
Cite this article as: Kaveh, A., Seddighian, M. R., Hassani, P. "Automatic Domain Decomposition in Finite Element Method - A Comparative Study", 
Periodica Polytechnica Civil Engineering, 66(2), pp. 323–334, 2022. https://doi.org/10.3311/PPci.18519

https://doi.org/10.3311/PPci.18519
Creative Commons Attribution b |323

Periodica Polytechnica Civil Engineering, 66(2), pp. 323–334, 2022

Automatic Domain Decomposition in Finite Element Method – 
A Comparative Study

Ali Kaveh1* , Mohammad Reza Seddighian1, Pouya Hassani2

1 School of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Tehran, Iran
2 Department of Civil Engineering, Faculty of Engineering, Urmia University, 5756151818 Urmia, Iran
* Corresponding author, e-mail: alikaveh@iust.ac.ir

Received: 07 May 2021, Accepted: 08 October 2021, Published online: 13 October 2021

Abstract

In this paper, an automatic data clustering approach is presented using some concepts of the graph theory. Some Cluster Validity 

Index (CVI) is mentioned, and DB Index is defined as the objective function of meta-heuristic algorithms. Six Finite Element meshes are 

decomposed containing two- and three- dimensional types that comprise simple and complex meshes. Six meta-heuristic algorithms 

are utilized to determine the optimal number of clusters and minimize the decomposition problem. Finally, corresponding statistical 

results are compared.
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1 Introduction
Nowadays, the computational cost of numerical methods 
is increased, especially in dealing with real-size and prac-
tical problems. Hence, additional computational meth-
ods are used to improve the performance of the primary 
numerical approach. For instance, intelligent algorithms 
such as meta-heuristics are utilized to enhance the accu-
racy and efficiency of the numerical approaches [1–5] and/
or parallel processing concepts have been applied widely 
to the finite element method in order to solve large-scale 
problems such as plastic analysis of structures, fracture 
mechanics, electrical networks, and fluid structures [6, 7]. 

There are various methods to prepare a finite element 
method (FEM) problem for parallel processing. One of 
the most efficient of them is to decompose the problem 
domain (is called mesh in the FEM) into various sub- 
domains and analyze each of them by an individual pro-
cessor. While a parallel approach is employed, the time to 
complete the analysis will be the time due to the longest 
sub-task. Therefore, it is vital to define each sub-domain 
in optimal condition in which the size of each of them is 
approximately equal.

The act of partitioning or decomposing an unlabeled 
data set into groups of similar objects means clustering [8]. 

Recently, Clustering concepts and methods widely are uti-
lized in various research fields such as extended finite ele-
ment method, shrinkage cracking, event recognition, sat-
ellite image classification, fuzzy optimization, black spot 
identification, cellular structures, and many other efforts.

In the 1980s, the initial efforts to the partitioning of 
the FEM meshes are made. Farhat [9] proposed a sim-
ple automatic domain decomposer of FEM meshes, and 
after a while, Farhat and Lesoinne [10] presented an auto-
matic partitioning of unstructured type of meshes in FEM. 
In 1993, a simple and adaptive subdomain generation 
method for parallel finite element analysis was developed 
by Khan and Topping [11]. Kaveh and Roosta [12] employed 
graph theory concepts for optimal domain decomposition.

Gradually, by combining graph theory concepts such as 
k-median and p-median of a graph with the domain decom- 
position problem, the Artificial Intelligent (AI) approaches 
such as meta-heuristic algorithms are employed to opti-
mize it. Kaveh et al. [13–16], Beitollahi et al. [17], 
Christofides and Beasley [18], Osman and Christofides [19], 
Kariv and Hakimi [20], and Estivill-Castro and Torres-
Velázquez [21] are some of the scientists that utilized AI 
approaches as well as graph theory concepts in this manner.
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Data Clustering methods can be Hierarchical or 
Partitional [22, 23] in each of which there is a wealth of 
subtypes and different methods for obtaining the clusters. 
In the first category, the output is a tree showing a sequence 
of clustering, with each cluster being a partition of the data 
set [24]. Hierarchical methods are divided into agglomer-
ative (bottom-up) or divisive (top-down). Agglomerative 
methods start with each element as a separate cluster and 
merge them in successively larger clusters. Nevertheless, 
division types initiate with the whole set and proceed to 
divide it into successively clusters.

Although there are many advantages in hierarchical 
clustering techniques, such as independency of the initial 
conditions, however, the main drawback of them is they 
are static; that is, data points assigned to a cluster can-
not travel to another cluster. Furthermore, it is possible 
for them to fail to separate overlapping clusters due to the 
absence of information about the global shape or size of 
the clusters [24].

On the other hand, partitional clustering techniques 
try to decompose the data set into a set of disjoint clus-
ters directly. They attempt to optimize specific criteria, 
such as the square-error function. The partitional cluster-
ing problem has been developed by various fields of sci-
ence, such as statistics (multivariate analysis) [25], graph 
theory [26], expectation-maximization methods [27], 
artificial neural networks [28–30], evolutionary comput-
ing [31, 32], and so on.

Enormous effort has been dedicated in the past few 
years to the complex data sets clustering. However, not 
tremendous research has been reported to determine the 
optimal number of clusters at the same time. Most of the 
well-known clustering methods, especially based on evo-
lutionary algorithms, accept the number of classes k as 
an input instead of calculating the same on the process. 
Notwithstanding, in many practical cases, there is no 
appropriate number of groups in a data set, or it is impos-
sible to approximate it. 

In this paper, an automatic data set clustering method 
is presented. The introduced method is employed firstly, 
to obtain the optimal number of the clusters and sec-
ondly, to divide data into related groups. The consid-
ered problems in this study are two- and three- dimen-
sional FEM meshes, which are decomposed into the 
optimal number of clusters. For this aim, the automatic 
clustering is stated as an optimization problem, and it is 
solved utilizing six meta-heuristic methods. The Particles 
Swarm Optimization (PSO) [33], and Genetic Algorithm 

(GA) [34] as well-known meta-heuristic algorithms, Grey 
Wolf Optimizer (GWO) [35], Sine Cosine Algorithm 
(SCA) [36] as the high used meta-heuristic algorithms 
and, Black Holes Mechanics Optimization (BHMO) [37], 
and Enriched Firefly Algorithm (EFA) [38] as newly devel-
oped meta-heuristic algorithms constitute the set of meth-
ods which are utilized to solve the proposed problem.

The rest of the current study is organized as follows. 
The basic definition of the graph theory and the k-median 
problem of a graph are outlined in Section 2. Section 3 
is dedicated to automatic clustering concepts. The FEM 
examples are discussed in Section 4. Finally, Section 5 
concludes the results of the study and recommends some 
suggestions for future directions.

2 Basic definitions of the graph theory
A set N(G) of nodes and a set E(G) of edges together with 
a relation of incidence which associate two distinct nodes 
with each edge, known as its ends, constitute a simple 
graph G. if two nodes of a graph are the end nodes of an 
edge then they are called adjacent. An incident edge with 
a node is one which contains it in its end nodes [39]. 

A subgraph Gi of a graph G is a graph for which 
N(Gi) ⊆ N(G) and E(Gi) ⊆ E(G), and each edge of Gi con-
tains the same ends of G. A path of a graph is a finite 
sequence P = {n0, e1, n1, e2, …, ep, np} whose terms are alter-
nately distinct nodes ni and distinct edges ei for 1 ≤ i ≤ p 
and ni–1 and ni are two ends of ei.

A tree T of a graph G is a subgraph that contains no cycle 
(a cycle is a closed path). A spanning tree is a tree contain-
ing all the nodes of a graph G. A Shortest Route Tree (SRT) 
rooted from a specified node n0 (is called starting node) 
is a spanning tree for which the distance between every 
node nj of T and n0 is minimum. The distance between two 
nodes is taken as the number of edges in the shortest path 
between these nodes [39].

A clique graph G of a FEM mesh contains its nodes in 
one-to-one correspondence with the elements of the con-
sidered FEM mesh, and two nodes of G are connected by 
an edge if the corresponding elements have at least one 
common node [39].

The k-median problem of a graph G is to find a set S of k 
nodes that minimize the distance sum of the shortest paths 
from all the nodes to their closest node n0. In other words, 
the k-median problem aims to decompose or to partition 
a node-set into k subsets. The k-median problem of graph 
G can be stated as an optimization problem in which the 
objective function can be defined as Eq. (1.)
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where σ0(Nk) is the out-transmission of nodes Nk, Nk is the 
median node number, and vj is the weight of node j. Also, 
d(Nk, j) is defined as Eq. (2.)

d N j d i j i Nk k( , ) min[ ( , )] : ( )= ′ ′∈ , (2)

where i' is the node of Nk, which minimizes the value for 
Eq. (2).

There are various algorithms to optimize the k-median 
problem of a graph G. The flowchart of an algorithm in 
which the introduced concepts are used is illustrated in 
Fig. 1.

It can be possible to define a FEM mesh as a graph and 
to decompose it into k subdomains that each subdomain 
can be considered as a super element, and its correspond-
ing stiffness matrix can be created in a partitioning form 
using Eq. (3).
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where i and b denote the interior and boundary nodes, 
respectively. Also, k, d, and F are stiffness matrix, dis-
placement, and the force vector.

A boundary node is one that is part of more than one 
subdomain. On the other hand, an interior node is defined 
as a node that is part of only one subdomain. The corre-
sponding stiffness matrices, displacement, and force vec-
tors used in Eq. (3) can be calculated using Eqs. (4)–(10).

The vector Fi (force vector of interior nodes) can be 
defined using static condensation.

[ ] [ ][ ] [ ][ ]Fi ii i ib bk d k d= + , (4)

or

[ ] [ ] [ [ ][ ]]d k k di ii i ib b= −−1 F . (5)

Substituting Eq. (5) in the second part of Eq. (3) leads 
to Eq. (6).

[ ] [ ][ ] ([ ] [ ][ ]) [ ][ ]F Fb bi ii i ib b bb bk k k d k d= − +−1 , (6)

or

[ ][ ] [ ] [ ][ ] [ ]*k k k dbi ii i b b
− − =1 F F , (7)

[ ][ ] [ ] [ ] [ ]*k k k k kbi ii ib bb
− − =1 . (8)

Eq. (8) denotes the condensed super element stiffness 
matrix, and the corresponding modified force vector can 
be defined as Eq. (9).

[ ][ ] [ ] [ ] [ ]*k kbi ii i b
− − =1 F F F  (9)

Therefore,

[ ] [ ][ ]* *F = k db . (10)

Eq. (10) can be used to assemble structural stiffness 
matrix, displacement, and the force vector.

3 Automatic clustering
A pattern is a physical or abstract structure of objects 
which is distinguished from others by a common set of 
attributes called features, which together represent a pat-
tern [40]. Let P = {P1, P2, …, Pn} be a set of n data points 
or patterns, each of them containing d features in d-di-
mensional problem space. Also, these data points can be 
represented by a profile data matrix Xn×d. the ith row vec-
tor Xi characterizes the ith object from the set P, and each 
element Xi,j in Xi corresponds with jth real-value feature 

Fig. 1 The flowchart of the optimization procedure of the k-median 
problem of a graph
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( j = 1, 2, …, d) of the ith pattern (i = 1, 2, …, n). A parti-
tional clustering technique attempts to obtain a partition 
C = {C1, C2, …, Ck} of k classes, such that the similarity of 
the patterns in each cluster is maximum and patterns from 
different clusters differ as far as possible [8].

The partitions must maintain three properties.
1. Each cluster should have at least one pattern assigned.
2. Two different clusters should have no pattern in 

common.
3. Each pattern should definitely be attached to a cluster.

There are various ways for data partitioning, each 
of them maintaining all of the properties as mentioned 
above. Therefore, an objective function must be defined 
to obtain optimal clustering. Hence, the problem turns out 
to be one of getting a partition C* of optimal or near-opti-
mal adequacy, as compared to all other feasible solutions 
C = {C1, C2, …, CN(n,k)}, where CN(n,k) is the number of fea-
sible partitions and can be defined as Eq. (11).
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Therefore, the current problem can be defined as an 
optimization one, as stated as Eq. (12).

Optimize f X Cn d( , )× , (12)

where C is a single partition from the set C, and f is a sta-
tistical-mathematical function which quantifies the fitness 
of a partition based on the distance measure of the patterns. 
It has been shown that the current problem is NP-hard 
when the number of clusters exceeds 3 [41].

As introduced previously and according to the Eq. (12), 
defining a proper objective function or Similarity 
Measure [8] plays a crucial role in the clustering proce-
dure. One of the most well-received approach to evalu-
ate the similarity between patterns amounts is the use of 
distance criteria. The most popular distance criterion is 
the Euclidean distance that is stated for two d-dimensional 
patterns Xi and Xj as Eq. (13).

d X X X X X Xi j i p j p
p

d

i j( , ) ( ), ,

   

= − = −
=
∑ 2

1

 (13)

The Euclidean distance is a particular case of the 
Minkowski metric when α is equal to 2. The Minkowski 
metric can be defined as Eq. (14).
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Also, when α = 1, the distance is known as the Manhattan 
distance. Many other distance criteria can be found in 
mathematical or clustering references, such as [8].

For automatizing the clustering procedure, a Cluster 
Validity Index (CVI) must be defined. Ordinarily, a CVI 
serves two aims. Firstly, to determine the number of clus-
ters, and secondly, to obtain the corresponding best parti-
tion. Hence, a CVI should take care of the two aspects of 
partitioning [23].

1. Cohesion: the patterns in a cluster should be as sim-
ilar as possible to each other.

2. Separation: clusters should be well separated.

There are some well-known and robust CIVs, such 
as Dunn's index [41], the Calinski-Harabasz index [42], 
the DB index [43], the Pakhira Bandyopadhyay Maulik 
(PBM) index [44], and the CS measure [45]. In the current 
study, the DB Index is employed and described as follows.

The DB Index is a function of the ratio of the sum with-
in-cluster scatter to between-cluster separation. It utilizes 
either the clusters or their sample means. The within ith 
cluster scatter and the between the ith, and jth cluster dis-
tance can be defined as Eqs. (15) and (16), respectively.
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where mi is the ith cluster center, q, t ≥ 1, is an integer and 
can be independently selected. Also, Ni is the number of 
elements in the ith cluster Ci. If Eq. (17) states the Ri,qt, and 
then the DB Index can be defined as Eq. (18).
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The smallest DB(k) index indicates a valid optimal par-
tition [8].

4 FEM examples
In this section, six FEM meshes, including two- and three- 
dimensional types, are decomposed to the optimum num-
ber of clusters employing introduced concepts and uti-
lizing six meta-heuristic methods. The Particles Swarm 
Optimization (PSO) [33], and Genetic Algorithm (GA) [34] 
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as well-known meta-heuristic algorithms, Grey Wolf 
Optimizer (GWO) [35], Sine Cosine Algorithm (SCA) [36] 
as high cited meta-heuristic algorithms and, Black Holes 
Mechanics Optimization (BHMO) [37], and Enriched Firefly 
Algorithm (EFA) [38] as newly developed meta-heuristic 
algorithms constitute the set of methods which are utilized 
to solve the current problem.

In each example, firstly, the FEM meshes are consid-
ered as a graph considering their corresponding element 
connectivity. Then, the proposed concepts are employed to 
obtain the optimum number of clusters and their relevant 
cost. Finally, the results of the algorithms are compared. 
In each case, the total number of function evaluations 
(NFE) is equal to 200000, and each problem is solved 50 
times. For each example, the corresponding complete data 
to its mesh will be made available on request.

4.1 2D mechanical lever with corner crack
The first example is a two- dimensional mechanical lever 
model with a corner crack, as illustrated in Fig. 2. The 
corresponding mesh contains 501 nodes and 801 CST ele-
ments. The model is decomposed using meta-heuristic 
algorithms, and the final results are reported in Table 1.

The comparison between the utilized algorithm is shown 
in Fig. 3. Also, the decomposed meshes obtained by differ-
ent methods are illustrated in Figs. 4 to 6.

Fig. 2 mechanical-lever with a corner crack; geometry and boundary 
conditions

Table 1 Statistical Results of Example 1

PSO GA SCA GWO BHMO EFA

Best 30.94 20.22 22.86 24.45 19.10 19.29

Average 30.94 20.22 22.86 24.45 19.10 19.29

Std. 1.08E-14 7.23E-15 1.08E-14 7.23E-15 1.45E-14 3.61E-15

Cluster 
No. (k) 7 3 6 3 3 3

Time 
Ratio (%) 21.39 52.51 5.18 5.27 6.27 9.38

Fig. 3 The comparison between meta-heuristic algorithms (Example 1)

Fig. 4 The decomposed mesh into 3 clusters of Example 1 by GA, 
GWO, BHMO, and EFA algorithms

Fig. 5 The decomposed mesh into 6 clusters of Example 1 by the SCA 
algorithm
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4.2 2D simple beam with non-central notch
The second example is a two-dimensional simple supported 
beam containing an initial notch near the left support, as 
shown in Fig. 7. The corresponding mesh comprises 584 
nodes and 1056 CST elements. The statistical results are 
reported in Table 2.

The comparison between the utilized algorithm is 
shown in Fig. 8. Since all methods calculated the same 
number of clusters of the problems, the final correspond-
ing decomposed meshes with them are very similar. 
Hence, only the final result of the EFA algorithm is shown 
in Fig. 9. Other outcomes will be available on request.

4.3 3D arc
The current example contains a three-dimensional arc, as 
shown in Fig. 10. The corresponding mesh comprises 468 
nodes and 1445 tetrahedral elements. The statistical results 
are reported in Table 3.

The comparison between the utilized algorithm is shown 
in Fig. 11. Also, the decomposed meshes obtained by dif-
ferent methods are illustrated in Figs. 12 and 13.

4.4 3D mechanical motor
Example 4 contains a three-dimensional mechanical motor, 
as illustrated in Fig. 14. The corresponding mesh contains 
5726 nodes and 2860 tetrahedral elements. The statistical 
results are reported in Table 4.

Fig. 6 The decomposed mesh into 7 clusters of Example 1 by the PSO 
algorithm

Fig. 7 Single edge notched beam with an eccentric crack; geometry and boundary conditions

Table 2 Statistical Results of Example 2

PSO GA SCA GWO BHMO EFA
Best 17.66 16.26 21.20 22.81 16.17 16.12

Average 17.66 16.26 21.20 22.81 16.17 16.12

Std. 1.08E-14 1.45E-14 0.00E+00 1.08E-14 7.23E-15 0.00E+00
Cluster 
No. (k) 2 2 2 2 2 2

Time 
Ratio (%) 20.33 53.79 4.68 5.15 6.80 9.25

Fig. 8 The comparison between meta-heuristic algorithms (Example 2)

Fig. 9 The decomposed mesh into 2 clusters, of Example 2
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The comparison between the utilized algorithm is shown 
in Fig. 15. Also, the decomposed meshes obtained by dif-
ferent methods are illustrated in Figs. 16–19.

4.5 3D mechanical piece
Example 5 contains a three-dimensional mechanical piece, 
as illustrated in Fig. 20. The corresponding mesh contains 
15506 nodes and 12700 tetrahedral elements. The statisti-
cal results are reported in Table 5.

The comparison between the utilized algorithm is shown 
in Fig. 21. Also, the decomposed meshes obtained by dif-
ferent methods are illustrated in Figs. 22–25.

4.6 3D plate with Two Holes
The last example contains a three-dimensional plate with 
two holes, as illustrated in Fig. 26. The corresponding 
mesh comprises 898 nodes and 2688 tetrahedral elements. 
The statistical results are reported in Table 6.

Fig. 10 3D view of Example 3 (3D Arc)

Table 3 Statistical Results of Example 3

PSO GA SCA GWO BHMO EFA

Best 33.54 17.47 24.72 26.42 17.09 16.90

Average 33.54 17.47 24.72 26.42 17.09 16.90

Std. 0.00E+00 3.61E-15 1.81E-14 1.81E-14 1.45E-14 0.00E+00

Cluster 
No. (k) 2 2 2 4 2 2

Time 
Ratio (%) 22.63 50.50 5.20 5.68 6.16 9.84

Fig. 11 The comparison between meta-heuristic algorithms (Example 3)

Fig. 12 The decomposed mesh into 4 clusters of Example 3 by the GWO 
algorithm

Fig. 13 The decomposed mesh into 2 clusters of Example 3 by EFA 
algorithm

Table 4 Statistical Results of Example 4
PSO GA SCA GWO BHMO EFA

Best 34.73 28.20 26.36 27.96 23.75 18.96

Average 34.73 28.20 26.36 27.96 23.75 18.96

Std. 0.00E+00 1.45E-14 1.81E-14 1.81E-14 3.61E-15 3.32E-15

Cluster 
No. (k) 2 3 8 9 3 3

Time 
Ratio (%) 20.99 51.98 5.62 5.74 5.45 10.22

Fig. 14 3D mechanical motor; 3D, and top views
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The comparison between the utilized algorithm is shown 
in Fig. 27. Also, the decomposed meshes obtained by dif-
ferent methods are illustrated in Figs. 28–30.

Table 5 Statistical Results of Example 5

PSO GA SCA GWO BHMO EFA

Best 34.57 25.89 26.47 27.94 21.99 18.92

Average 34.57 25.89 26.47 27.94 21.99 18.92

Std. 1.45E-14 1.08E-14 1.81E-14 1.81E-14 3.61E-15 1.08E-14

Cluster 
No. (k) 6 2 4 7 2 2

Time 
Ratio (%) 22.75 49.97 5.77 6.40 3.67 11.44

Fig. 15 The comparison between meta-heuristic algorithms (Example 4)

Fig. 16 The decomposed mesh into 2 clusters of Example 4 by the PSO 
algorithm

Fig. 17 The decomposed mesh into 3 clusters of Example 4 by the EFA 
algorithm

Fig. 18 The decomposed mesh into 8 clusters of Example 4 by the SCA 
algorithm

Fig. 19 The decomposed mesh into 9 clusters of Example 4 by the GWO 
algorithm

Fig. 20 The 3D mechanical piece; 3D and top views

Fig. 21 The comparison between meta-heuristic algorithms (Example 5)
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5 Conclusions
This paper has introduced an automatic data clustering 
technique in which some concepts of the graph theory are 
employs. In the presented method, a Cluster Validity Index 

(CVI) is used that is called DB Index. This CVI aids the 
algorithm to determine the number of clusters automat-
ically in the optimization problem. Therefore, either the 
number of clusters or the decomposed set members will be 

Table 6 Statistical Results of Example 6

PSO GA SCA GWO BHMO EFA

Best 34.30 28.00 28.27 29.20 22.99 18.92

Average 34.30 28.00 28.27 29.20 22.99 18.92

Std. 2.17E-14 7.23E-15 7.23E-15 2.17E-14 3.61E-15 0.00E+00

Cluster 
No. (k) 2 2 7 8 2 2

Time 
Ratio (%) 20.43 52.47 5.39 5.66 10.85 5.20

Fig. 22 The decomposed mesh into 2 clusters of Example 5 by the EFA 
algorithm

Fig. 23 The decomposed mesh into 4 clusters of Example 5 by the SCA 
algorithm

Fig. 24 The decomposed mesh into 8 clusters of Example 5 by the PSO 
algorithm

Fig. 25 The decomposed mesh into 9 clusters of Example 5 by the GWO 
algorithm

Fig. 26 The 3D plate with two holes; geometry in X-Y coordinate

Fig. 27 The comparison between meta-heuristic algorithms (Example 6)

Fig. 28 The decomposed mesh into 2 clusters of Example 6 by EFA 
algorithm



332|Kaveh et al.
Period. Polytech. Civ. Eng., 66(2), pp. 323–334, 2022

optimized. In order to evaluate the proposed method, two- 
and three- dimensional FEM meshes are considered. They 
have been decomposed into the sub-meshes utilizing six 
meta-heuristic algorithms. The set of examples comprises 
simple and more complicated FEM meshes. As reported 
in detail, the performance of the algorithms is approxi-
mately equal in simple problems such as the simple beam 
or mechanical lever. By increasing the complexity of the 
meshes, either due to geometry or type and number of 
elements, the performance of two newly developed algo-
rithms, i.e., Enriched Firefly Algorithm (EFA) and Black 
Holes Mechanics Optimization (BHMO), is improving as 
well as their consumed time is decreasing. It may be due to 

graph-theoretical concepts that are employed in the princi-
pal procedure of these two algorithms. 

For future works, it may be appropriate to develop a new 
objective function for domain decomposition based on 
FEM computations such as stress calculated stress fields 
in the domain. Also, it can be possible to utilize the adap-
tive version of algorithms to reduce the number of analyses 
and joint the proposed technique to the parallel processing 
codes to develop a general analysis program.

Compliance with ethical standards
Conflict of interest: No potential conflict of interest was 
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Fig. 29 The decomposed mesh into 7 clusters of Example 6 by the SCA 
algorithm

Fig. 30 The decomposed mesh into 8 clusters of Example 6 by the 
GWO algorithm
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