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Abstract

In this paper, the free vibration and the buckling of a continuously suspended simply-supported beam are analyzed. A semi-analytical 

approach is used to calculate the natural circular frequencies and the critical forces of the beam. The length of the suspension is 

used as a parameter, and the natural circular frequencies and the critical forces are presented in a frequency map or a buckling map. 

The maps are analyzed in view of the trivial solutions, and the frequency map is compared to the map of discrete cable-stayed beams. 

Finally, for the validation of the results a numerical, finite element analysis is performed.
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1 Introduction
Block-and-tackle suspension of cable-stayed beams [1], 
and other structural elements [2] offer a new way for sup-
porting structural elements in multiple points with only 
a slight increase in the static indeterminacy of the struc-
ture. In these constraints, a cable is driven through a series 
of pulleys, constraining the total displacements of the sup-
ported points. Fig. 1(a) and (b) show the possible topol-
ogy of the suspension cable with two and four suspension 
points, respectively. The red arrows represent the one- 
parameter dependent resultants of the cable force acting 
on the structure, while the sum of the supported points' 
displacements must be zero if the elongation of the cable 
is neglected. The effect of this support on the structural 
response is analyzed in [3], and the dynamical analysis was 
performed in [1, 4] with emphasis on the possible slack-
ing of the cable and the resulting nonlinear vibration. For 
a beam, it is easy to construct a double suspension system 
on both sides of the beam, which then eliminates the cha-
otic motion of the beam as one of the cables would always 
be in tension while the other would be slacked.

In [5], families of beams were analyzed, where the num-
ber and the position of the suspension points were varied, 
and the linear natural circular frequencies were calcu-
lated with the assumption of the cables to be in tension. 
The resulting frequency map is a diagram of the frequency 

parameters as a function of a continuous topological 
parameter (the position of the suspension points). It offers 
a good overview of the effect of the position of the suspen-
sion point on the vibration of the structure. The increase 
of the number of the discrete suspension points leads as 
a limit case to a continuous suspension, where the total dis-
placement of the suspended segment (the integral of the 
displacement function) will be zero. At the same time, the 
"cable" exerts a universal distributed load on the beam (see 
Fig. 1(c)). The intensity of the distributed load is propor-
tional to the amplitude of the integral of the displacements.

The universal distributed reactions are not common in 
the mechanical modelling, but it is not impossible. Consid- 
ering the elastic supported beams and their Pasternak-
model [6] with a rigid shear layer, the soil-reaction has 

Fig. 1 Block-and-tackle suspension. Suspension cable and cable 
reactions a) with two suspension points; b) with four suspension points; 

c) with infinite suspension points
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a constant value, when a given segment of the soil is in 
compression, so, the reaction does not depend on the mag-
nitude of the points' own displacements. However, that 
model differs from the model we introduce in this paper: 
in the continuous suspension cable model the reactions act 
on the uplifting points as well, and the intensity is propor-
tional to the displacements' amplitude. Beyond the theoret-
ical derivation of the above constraint, it can be originated 
from another model too. The continuously suspended seg-
ment could be connected to a fluid vessel, which contains 
in-compressible fluid, resulting in a zero total displacement 
and a constant pressure on the segment.

In this paper, we aim to analyze the effect of continu-
ous support on the buckling and the free vibration proper-
ties of a beam. As the suspension cable is attached to the 
simply supported beam; it affects the natural circular fre-
quencies, the buckling forces, the vibration modes, and the 
buckling modes. This effect will be analyzed as a function 
of the length of the suspended segment. The natural circu-
lar frequencies or the critical forces of the beam are cal-
culated as a function of the length of the continuous sup-
port and presented in a frequency map or a buckling map, 
respectively. The structure of the paper is the following: in 
Section 2, we will present the mechanical model and the 
parametric formulation of the buckling and the frequency 
matrix. In Section 3, the applied numerical method for 
calculating the buckling and frequency map is presented. 
In Section 4, we present the calculated maps and analyze 
them regarding their limits, trivial modes. In Section 5, we 
validate our calculation against an FE-analysis performed 
in a commercial FE-software. Finally, in Section 6, we 
summarize the results and draw our conclusions.

2 Mechanical model
2.1 Model parameters and governing equations
The investigated beam's mechanical model is shown in 
Fig. 2. The beam of length L is an Euler-Bernoulli-beam. 
We assume small displacements; the principal displace-
ment is the w(x) translation of the beam axis. The materi-
al's Young's modulus is E and the cross-sectional moment 

of inertia is I. The mass density is denoted by ρ, the spe-
cific mass of the beam is denoted by μ. In the dynamic 
analysis we neglect the rotary inertia of the cross-section. 
The beam is supported by a pinned joint on its left end and 
by a roller on its right end. The beam is divided into three 
segments, and their displacements are denoted by w1(x), 
w2(x), and w3(x), respectively. The 1st and 3rd segments 
refer to the free parts of the beam while the 2nd segment 
is suspended by infinitely dense continuous, unstretchable 
cables, one on the bottom side and one on the top side. 
The continuous suspension extends symmetrically at a 
distance qL from the midpoint of the beam in both direc-
tions. Thus, 2q can be referred to as the supported ratio 
of the length of the beam. The supporting effect of the 
cable is such that the total displacement of the second seg-
ment of the beam must be zero: slacking of the cable on 
any side would involve the elongation of the cable on the 
other side. At the same time, the cables exert a universal 
distributed load of intensity S0. We refer to this resultant 
intensity as cable force, but we note here, that S0 could be 
negative as well, the sign of S0 represents the pulled side 
of the beam. Thus, the two-sided cable support eliminates 
the nonlinearity of the structure, which would be caused 
by the slacking of a one-sided suspension. The mass of the 
cable and any friction are neglected. For the stability anal-
ysis the axial force P is acting on the right end of the beam, 
as presented in Fig. 2.

The origin of the reference system is set to the mid-
point of the beam. This positioning is required to postpone 
numerical problems during the calculation of the determi-
nant of the frequency matrix. The q ratio runs between 
1/1000 and 1/2. For the numerical calculations, we used 
the L = 1 value, but we generalized the results everywhere.

For the dynamic study, the beam in Fig. 2 is assumed to 
obey the Euler-Bernoulli dynamic beam equation [7]. For 
the free segments, the equations are:

EIw w
1 1

0′′′′ + =µ  , (1)

EIw w
3 3

0′′′′ + =µ  . (2)

Here, and from now on, prime (') denotes the partial 
derivation with respect to the x position, while the dot (˙) 
denotes the partial derivation with respect to the time t. 
For the 2nd segment, the dynamic beam equation is:

EIw w S t2 2′′′′ + = ( )µ  . (3)

For the buckling analysis, the 4th order static differen-
tial equation of the Euler-Bernoulli beam applies with the Fig. 2 The analyzed beam with a continuous cable support
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application of the compression force [8]. The equations for 
the unsupported beam segments are:

EIw Pw
1 1

0′′′′ + ′′ = , (4)

EIw Pw
3 3

0′′′′ + ′′ = . (5)

For the 2nd segment, the differential equation contains 
the cable force as well:

EIw Pw S
2 2 0
′′′′ + ′′ = . (6)

In both the dynamic and the buckling problem, the non-
trivial solution consists of w1(x), w2(x), and w3(x) functions, 
which fulfill the respective differential equations, namely 
Eqs. (1)–(3) for the dynamic problem and Eqs. (4)–(6) for 
the buckling problem. The general solutions of the homoge-
neous differential equations contain 4–4 parameters while 
the solutions of the non-homogeneous differential equa-
tions have 4–4 parameters from the general solution of the 
complementary homogeneous equation and one parameter 
from the particular solution.

In each case, there are a total of 13 parameters which 
must be related to each other such that they fulfill the fol-
lowing 13 constraints. There are 2–2 boundary conditions 
at the ends of the beam (the translation and the bending 
moment, thus the curvature of the beam must be zero there):

w L w L
1 3

2 2 0−( ) = ( ) =/ / , (7)

w L w L
1 3

2 2 0′′ ′′−( ) = ( ) =/ / . (8)

There are four-four connection conditions at the boundaries 
of the segments (the translation, rotation, bending moment, 
and shear force must be the same from both segments):

w qL w qL w qL w qL
1 2 2 3
−( ) = −( ) ( ) = ( ), ,  (9)

w qL w qL w qL w qL
1 2 2 3
′ ′ ′ ′−( ) = −( ) ( ) = ( ), ,  (10)

w qL w qL w qL w qL
1 2 2 3
′′ ′′ ′′ ′′−( ) = −( ) ( ) = ( ), ,  (11)

w qL w qL w qL w qL
1 2 2 3
′′′ ′′′ ′′′ ′′′−( ) = −( ) ( ) = ( ), ,  (12)

Finally, the scaling parameter of the particular solution 
connects the cable force intensity and the amplitude of the 
displacement function through the continuous constraint:

−∫ =
qL

qL
w dx
2

0 . (13)

We present the above equations on the specific prob-
lems separately in the following subsections.

2.2 Derivation of the frequency matrix
For the dynamic analysis we assume harmonic vibration 
of the beam with a natural circular frequency of ω0. Thus, 
we can separate the variables in the solution of the differ-
ential equations Eqs. (1)–(3) and we assume the solution 
in the form:

w x t w x cos t
1 1 0
,( ) = ( ) ( )ω , (14)

w x t w x cos t
2 2 0
,( ) = ( ) ( )ω , (15)

w x t w x cos t
3 3 0
,( ) = ( ) ( )ω . (16)

At the same time, the cable force intensity changes in 
time with the same harmonic function:

S t S cos t( ) = ( )0 0ω . (17)

We note here, that the w1(x), w2(x), w3(x) functions and 
S0 together specify the assumed vibration mode. There 
is no unique nontrivial solution for them: if multiply the 
amplitude of the vibration by an α scalar parameter, then 
w1(x), w2(x), w3(x) functions and S0 must be multiplied by 
the same α. We also remind the reader, that small displace-
ments and the two-sided suspension allows S0 to take up 
negative values too.

After the substitution of the assumed solutions into the 
differential equations, simplification by cos(ω0t) yields the 
ordinary differential equations for the three segments:

EIw w
1 0

2

1
0′′′′ − =µω , (18)

EIw w S
2 0

2

2 0
′′′′ − =µω , (19)

EIw w
3 0

2

3
0′′′′ − =µω . (20)

For the homogeneous equations, we have the following 
general solutions:

w x A sin x A cos x A sinh x

A cosh x
1 1 2 3

4

( ) = ( ) + ( ) + ( ) +
( )
λ λ λ

λ ,
 (21)

w x A sin x A cos x A sinh x

A cosh x
3 9 10 11

12

( ) = ( ) + ( ) + ( ) +
( )
λ λ λ

λ .
 (22)

In the above equations, λ is the frequency parameter. 
Using the general solutions in the differential equations 
show that it is related to the natural circular frequency as:

ω λ µ
0

2= EI / . (23)

For the 2nd segment, a particular solution is 
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w x S S
EI

p
2

0

0

2

0

4
( ) = =

µω λ
, (24)

while the general solution with the solution of the comple-
mentary equation is

w x A sin x A cos x A sinh x

A cosh x S
EI

2 5 6 7

8

0

4

( ) = ( ) + ( ) + ( ) +

( ) +

λ λ λ

λ
λ
.

 (25)

In the above three general solutions, there are altogether 
13 parameters, A1 through A12 in addition to S0, which are 
determined from the boundary and continuity conditions 
listed in Eqs. (7)–(13). The integration in the last condition 
yields:

A sin qL A sinh qL S qL
EI6 8 0 3

0λ λ
λ

( ) + ( ) + = . (26)

Substituting the general solutions and their respective 
derivatives into the constraints yields a homogeneous sys-
tem of linear equations in the form:

Fa = 0 , (27)

where the vector a contains the unknown parameters:

a = …





A A A A S
EI

T

1 2 11 12

0 , (28)

while the F is the frequency matrix built from the coeffi-
cients of the parameters. After a simplification of the rows 
of the matrix by the lambda multipliers, where applicable, 
the matrix can be written in the following block structure:

F

B
C C s

C C s

B

D

=

− −
−






















n

n n

p p

p

qL

0 0
0

0

0 0

0 0

4 4

4

4

2 2

1 1

3

0

0

/ λ





, (29)

where the B and C matrices belong to the boundary and 
continuity conditions, respectively, the n and p indices 
denote the evaluation at a negative or positive x-value, the 
vector s is the first unit vector divided by λ4, the 0j matrices 
are j × 4 zero-matrices. Using the odd and even properties 
of the functions, the entries of the non-zero matrices are:

 
(30)

Bn

sin L cos L sinh L cosh L

sin
=















 − 
















λ λ λ λ

λ

2 2 2 2

LL cos L sinh L cosh L
2 2 2 2







 − 






 − 































λ λ λ




=

































,

Bp

sin L cos L sinh L cosh Lλ λ λ λ
2 2 2 2

−− 





 − 































sin L cos L sinh L cosh Lλ λ λ λ

2 2 2 2











=

− ( ) ( ) − ( ) ( )
( )

.

Cn

sin qL cos qL sinh qL cosh qL
cos qL si

λ λ λ λ
λ nn qL cosh qL sinh qL

sin qL cos qL sinh qL cosh
λ λ λ

λ λ λ λ
( ) ( ) − ( )

( ) − ( ) − ( ) qqL
cos qL sin qL cosh qL sinh qL

( )
− ( ) − ( ) ( ) − ( )



















λ λ λ λ

,

C pp

sin qL cos qL sinh qL cosh qL
cos qL sin qL cosh

=

( ) ( ) ( ) ( )
( ) − ( )
λ λ λ λ
λ λ λλ λ
λ λ λ λ
λ

qL sinh qL
sin qL cos qL sinh qL cosh qL
cos qL

( ) ( )
− ( ) − ( ) ( ) ( )
− (( ) ( ) ( ) ( )





















= ( )

sin qL cosh qL sinh qL

sin qL si

λ λ λ

λ

,

D 0 0 nnh qLλ( )  .

The nontrivial solution requires a singular F matrix, 
where its determinant is zero. The solutions of this non-
linear equation yield the frequency parameters, then the 
ratios of the 13 parameters can be obtained from Eq. (27).

2.3 Derivation of the stability matrix
For the stability analysis, the general solutions of the 
homogeneous equations Eqs. (4)–(5) are:

w x B sin kx B cos kx B x B
1 1 2 3 4( ) = ( ) + ( ) + + , (31)

w x B sin kx B cos kx B x B
3 9 10 11 12( ) = ( ) + ( ) + + . (32)

In the above equations, k is the load parameter. Using 
the general solutions in the differential equations show that 
it is related to the compression force as:

k P
EI

2 = . (33)

The particular solution of the non-homogeneous equa-
tion Eq. (6) is 

w x
S x
P

S x
EIk

p
2

0

2

0

2

2
2 2

( ) = = , (34)
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and so the general solution is:

w x B sin kx B cos kx B x B
S x
EIk
o

2 5 6 7 8

2

2
2

( ) = ( ) + ( ) + + + . (35)

Similarly to the dynamic analysis, there are alto-
gether 13 parameters in the above three general solutions, 
B1 through B12 in addition to S0, which are determined 
from the boundary and continuity conditions listed in 
Eqs. (7)–(13). The integration in the last condition yields:

B
sin kqL
k

B qL
S qL
EIk6 8

0

3

2
6

0
( )

+ +
( )

= . (36)

Substituting the general solutions and their respective 
derivatives into the constraints yields a homogeneous sys-
tem of linear equations in the form:

Sb = 0 . (37)

where the vector b contains the unknown parameters:

b = …







B B B B

S
EI

T

1 2 11 12

0 , (38)

while the S is the frequency matrix built from the coeffi-
cients of the parameters. After a simplification of the rows 
of the matrix by the lambda multipliers, where applicable, 
the matrix can be written in the following block structure:

S

B
C C s

C C s

B

D

=

−
−

( ) ( )












n

n n n

p p p

p

qL k

0 0
0

0

0 0

0 0

4 4

4

4

2 2

1 1

3 2

0

0

6/













, (39)

where the B and C matrices belong to the boundary and 
continuity conditions, respectively, the n and p indices 
denote the evaluation at a negative or positive x-value, the 
0j matrices are j × 4 zero-matrices. Using the odd and even 
properties of the functions, the entries of the non-zero 
matrices are:

 (40)

Bn

sin kL cos kL L

sin kL cos kL
=

− 















−







 − 








2 2 2
1

2 2
0 00

2 2 2
1

2



















=

















− 







,

Bp

sin kL cos kL L

sin kL
−− 


























=

− ( ) ( ) −

cos kL

sin kqL cos kqL qL
cos kq

n

2
0 0

1

,

C
LL sin kqL k

sin kqL cos kqL
cos kqL sin kqL

( ) ( )
( ) − ( )

− ( ) − ( )






1 0

0 0

0 0

/














=

( ) ( )
( ) − ( )

−

,

/
C p

sin kqL cos kqL qL
cos kqL sin kqL k
s

1

1 0

iin kqL cos kqL
cos kqL sin kqL

si

( ) − ( )
− ( ) ( )





















=

0 0

0 0

0

,

D
nn qL
k

qL

qL k

qL k

k
n

λ( )











=

−( ) ( )

−


















0

2

1

0

2 2

3

4

.,

/

/

/

s






=

( ) ( )





















,

/

/

/

.sp

qL k

qL k

k

2 2

3

4

2

1

0

The nontrivial solution requires a singular S matrix, 
where its determinant is zero. The solutions of this nonlin-
ear equation yield the load parameters, then the ratios of 
the 13 parameters can be obtained from Eq. (37).

3 Numerical method used for the calculation
Both the free vibration and the buckling problem requires 
the formulation of the determinant of a 13 × 13-matrix and 
finding those parameter values, where it will be equal to 
zero. For the calculation we fixed the q parameter in 500 
points between 1/1000 and 1/2. For each different case we 
increased the λ or the k parameter from zero upward to 
a maximum of 60 in 10000 steps and calculated the deter-
minant numerically from the analytical form in Eq. (29) 
or Eq. (39). When the sign of the determinant changed 
between two parameter values, then the position of the 
zero value was interpolated between the two values of 
opposite sign, and a solution for the frequency parameter 
or the load parameter was found, and we stored the first 18 
of them for each q value.
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As results will show, both the vibration modes and the 
buckled modes are well separated: the curves of the sub-
sequent λ or k parameters remain in a clearly visible dis-
tance from each other at any qL suspension length, i.e., the 
neighboring curves do not cross each other and do not get 
close to a crossing. As it was shown in [5], with discrete 
number of suspension points there were such crossings, 
which also yielded the disturbance of the order of the sym-
metric and skew-symmetric modes. The lack of crossings 
is why such a simple scanning is sufficient for this problem 
instead of the more robust methods [9].

4 Numerical results
4.1 Results of the dynamic analysis
First, we present the frequency map of the beam in Fig. 3. 
One can notice that starting from the bottom until the 11th 
line, the odd modes have constant lines, representing con-
stant frequency values of the odd modes while the line 
of frequencies of even modes are curved. Furthermore, 
there are strange zigzagged thin lines appearing for higher 
modes starting from the higher q values. This type of solu-
tions is known from the literature of numerical scanning 
of parameter spaces [10–11]: the reason is that the function 
value, which is interpolated to find its zero, cannot be cal-
culated accurately at the current parameter level. Because 
of that, the numerical results of the mathematical problem 
are not the real solution of the physical problem. Hence, 
these lines are also referred to as parasitic solutions. While 
calculating the frequency map of Fig. 3., higher λq prod-
ucts as arguments of the sinh and cosh functions caused 
exponential increase of several terms in the determinant 
of the F matrix. Due to the accumulation of truncation 
errors in that order of magnitude, even the sign of the 
determinant became inaccurate. Thus, the chaotic back-
and-forth change of the sign of the determinant caused the 
vast number of the parasitic solutions in the top right cor-
ner of the diagram. In our further analysis we will not con-
sider those solutions.

The constant value of the lines of the odd modes is easy 
to explain. These modes are the skew-symmetric sinusoidal 
vibration modes with A1 = A5 = A9, while every other param-
eter (Am-s and S0) are zero, and the frequency parameter is

λ π
2 1

2j j L− = / . (41)

Thus, for the (2j-1)th mode w1(x) = w2(x) = w3(x) = A1 
sin(λx), and as such, it naturally fulfills the conditions in 
Eqs. (9)–(13). The boundary conditions of Eqs. (7)–(8) 
are fulfilled because of the specific value of the frequency 
parameter according to Eq. (41).

The even modes are the symmetric vibration modes, 
where A1 = -A9, A2 = A10, A3 = -A11, A4 = A12, A5 = 0, and 
A7 = 0. For better visibility of the even modes, we zoomed 
into the frequency map and presented these modes sepa-
rately in Fig. 4 (a)–(d). It can be seen that the curved line 
of the jth even mode never exceeds the

λ π
2

2 1j
max j L= +( ) /  (42)

value and it reaches the λ2 j
max value at exactly j values of q, 

namely at the

q l j l jj
l = +( ) = …/ , , ,2 1 1  (43)

points. These modes are special too, with A2 = A6 = A10, and 
every other parameter is zero, resulting in a sinusoidal mode 
of 2j + 1 half-waves. So, with w1(x) = w2(x) = w3(x) = A2 
cos(λx), it naturally fulfills the conditions in Eqs. (9)–(13). 
The boundary conditions of Eqs. (7)–(8) are fulfilled 
because of the specific value of the frequency parameter 
according to Eq. (42).

To highlight the similarity between the curved lines of 
the even modes in Fig. 4, we made the following transfor-
mation on them: we subtracted from the λ2j values (2j + 1)
π/L, while along the q axis each curve was stretched 
by 2j + 1. The resulting diagram is shown in Fig. 5. The 
domain of definition is different for the curves: the first one 
ends at 1.5, the second one at 2.5, etc., but we can observe a 

Fig. 3 Frequency map of the analyzed beam

Fig. 4 Details of the frequency map of the analyzed beam. a) 2nd mode, 
b) 4th mode, c) 6th mode, d) 8th mode
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skeleton of the curves with maximums at integer values and 
minimums near the half points between the integer ones. 
The skeleton is followed by each curve until their last seg-
ment of the length 0.5. In these last segments the curves are 
slightly below the skeleton.

There is a limit case where q tends toward zero. This 
value mechanically corresponds to a girder supported by 
three simple support. The frequency parameters of this 
structure can be obtained from the literature [7] and they 
show a good agreement.

We compared the calculated frequency map with those 
of beams suspended in discrete points. Maps of the dis-
crete structures were taken from [5] and an equivalent q 
parameter was calculated for the discrete structures such 
that it equals the total horizontal projections of the sloped 
cables. In Fig. 6, we present the results for the even modes 
(odd modes are skew-symmetric in each case and result in 
the constant diagram as Eq (41) predicts). Red, green, blue, 
cyan, magenta, and brown lines are the maps correspond-
ing to 2-4-6-8-10-12 suspension points, respectively, while 
black lines are regular (non-parasitic) solution points of 
the continuous suspension. Colored lines below the black 
ones represent that the given number of suspension points 
is insufficient to model the continuous suspension. In those 
cases, the frequency parameter is smaller, and some of 
them even go below the λ2j-1 value of the "previous" odd 
mode resulting in crossings, which is not the case in the 
continuous suspension. Dashed thin hyperbolas are drawn 
to specify the sinusoidal solutions according to Eq. (43). 
It can be seen that the discrete suspension regularly skips 
some of those sinusoidal mode's frequency parameters.

The application of the results is quite straightforward. 
Based on the q parameter and the required number of modes 
we are interested in, either Eq. (41) can be used for the 
odd modes, or we can read out an initial value for the fre-
quency parameter from Fig. 5. Then, the frequency param-
eter must be substituted into Eq. (27) and solve for the a 
vector, while the natural circular frequency can be calculated 
from Eq. (23).

4.2 Results of the buckling analysis
Next, we present the buckling map of the beam in Fig. 7. 
Due to the structure of the differential Eqs. (4)–(6), there 
are no hyperbolic terms in the general solutions, so no par-
asitic solutions appear on the map. Similarly to the fre-
quency map, starting from the bottom, the odd modes 
have a constant value while the load parameter lines of 
even modes are slightly curved. The curves of the even 
modes vary in a much narrower domain, than in Fig. 3., 
but Fig. 8 reveals that the curves of the even modes are 
not straight lines.

The constant value of the lines of the odd modes is 
explained the same way as earlier. These modes are 
the skew-symmetric sinusoidal buckling modes with 
B1 = B5 = B9, while every other parameter (Bm-s and S0) are 
zero, and the load parameter is

k j Lj2 1
2− = π / . (44)

Thus, for the (2j-1)th mode w1(x) = w2(x) = w3(x) = B1 

sin(kx), and as such, it naturally fulfills the conditions in 
Eqs. (9)–(13). The boundary conditions of Eqs. (7)–(8) are 
fulfilled because of the specific value of the load parame-
ter according to Eq. (44).

The even modes are the symmetric buckling modes, 
where B1 = -B9, B2 = B10, B3 = -B11, B4 = B12, B5 = 0, and 
B7 = 0. For better visibility of the even modes, we zoomed 

Fig. 5 Curves of even modes of the frequency map transformed into 
overlapping curves

Fig. 6 Convergence of the frequency map of the family of beams 
suspended in discrete points to that of the continuous suspended beam

Fig. 7 Buckling map of the analyzed beam
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into the buckling map and presented them separately. 
In Fig. 8. (a)–(d). It can be seen that the curved line of the 
jth even mode never exceeds the

k j Lj
max
2

2 1= +( )π /  (45)

value and it reaches the k j
max
2  value at exactly j values of q, 

namely at the

q l j l jj
l = +( ) = …/ , , ,2 1 1  (46)

points. (Note: these are the same structural parameters 
that appear in Eq. (43).) These modes are special too, with 
B2 = B6 = B10, and every other parameter is zero, result-
ing in a sinusoidal shape of 2j + 1 half-waves. So, with 
w1(x) = w2(x) = w3(x) = B2 cos(kx), it naturally fulfills the 
conditions in Eqs. (9)–(13). The boundary conditions of 
Eqs. (7)–(8) are fulfilled because of the specific value of 
the load parameter according to Eq. (45).

To highlight the similarity between the curved lines of 
the even modes in Fig. 8, we made the following transfor- 
mation on them: we subtracted from the k2j values (2j + 1)π/L 
and then multiplied by 2j + 1, while along the q axis each 
curve was stretched by 2j + 1. The resulting diagram is 
shown in Fig. 9. The domain of definition is different for 
the curves: the first one ends at 1.5, the second one at 2.5, 
etc., but we can observe a skeleton of the curves with maxi-
mums at integer values and minimums near the half points 
between the integer ones. The skeleton is followed by each 
curve until their last segment of the length 0.5. In these 
last segments the curves are slightly below the skeleton.

The limit case, where q tends toward zero, can be 
checked here as well. This value mechanically corre-
sponds to a girder supported by three simple supports. The 
load parameters of this structure can be obtained from the 
literature [8], and they show a good agreement.

The application of the results is quite straightforward. 
Based on the q parameter and the required number of 
shapes we are interested in, either Eq. (44) can be used 
for the odd modes, or we can read out an initial value for 
the load parameter from Fig. 9. Then, the load parameter 
must be substituted into Eq. (37) and solve for the b vec-
tor, while the critical load can be calculated from Eq. (33).

5 Validation of the results
5.1 Development of the FE-model
To validate our semi-analytical results, we compared the 
calculated natural circular frequencies and critical loads 
to those results calculated in the commercial finite element 
software ANSYS for a member of the analyzed family with 
q = 0.25. As the continuous constraint is not presented in 
the software, we substituted it with a swing system, which 
allows the constraint of the sum of the displacements of 
multiple points, while the transmitted internal reaction 
forces are the same. The latter is the reason why swing 
systems are used in experiments to simulate distributed 
loads. The basis of the swing system is a beam with two 
bars at its end and one in its middle in the opposite lateral 
direction, as shown in Fig. 10(a). The displacement of the 
mid-point is the average of the displacements of the ends 
of the rigid beam, while the equilibrium of the rigid beam 
yields the same force in the end-bars. The elementary seg-
ments are connected consecutively to the analyzed beam 
and to each other, and the last bar is supported by a simple 
support, as an example shows in Fig. 10(b). In the result-
ing beam, the sum of the displacements of the supported 
points remains zero. Unlike the cables, the bars are capa-
ble of resisting compression forces as well, so there is no 
need to apply a swing system on both sides of the beam, 
because already a one-sided suspension yields a linear 
structure. Our numerical analysis showed that simple bar 
elements could be used to model the beams of the swing, 

Fig. 8 Details of the buckling map of the analyzed beam. a) 2nd mode, 
b) 4th mode, c) 6th mode, d) 8th mode

Fig. 9 Curves of even modes of the buckling map transformed into 
overlapping curves

Fig. 10 Swing system for the discrete modeling of the supporting effect 
of the cable: a) a single swing-element, b) a compiled swing system
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so we were using that simpler model. We also note here 
that to avoid rigid body like motion; the beams must be 
supported in the horizontal direction, but for easier under-
standing, we did not draw those supports.

In the ANSYS model, we used BEAM188 elements 
for the modeling of the beam itself. The swing system 
consisted of massless LINK180 elements with the same 
cross-section but higher Young's modulus. In the numeri-
cal model, the rigidity is often approximated with a numer-
ically sufficiently large stiffness, which yields similar 
results to the actual structure. So, before further computa-
tions, we performed convergence analysis of the following 
two components of the numerical model.

• the number of elements of the analyzed beam,
• the normal stiffness of the bars in the swing system.

Fig. 11 shows the convergence of the second natural 
frequency and the second buckling force of the beam as 
one of the above two parameters was varied (the other was 
held at the finally accepted value). As a conclusion, we 
will use 1024 elements for the discretization of the beam, 
and Young's modulus of the link elements will be 1280 
times the Young's modulus of the beam.

5.2 Numerical results from the FE-model
In the ANSYS model, we used the following material 
properties and geometry. The cross-section was chosen to 
be a square, with a side length of 2 cm. Thus, the area was 
4 cm2, and the inertia 1.333*10–8m4. The Young's modu-
lus was chosen to 109 N/m2 yielding a bending stiffness 
of 13.33 Nm2. The mass density was 2000 kg/m3, yield-
ing a specific mass of 0.8 kg/m. The length of the beam 
is L = 1 m.

We computed the natural circular frequencies and the 
critical forces with a series of swing systems, where the 
number of bars connected to the beam was n = 4, 8, 16, 
…, 256. The bars were arranged symmetrically, and the dis-
tance between two neighboring bars at the beam was 2qL/n. 

Fig. 12(a) shows the ratio of the first 10 computed nat-
ural circular frequencies to the semi-analytical results 
obtained from Fig. 3 as a function of the number of dis-
crete suspension points. Red, green, blue, and magenta 
lines correspond to the 2nd, 4th, 7th, and 9th natural frequen-
cies, respectively, which are converging to the continuous 
case a bit slower, but even the worst case has less than 7 % 
error. Other modes align with the 1.00 line. 

Fig. 12 b) shows the ratio of the first 10 computed crit-
ical forces to the semi-analytical results from Fig. 7 as 
a function of the number of discrete suspension points. 
Here, the deviation from 1.00 is even smaller; red, green, 
blue, cyan, and magenta lines correspond to the 2nd, 4th, 
6th, 8th, and 10th critical forces.

Finally, we compare two vibration modes, namely 
the second mode computed with 256 suspension points. 
Fig. 13(a) shows the semi-analytically calculated mode 

Fig. 11 Results of the convergence analysis of the model. Horizontal 
axis (logarithmic scale): number of beam elements (a, b) ratio of 

stiffnesses (c, d). Vertical axis: second natural frequency (a, c) second 
critical load (b, d)

(b)
Fig. 12 Convergence with the number of discrete suspension points of 
a) the ratios of the natural circular frequencies, and b) the ratios of the 

critical forces

(a)
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with the three functions in Eqs. (21)–(22) and Eq. (25) (the 
suspended segment is highlighted with a different color), 
while Fig. 13(b) shows the vibration mode calculated with 
ANSYS. The modes are scaled to the same minimum of 
-0.112 downward and have the same maximum value of 
0.062 upward and show a good agreement. Furthermore, 
the S0 distributed cable force from Eq. (27) will be 
3291 N/m in the semi-analytical model while the reac-
tion of the last bar is 1642 N from ANSYS, which must be 

distributed over the 2qL length, which yields a distributed 
cable force of 3284 N/m. The two intensities have less than 
a 2.2 ‰ difference, which is an acceptable difference.

6 Conclusions
In this paper, we presented the free vibration and the buck-
ling analysis of a simply supported beam suspended by 
a continuous constraint, which can be considered as a limit 
case of the block-and-tackle suspension system with a dis-
crete number of suspension points. From the analytical der-
ivation of the frequency matrix and the stability matrix, 
the frequency map and the buckling map were numerically 
calculated. 

We analyzed the frequency map and the buckling map 
and presented a simple method for the approximate calcula-
tion of the frequency parameters and the critical load param-
eters, which are the basis of the natural circular frequen-
cies and the critical forces, respectively. We gave a formula 
for those parameters of the length of the suspension, where 
a specific vibration mode becomes a sinusoidal shape. 

We compared the frequency map to the convergence 
of the discrete suspended beams and validated our results 
against results of an FE-model calculated with the com-
mercial software ANSYS.

The frequency map and the buckling map offer a quick 
method for the approximate calculation of natural circu-
lar frequencies and critical forces while their numerical 
calculation did not involve the solution of a large general-
ized eigenvalue problem as it is usual when an FE-model 
is used for the computation.
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(b)
Fig. 13 The second vibration mode of the beam with q = 0.25: 
a) alculated with the semi-analytical method (blue curve is the 
suspended segment, red curve is the non-suspended segment), 
b) computed with ANSYS (colors represent the displacements)

(a)
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