yields			     (58)
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as expected. Force maximum at dipped joint is	   (59)
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Fig. 13 Amplitude distortion factor of D1 (a) and D2 (b) filter on 
reference shapes A, B, C with wavelength λ in the cases of base-to-peak 

(bp) and peak-to-peak (pp) evaluation Fig. 14 Phase shift factor of shapes A (a) and B (b) due to chord 
measurement with wavelength λ, chord length L and chord part length a
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thus, theoretical vertical force at elbow point is very large 
because

lim lim
,

  → →


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
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


 =







 =

0 04

1Fz C
λ

∞ .	 (60)

Maximum forces for reference shape A (Fz,A,max) and for 
reference shape B (Fz,B,max) were calculated according to 
Eq.  (56) and Eq.  (57), respectively. However, in order to 
comparability, maximum wheel-rail forces for reference 
shape C  (Fz,C,max) were calculated based on the original 
track shapes using Eq.  (36) but discretized by a 0.25  m 
step according to Eq. (37):

F v pz max x,
max= ( )′′m

2 .	 (61)

For showing the distortion rate of D1, D2 filters regard-
ing this feature, values of F Fz max

D
z max
D

, ,
,

1 2  were calculated 
based on filtered shapes of the reference defects illustrated 
via Fig. 10 with the help of the discretization according to 
Eq. (37):

F v pz max
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''
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m ,	 (62)
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2 2 2= ( )
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


m .	 (63)

In order to highlight the effect of distortion of the fil-
tering on this feature as a function of the wavelength (λ), 
the values of 1.0, 1.0, 1.0 were considered for reference 
shape amplitude (α), wheel mass (m) and horizontal travel-
ling speed (vx), respectively. The related results are shown 
in Fig. 15.

3.4 Distortion effect of filtering on speed of hypothetical 
wheel lift-off 
By calculating the second-order derivatives of Eqs. (1)–(3) 
it can be found that for all three shapes A, B, C the unac-
ceptable travelling speed range vx from the point of view of 
lift-off according to Eq. (39) can be theoretically defined as

v v v vx x lift A x lift B x lift C≥ = = =
, , , , , ,

g

2π
λ
α

.	 (64)

The calculated maximum lift off speeds for refer-
ence shape vx,lift,B were calculated based on Eq.  (64). For 
visualizing the distortion rate of D1, D2 filters regarding 
this feature, values of v vx lift

D
x lift
D

, ,
,

1 2  were calculated using 
Eq. (39) based on filtered shape of the reference defect B 
illustrated via Fig. 10, with the help of a discretization of 
filtered shape according to Eq. (37):
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g .	 (66)

These critical speeds as a function of reference shape 
wavelength (λ) and reference shape amplitude (α) were 
plotted in Fig. 16.

3.5 Distortion effect of filtering on hypothetical 
deterioration impulse
In this subsection, deterioration impulse is always consid-
ered between the maximum and the minimum value of vz. 
Thus, impulse is calculated only for one coherent rising 
period of the vertical wheel momentum. Therefore, the 
impulses for each reference shapes based on Eqs. (40)–(43) 
yield:
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Fig. 15 Relative hypothetical force maximum in the case of passing the 
original (Fz,max) and the filtered ( F Fz max

D
z max
D

, ,
,

1 2 ) reference shapes A, B, C
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	 (69)
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For visualizing the distortion rate of D1, D2 filters 
regarding this feature, values of J D1, J D2 were calculated 
according to Eq. (40) based on filtered shapes of the ref-
erence defects illustrated via Fig. 10 with the help of the 
discretization according to Eq. (44):
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In order to highlight the effect of distortion of the fil-
tering on this feature as a function of the wavelength (λ), 
the values of 1.0, 1.0, 1.0 were considered for reference 
shape amplitude (α), wheel mass (m) and horizontal travel-
ling speed (vx), respectively. The related results are shown 
in Fig. 17.

3.6 Distortion effect of filtering on hypothetical 
deterioration energy
In this subsection, deterioration energy change is always 
considered between the maximum and the minimum 
value of . Thus, according to Eq. (50) and considering 
Eqs. (41)–(43),
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For visualizing the distortion rate of D1 and D2 filters 
regarding this feature, values of W D1, W D2 were calculated 
using of Eq. (49) based on filtered shapes of the reference 
defects illustrated via Fig. 10 with the help of the discreti-
zation according to Eq. (44):
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In order to highlight the effect of distortion of the fil-
tering on this feature as a function of the wavelength (λ), 
the values of 1.0, 1.0, 1.0 were considered for reference 
shape amplitude (α), wheel mass (m) and horizontal travel-
ling speed (vx), respectively. The related results are shown 
in Fig. 18.

Fig. 16 Hypothetical lift off speeds passing the original (vx,lift) and the 
filtered ( v vx lift

D
x lift
D

, ,
,

1 2 ) reference shape B with wavelength λ and with 
original amplitude α

Fig. 17 Relative hypothetical deterioration impulse in the case of passing 
the original (J ) and the filtered (JD1, JD2) reference shapes A, B, C
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4 Conclusions
This contribution proved by analytical calculations and 
numerical simulations that the distortion in pattern and 
amplitude of generally used longitudinal level and align-
ment recordings are radically different depending on 
whether these consist of repetitive track deformations or 
an isolated defect.

Distortion side-effects of two different mathemati-
cal methods were investigated: versine measurement and 
band-pass filtering according to European regulation.

Regarding amplitude and phase distortion of versine 
measurement of reference shapes, diagrams were gener-
ated covering all chord lengths, chord divisions and wave-
lengths, comprehensively. These may play a role by plan-
ning of measurement systems. A general rule was found 
for zero points in case of repetitive defects: they occur 
where lengths of both chord parts are positive integral 
multiples of the track wavelength. For isolated defects, no 
zero points were found. This means in the practice that 
all kinds of isolated defects can be detected by all versine 
measurement systems.

As a new methodology, functions were presented which 
describe the distorted shape of an isolated 'cosine' track 
deformation measured by any versine system. It was found 

that the base-to-peak evaluation of an isolated defect is 
free of distortion if the length of the shape is not longer 
than twice of the shorter chord part, furthermore, in all 
other cases the amplitude is always reduced, as compre-
hensive amplitude diagrams showed.

Amplitude distortion was simulated for filtered signals 
according to the standard EN 13848-1. Amplitude reduc-
tion functions were plotted considering D1 and D2 filters. 
It was found that base-to-peak evaluation method of fil-
tered signals of 'isolated cosine' shape show a significant 
amplitude reduction comparing to the real shapes, even 
at wavelengths which correspond to the transition band 
of the filter. It means in the practice, that measurement 
diagram of recording car shows always smaller base-to-
peak value than the real amplitude of the isolated 'cosine' 
deflection. Therefore, further vehicle-track simulations 
based on D1 values can be problematic. Experts may con-
sider the possibility of broader use of peak-to-peak evalu-
ation which approximates the real amplitude more closely.

Derivatives of the filtered signals were also investi-
gated in the light of the newly proposed force, accelera-
tion, impulse, and energy features. Analytical consider-
ations showed that the instantaneous additional vertical 
force passing an elbow point (reference shape C) tends to 
be infinite, however, the dissipated impulse and energy 
are finite, and their formulae were given. Nevertheless, 
dipped joint is one of the central phenomena of track deg-
radation because the track experiences a concentrated 
energy quantum here.

The theoretical speed of hypothetical wheel lift-off, 
which may be considered by experts while defining of 
track geometry tolerance values, showed unexpectedly 
low values in the case of short wavelengths. It should be 
noted, that these results are largely theoretical because the 
used model is simply: it assumes an independent wheel 
and rigid track.

Simulations showed that changes due to the 'D1 filter-
ing' of 'isolated cosine' shape in the 'force features' as well 
as in hypothetical 'deterioration impulse' and 'deteriora-
tion energy' are not significant. It means that standard-
ized filtering method (according to European standard in 
force) preserves the derivatives of the isolated track defect 
shapes much better than the amplitude of them.

Methodology of this contribution can be applied to road 
surface irregularities or other surface evenness measure-
ments as well.

Fig. 18 Relative hypothetical deterioration energy in the case of passing 
the original (W ) and the filtered (W D1, W D2) reference shapes A, B, C
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