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Abstract

Determining the plate or the local buckling resistance is highly important in designing steel buildings and bridges. The EN 1993-1-5 

Annex C provides a FEM-based design approach to calculate the buckling resistance based on numerical design calculations 

(geometrical and material nonlinear analysis - GMNIA). Within the GMNIA analysis-based stability design, the application of the 

imperfections has a special role. Thus, the applicability of the EN 1993-1-5 based buckling curve (Winter curve) has been questioned 

for pure compression, and previous investigations showed the buckling curve of EN 1993-1-5 Annex B is more appropriate for the 

design of slender box-section columns subjected to pure compression, the magnitude of the equivalent geometric imperfection to 

be applied in numerical models for local buckling is also questioned and investigated by the authors within the current paper. The 

aim of the current research program is to investigate the necessary equivalent geometric imperfections to be applied in FEM-based 

design calculations using GMNIA calculations. A numerical parametric study is executed to investigate the imperfection sensitivity of 

box-section columns having different local slenderness. The necessary imperfection magnitudes are determined to each analyzed 

geometry leading to the buckling resistance predicted by the standardized buckling curves. Based on the numerical parametric study, 

a proposal for the applicable equivalent geometric imperfection magnitude is developed, which conforms to the plate buckling curves 

of the EN 1993-1-5 and giving an improvement proposal to the local buckling imperfection magnitudes of the prEN 1993-1-14, which 

is currently under development.
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1 Introduction
The subject of the paper is the investigation of the local 
plate buckling resistance of slender box-section columns 
subjected to pure compression. The current EN 1993-1-5 [1] 
standard provides a design method using analytical design 
equations checking the buckling resistance to pure com-
pression, which design method uses the Winter curve as 
a plate buckling curve. The applicability of this buckling 
curve has been questioned by several researchers in the past. 
Previous research results [2–4] showed that the required 
safety level of the Eurocode is not reached by using the for-
mulae of the EN 1993-1-5 [1] for local buckling resistance 
of box-section columns. Therefore, Schillo et al. [3] pro-
posed a new buckling curve or suggested using an increased 
partial safety factor for plate buckling resistance of plates 
subjected to pure compression and not supported by adja-
cent plates (for example, square box-section columns). 

The proposed Schillo's new buckling curve is extremely 
close to the buckling curve used within the reduced stress 
method of the EN 1993-1-5 provided in Annex B (called as 
Annex B curve). Therefore, it has been proposed to use the 
Annex B curve for these special cases. 

As the buckling curve has been changed for box-section 
columns subjected to pure compression, the equivalent geo-
metric imperfections used in FEM based design of these 
structures also need revision because the previous imper-
fection magnitude (b/200 – where b is the plate width) pro-
vided in the EN 1993-1-5 Annex C had been calibrated 
to the Winter curve. The FEM-based design approaches 
are getting widely applied nowadays, which will be 
enforced by the publication of the new standard prEN 
1993-1-14 "Design assisted by finite element analysis" [5]. 
The new code is currently under development which will 
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provide design rules to finite element model-based design 
of steel structures. This new code will make the numerical 
calculation-based design widely standardized, and design 
rules will also be provided to designers on how to perform 
GMNIA analysis-based direct resistance checks. In the 
application of this design process, no buckling curves are 
applied, which had a test-based origin. Imperfections, 
especially equivalent geometric imperfections are having 
the aim to ensure the correct buckling resistance, which 
gives the need for the calibration of the imperfection mag-
nitudes to the buckling curves, which are validated and 
proved by test results. Therefore, the current paper investi-
gates the necessary imperfection magnitudes to be applied 
in the direct resistance check using GMNIA analysis made 
on shell element models to reach the local buckling resis-
tance provided by the (i) Winter curve and the (ii) Annex 
B curve. Thus, both buckling curves are used in daily 
engineering practice. The necessary imperfection magni-
tudes are determined for both of them. Thus, the major-
ity of the application of the imperfections in the design 
praxis are equivalent geometric imperfections covering the 
effect of the geometric imperfections and residual stresses. 
Therefore, the current investigations are limited to the 
investigation of this imperfection type. 

2 Literature review
Nishino et al. [6] experimentally investigated welded stub 
columns in 1966. Specimens were made of ASTM A7 
(A36, fy = 250 N/mm2), and ASTM A514 (quenched and 
tempered, fy = 689 N/mm2) steel material. The plate thick-
ness of the box sections was 6.5 mm. The width was var-
ied from 170 to 290 mm. The results of experiments indi-
cated that considerable post-buckling strength might be 
expected for the elastic buckling of plates, although not for 
elastic-plastic buckling. Also, the effect of residual stresses 
on the buckling strength of the plate is investigated and 
found less pronounced for A514 steel than for A7 steel [6].

Dwight [7] experimentally investigated a set of 49 
stub-column tests conducted at the engineering depart-
ment in Cambridge in 1969. The study concluded that 
the equation for the effective width suggested by Winter 
is unsafe. It has been mentioned additionally that the 
American and British Standards had already changed in 
practice to lower reduction factors. In addition to the eval-
uation of the effective width, the study focused on the 
influence of residual stress. It was found that the width of 
the tension area should be independent of the plate width 
above a b/t-ratio of 25 [7]. 

In the experimental program of Chiew et al. [8], 20 
steel box-section columns having square and rectangular 
cross-sections with various column slenderness and plate 
width-to-thickness ratios are tested to failure. Specimens 
were made of mild strength steel with a yield strength of 
250 N/mm2. The experimental program contained differ-
ent types of sections. Therefore, several sections having 
relatively small global relative slenderness ratios against 
flexural buckling (λ less than 0.4) failed by local buckling. 
Bridge and O'Shea [9] executed local buckling tests on 
concrete-filled and unfilled steel stub columns. The col-
umns were made of steel material with a yield strength 
of fy = 282 N/mm2. The tests were performed to investi-
gate the behavior under an axial load of short, thin-walled, 
square steel tubes with or without internal restraint. Two 
test series were performed to study the effect of chang-
ing the buckling mode and the influence of the speci-
men length on the buckling shape. The research com-
pared several international standards, including the 
American AISC-LRFD and the British standards. It was 
concluded that the British standards have a good estima-
tion of the very slender plates while it is unconservative 
for thin plates. The authors suggested a further modifica-
tion to the Winter formula that has a better agreement with 
the experiment results. 

Shi et al. [10] performed thirteen welded stub column 
tests made of S460 steel grade in 2014. The length of the 
column was designed fitting to a nominal one local buckling 
half-wavelength to all test specimens. Therefore, these col-
umns were sufficiently compact to avoid all overall buck-
ling instabilities. Results show the local buckling stress σcr, 
the ultimate stress σu, and the stress ratio σcr/σu decreases 
with the increase of the width-to-thickness ratios of plates 
(b/t), indicating that local buckling occurs before yield-
ing of the plate. Additionally, the post-buckling strength 
increased as the width-to-thickness ratio increased. It was 
also found that after applying suitable imperfections and 
residual stresses, FEM analyses could estimate accurately 
the ultimate strength of the specimens having different 
cross-sections. After the comparison of the test results and 
FE analysis estimated by the different codes, it was found 
that for box-section specimens, the current design methods 
are not always on the safe side. 

Local buckling resistance according to EN1993-1-5 [1] 
is based on the effective width method derived by von 
Kármán et al. [11] and improved by Winter in 1968 [12] 
based on experimental results conducted on cold-formed 
sections subjected to bending moment. There are two 
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reasons for the modification: (i) the cold-forming process 
results in advantages at the corners, which can increase 
the resistance, (ii) pure bending moment results in bet-
ter support conditions than pure compression due to the 
supporting effect of adjacent plates. The modified design 
equation is given by Eq. (1), which is currently the basic 
design equation of the EN 1993-1-5 for local plate buck-
ling within a slightly improved form in order to make the 
formula applicable to different loading situations.
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where:
b is the plate width
beff is the effective width of the plate
λ̅p is the relative slenderness ratio. 

Numerous researchers [2], [4], [13–16] compared the 
Winter curve to experimental or numerical results and 
concluded that the Winter curve provides approximately 
the mean value of the test result and provides larger resis-
tance than the characteristic value of the plate buckling 
resistance. It means that this buckling curve does not fit the 
safety requirement of EN 1990 [17], and it needs revision. 

Schillo et al. [2–4] executed a large experimental and 
numerical research program on the local buckling resis-
tance of high-strength steel welded box sections and per-
formed a detailed statistical evaluation to determine the 
characteristic and design resistance values and the corre-
sponding buckling curves. The result of these investiga-
tions was a new lower bound curve proposed by Schillo et 
al. fitting the safety requirement of EN 1990 [17]. The new 
buckling curve is extremely close to the buckling curve of 
Annex B of EN 1993-1-5 given by Eqs. (2)–(4).

ρ
φ φ λρ

=
+ −

1

2
p p

, (2)

ϕ α λ λ λρ ρ ρ ρ ρ= + −( ) +( )1

2
1 0 , (3)

λ
α
αp
ult k

cr
= , � , (4)

where: αult,k is the minimum load amplifier for the design 
loads to reach the characteristic value of resistance of the 
most critical point of the plate and αcr is the minimum load 
amplifier for the design loads to reach the elastic critical 
load of the plate according to EN 1993-1-5 [1]. 

Based on the detailed literature review, it can be con-
cluded that many studies criticized the Winter curve and 
suggested a lower buckling curve to ensure enough safety. 
Within the current study, the buckling curve given in 
Annex B of the EN 1993-1-5 is considered as an appropri-
ate alternative to the Winter curve as proved by Schillo et 
al. [2-4] and highlighted by Kövesdi [15]. However, if the 
buckling curve is changed, the equivalent imperfections 
should also be changed and harmonized with the buckling 
curve. Therefore, the aim of this study is to find the appro-
priate imperfections to be implemented in numerical mod-
els to obtain exactly the same ultimate resistance provided 
by the Winter curve or the Annex B curve. 

3 Numerical model development
3.1 Geometrical model and boundary conditions
A full shell element model is developed to model the 
square box-section columns using four-node thin shell ele-
ments (Shell 181 element of the Ansys 19.0 [18] software). 
The geometry of the numerical model (with enlarged 
imperfections) is presented in Fig. 1. The length of the 
numerical model is always three times the width of the 
plate, having at least three buckling waves eliminating 
the disturbing effect of the support region on the buckling 
resistance. The two end cross-sections of the stub-column 
are supported, where rigid diaphragms are applied using 
rigid members connected to a node placed in the center 
of gravity of the cross-section. The rigid members link 
all the 6 DOFs between the coupled nodes. At one end of 
the segment, the center of gravity of the cross-section is 
restrained against translations (UX, UY, UZ) and rotation 
(ROTZ). At another end, only the UX, UY, ROTZ DOFs 
are restrained, to allow the deformation in the Z-direction, 
and compressive normal force (FZ) acting in the center of 
gravity of the cross-section is applied. 

Fig. 1 Numerical model used for GMNIA simulation
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Imperfections included in the FE model should account 
for the effects of geometric deviations from the perfect 
shape, residual stresses, and boundary condition defects [6]. 
There are usually two methods to define imperfections:

a. geometric imperfections and additional residual 
stresses due to fabrication,

b. equivalent geometric imperfections by modification of 
the perfect shape of the structure; these imperfections 
are intended to cover the effect of both the geometri-
cal imperfections and residual stresses and have larger 
magnitudes than solely geometric imperfections. 

Version b (equivalent geometric imperfections) is 
applied in the current analysis; thus, the research aim was 
to determine the necessary magnitude for the equivalent 
geometric imperfections to achieve a specific buckling 
resistance. There are different methods to define equiv-
alent geometric imperfections. The first possibility is the 
application of imperfection shapes based on predefined 
standardized functions or modification of the perfect 
shape by predefined displacements taken from the lin-
ear analysis. The second possibility is the application of 
imperfection shape based on linear bifurcation analysis 
(LBA) corresponding to the eigenmode (shape) associated 
with the expected failure mode. The third possibility is the 
application of the collapse-affine imperfection shapes. In 
the present study hand-defined imperfections using pre-
defined shape is applied where the maximum amplitude is 
changed within the numerical parametric study. The shape 
of the local imperfection is a half-sine wave in both direc-
tions with a wavelength equal to the width of the panel, as 
presented in Fig. 1. No global imperfection is applied in 
the model to study the effect of local imperfections alone 
on the plate buckling resistance.

3.2 Material model
Different nonlinear material models are available in the lit-
erature, which will be standardized in the new prEN 1993-
1-14 [5]. Details and background information on these 
material models are given in [19]. More advanced mate-
rial models can also be found in the literature as presented 
by Budaházy and Dunai in [20]. In the current analysis, 
a quad-linear elastic-plastic material model is applied. 
The characteristic curve of the material model is shown 
in Fig. 2. The material model behaves linearly elastic up 
to the yield strength ( fy) by obeying Hooke's law with 
Young's modulus (E) equal to 210000 MPa. The yield pla-
teau is modeled according to Eq. (5), and an isotropic hard-
ening behavior is defined by Eqs. (6)–(9) are modeled until 

reaching the ultimate strength ( fu). In the current analysis 
S235, S355, and S460 steel grades are applied. The relevant 
values of the material model are summarized in Table 1. 
This quad-linear material model is supposed to accurately 
capture the yield plateau and strain-hardening behavior of 
hot-rolled structural carbon steels, based upon and cali-
brated against a large dataset of tensile coupon tests [9].
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where:
εy = fy/E  is the yield strain,
εsh  is the strain hardening strain,
Esh  is the strain hardening modulus,
A  is the elongation after fracture defined in the 

relevant material specification (0.2 is used in 
the current analysis),

C1 and C2  are material coefficients.

3.3 Investigated parameter range
The parameters varied in the numerical parametric study 
are the cross-section properties (width and thickness) 
and the steel grade. The cross-section width (b and h) is 
changed between 200–450 mm. The thickness (t) is var-
ied between 2–10 mm within steps of 0.25 mm. A total of 
~85 different cross-section geometries are studied in the 

Fig. 2 Standardized material models for numerical calculations [6]
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current research program covering a relative slenderness 
ratio of 0.7 up to 2.8. This is the typical slenderness range 
where local buckling occurs and which might occur in the 
daily design. Each cross-section is investigated, having 
three different steel grades presented in Section 3.2, lead-
ing to ~250 different stub columns investigated. Within 
the numerical parametric study, geometries are selected 
having the same relative slenderness ratio but having dif-
ferent plate width or thickness values. This methodology 
allows to generalize the obtained conclusions and making 
them b/t ratio independent. 

3.4 Analysis type and evaluation strategy
Geometrical and material nonlinear analysis with imper-
fections (GMNIA) is applied to determine the characteris-
tic buckling resistance of the analyzed stub columns. The 
full Newton-Raphson approach is used in the nonlinear 
analysis with 0.1% convergence tolerance of the residual 
force-based Euclidian norm. Within the nonlinear numer-
ical calculations, equivalent geometric imperfections and 
nonlinear material models are applied. The result of the 
nonlinear analysis gives the behavior of the structure rep-
resented by a load-displacement path related to the chosen 
boundary conditions and analyzed load considering the 
effect of elastoplastic instability. Based on the maximum 
value of the computed load-displacement curve, the ulti-
mate loads of the analyzed stub columns are determined. 

Imperfection sensitivity analysis is executed for all inves-
tigated geometries, and the change in the buckling resis-
tance with the imperfection magnitude is evaluated for all 
the 3 × 85 analyzed geometries. The appropriate equivalent 
geometric imperfection magnitudes providing a resistance 
equal to the resistance given by the (i) Winter curve and 
(ii) Annex B curve are determined for all the studied geom-
etries individually. The required imperfection magnitudes 

are evaluated depending on the applied steel grade and local 
slenderness ratio. Finally, a conclusion is drawn regarding 
the required imperfection size to be applied in the design 
to ensure safe-sided and appropriate buckling resistance for 
slender square box-section columns. 

3.5 Validation of the numerical model
The numerical model is verified through the comparison 
with several previous test results available in the interna-
tional literature. To verify the model, the measured mate-
rial properties of the analyzed specimens are applied. 
Only geometrical imperfections are used for the vali-
dation process having the currently standardized b/200 
imperfection magnitude. The samples were taken from 
two different research programs. The first set consists of 
five samples from Bridge's research program [9], and the 
remaining samples were taken from Schillo's experimen-
tal program [21]. The first set is 282 MPa steel with plate 
slenderness ranging from 0.68 to 2.12. The second set con-
sists of different steel grades, including S500, S700, and 
S960, for a range of slenderness of 0.75 to 1.39. The test 
program of Schillo has to be chosen because it is a quite 
recent research program having well-documented test 
results. The obtained failure mode is presented in Fig. 3, 
fitting the failure mode obtained in the tests. One exam-
ple for the comparison of the measured and computed 
load-displacement curves is presented in Fig. 4, showing 
an extremely good match to the test results. 

However, it should be mentioned that for some cases, 
the numerical model using b/200 imperfection predicted 
smaller or larger buckling resistance than measured in the 
laboratory tests highlighting that the imperfection applied 
in the numerical model is not always perfect; it needs 
revision. Typically, in the smaller slenderness range, the 
numerical model underpredicted the test results, while in 
the large slenderness range overpredicted them. 

Table 1 Applied material model parameters

S235 S355 S460

fy 235 355 460

fu 360 510 540

εsh 0.010 0.015 0.030

εu 0.208 0.182 0.089

C1 0.287 0.310 0.505

C2 0.430 0.448 0.604

Esh 1577.8 2310.0 3406.9

C1 * εu 0.0598 0.0565 0.0449

fC1eu 313.125 451.875 510

(a)                                                     (b)
Fig. 3 Obtained failure mode local buckling; a) deformation, 

b) von Mises stresses 



1284|Radwan and Kövesdi
Period. Polytech. Civ. Eng., 65(4), pp. 1279–1287, 2021

4 Results of the numerical parametric study
In the numerical parametric study for each analyzed geom-
etry, numerous numerical simulations (as imperfection 
sensitivity analysis) are executed having different imper-
fection magnitudes. To describe the applied imperfection 
size, the imperfection scaling factor ( f ) is introduced as 
given in Eq. (10). Reduction factors for each calculation 
result are determined according to Eq. (11), which are 
plotted against its corresponding imperfection factor. One 
example for one specific geometry is presented in Fig. 5, 
where only the imperfection scaling factor is changed 
while keeping all the other parameters constant for the 
section under investigation.   

Amplitude
width of the plate

imp. scaling factor
=

( )
( )
b
f

, (10)

ρ =
F
A f
num

c y

.�

.
, (11)

where:
Ac is the area of the gross cross-section,
fy is the nominal value of the yield strength,
Fnum is the numerically calculated ultimate load.

On the horizontal axis, the imperfection scaling factor 
( f ) is presented, changing its value between 10 to 1200. 
The results show that the reduction factor (ρ) for local buck-
ling is changing from 0.4 to 0.9 depending on the applied 
imperfection. This indicates that the imperfection factor 
has a significant effect on the ultimate resistance of the ana-
lyzed cross-section and can significantly alter the obtained 
results. It can be observed that decreasing the imperfec-
tion factor leads to a decrease in the ultimate resistance, 
decreasing the reduction factor. The analytically calculated 

values according to the Winter curve and Annex B curves 
are marked by horizontal lines on the graph. Taking the 
intersection point of both the lines representing the Winter 
curve or Annex B curve, the necessary imperfection scal-
ing factors could be determined. The obtained scaling fac-
tors indicate the points where the Winter curve and Annex 
B curve results in exactly the same buckling resistance as 
predicted by the numerical model. For this one specific 
case, it can be seen that the necessary imperfection fac-
tor reaching the Winter curve is very close to the standard 
value b/200. However, to reach the buckling resistance 
regarding the Annex B curve, a significantly larger imper-
fection (smaller imperfection scaling factor) should be 
applied. The same evaluation process has been made for all 
the 3 × 85 = 255 analyzed geometries, leading to more than 
5000 GMNIA analyses using different slenderness ratios 
and equivalent geometric imperfections. For the S355 steel 
grade, the obtained results for all analyzed cross-sections 
are presented in Fig. 6. The horizontal axis shows the rel-
ative slenderness ratio of the plate, and the vertical axis 

Fig. 4 Comparison of the measured and the computed  
load-deformation curves 

Fig. 5 Result of the imperfection sensitivity analysis for one specimen 

Fig. 6 Necessary imperfection scaling factor for S355 steel grade 
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represent the obtained necessary imperfection scaling fac-
tor reaching the buckling resistance of the Winter curve 
(red squares in Fig. 6) and Annex B curve (blue points on 
Fig. 6), respectively. 

Results show that the necessary imperfection strongly 
depends on the relative slenderness of the plate and can-
not be given with one specific constant value resulting in 
always safe side resistance. Results prove the standard-
ized imperfection b/200 leads to smaller resistance than 
predicted by the Winter curve for the slenderness ratios 
λ̅p ≤ 1.85. In the case of larger slenderness ratios, the 
numerical model results in larger resistances than pre-
dicted by the Winter curve. However, in the case of the 
Annex B curve, the required imperfection magnitude 
would be significantly larger within the entire slenderness 
range than the standardized value of b/200. 

The effect of the steel grade on the necessary imperfec-
tion factors is also investigated, and the numerical results 
for S235, S355, and S460 steel grades are also determined, 
evaluated, and plotted on the graph shown in Fig. 7. Results 
show that the yield strength has a significant effect on the 
necessary imperfection factor. Increasing the yield strength 
results in a slightly increased reduction factor (which is 
independent of the yield strength). Therefore, larger imper-
fections are needed to be applied, resulting in the same 
buckling resistance as predicted by the Winter curve or the 
Annex B curve. In Fig. 7, the order of the notations follows 
the order of the obtained curves. Results related to the S235 
steel grade lead to the larger scaling factor, and results 
regarding the steel grade of S460 leads to the smaller one. 

5 Design proposal for applicable imperfection size  
It can be observed in the results presented in Section 4 that 
there is a large difference in the necessary imperfection 
scaling factors depending on the target buckling curve and 
the applied steel grade. Therefore, design recommenda-
tions are determined separately for the imperfection fac-
tor reaching the Winter curve and the Annex B curve. 
The parameters of the design equations are determined 
depending on the plate relative slenderness ratio (λ̅p) and 
the yield strength of the material ( fy). Lower bound curves 
to the numerical results are presented in Fig. 8 separately 
to all the three analyzed steel grades. 

The related proposed design equations are given by 
Eqs (12)–(14), where the yield strength should be given 
in [MPa] in the equations. The recommended design 
curves to the Winter curve contains a constant value for 
the relative slenderness range of λ̅p ≤ 1.70 then for larger 

slenderness value, smaller scaling factors should be 
applied depending on the value of the λ̅p and fy. In the case 
of the Annex B curve, the necessary imperfection scaling 
factor can be given by one expression also depending on 
the λ̅p and fy values.

Design proposal to the Winter curve: 
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Design proposal to the Annex B curve:
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200 0 2

2 2λ .
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To check the accuracy and precision of the proposed 
equations, statistical evaluation is executed on the numer-
ical database. The imperfection magnitudes are calculated 
by Eqs. (12)–(14) are applied in the numerical model, and 
the computed buckling resistances are compared to the 
Winter curve and the Annex B curve, respectively. The 
ratio of the numerical and analytical buckling resistance 

Fig. 7 Relationship between the plate slenderness λ̅p and the 
imperfection scaling factor ( f ) for different steel grades

Fig. 8 Design proposals for the imperfection scaling factor ( f )
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is determined for all analyzed cross-sections and steel 
grades, and the statistical evaluation is performed on this 
newly generated database. 

Tables 2–3 presents the results, including the mean 
value, standard deviation, minimum and maximum val-
ues for both buckling curves. It can be observed that the 
proposed imperfection magnitudes give good agreement 
to the buckling curves, which are theoretically well estab-
lished and proved for design purposes.

Results also prove that the necessary imperfections 
can be significantly larger than the previously given and 
usually used value (b/200), especially for cross-sections 
having a large relative slenderness ratio. The accuracy of 
the obtained results is double-checked by the authors, and 
based on the detailed investigation, the following conclu-
sions are drawn:

• To reach the buckling resistance according to the 
Winter-type curve, larger imperfections than the usu-
ally used value (b/200) could also be necessary for 
cross-sections having a relatively large slenderness 
ratio. It is proved that the Winter-type curve currently 
used in the buckling resistance calculation of plated 
structures is not conservative and can overestimate 
the buckling resistance in the case of square box-sec-
tions. It means, to reach lower, safe-sided resistance, 
larger imperfections (smaller imp. scaling factors) 
are necessary to be applied. 

• Based on the executed imperfection sensitivity anal-
ysis, it turned out, for cross-sections having a large 
relative slenderness ratio, the imperfection sensitiv-
ity is small. Indeed, the elastic buckling is dominant, 

the post-buckling reserve can be utilized. Therefore, 
to decrease the obtained buckling resistance within 
the numerical model, larger imperfections are to be 
applied, leading to the obtained small imperfection 
scaling factors. 

As a further research task, the accuracy of the Annex B 
curve should be checked and validated by test results for a 
larger relative slenderness ratio than 1.8–2.0. Based on the 
improved buckling curve for larger slenderness ratios, the 
necessary imperfection magnitudes can be proof-checked 
and superseded. 

6 Summary and conclusions
In the current paper, the equivalent geometric imperfec-
tions to be used in GMNIA analysis to determine the plate 
buckling resistance are investigated. The current standard 
proposal of the EN 1993-1-5 Annex C, and the future code 
provision of the prEN1993-1-14 is currently revised, and 
a new design proposal is developed. Thus, the applicability 
of the Winter curve for the buckling resistance prediction 
of square box-section columns has been questioned by sev-
eral researchers in the past, and the buckling curve of the 
EN 1993-1-5 Annex B has been found appropriate based on 
test results and detailed statistical evaluation; the Annex B 
curve is considered in the current study as an appropri-
ate buckling curve providing the characteristic value of 
the buckling resistance with large accuracy. Therefore, the 
necessary magnitudes of the equivalent geometric imper-
fections are determined for a wide slenderness range for 
three steel grades (S235, S355, and S460), providing the 
buckling resistance fitting to the Winter curve and the 
Annex B curve. The presented imperfection magnitudes 
are valid for the buckling resistance calculation of square 
box-section columns. The new design proposals can be 
used in the FEM-based design of steel structures to deter-
mine the plate buckling resistance. Depending on the buck-
ling curve to be applied, two proposals are provided. Both 
of them are given in function of the relative slenderness 
ratio and the yield strength of the applied steel grade. 
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Table 2 Results of the statistical analysis for Annex B curve

Statistical measure/curve Annex B (S235; S355; S460)

Number of tests 131

Mean 1.002

Standard deviation 0.012

Skewness 0.189

Minimum value 0.942

Maximum value 1.050

Table 3 Results of the statistical analysis for Winter curve

Statistical measure/curve Annex B (S235; S355; S460)

Number of tests 131

Mean 1.028

Standard deviation 0.018

Skewness 0.189

Minimum value 0.977

Maximum value 1.112
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