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Abstract

Vibrating Particles System (VPS) optimization is a newly made meta-heuristic algorithm to optimize problems by inspiration of the 

free vibration of viscous-damped systems with single degree of freedom. The agents are modeled as particles which systematically 

proceed toward their equilibrium conditions that are reached by the existing population and historically best position. To enhance the 

performance of the VPS algorithm, Enhanced Vibrating Particles System (EVPS) applies a new process for updating agent’s positions. 

This paper tries to improve the EVPS algorithm with the aim of reduction in the regulatory parameters’ effect on the algorithm's 

performance by reducing the regulatory parameters. To evaluate the performance of the proposed method, it is applied to four 

optimization problems of truss structures including mixed of discrete and continuous design search spaces with displacement, stress 

and buckling constraints. As a result, the proposed algorithm is a suitable method and more research can be done on it.
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1 Introduction
The term "optimization" means the systematic selection of 
values for variables from or within a permissible collection, 
seeking to minimize or maximize the function of a  prob-
lem [1]. One of the optimization tools is meta-heuristic algo-
rithms that are able to achieve a global or near-global opti-
mal solutions by spending the right amount of time. Some 
of these algorithms are listed as follows: Particle Swarm 
Optimization (PSO)  [2], Genetic Algorithms (GA)  [3], 
Colliding Bodies Optimization (CBO)  [4], Ant Colony 
Optimization (ACO) [5], Charged System Search algorithm 
(CSS) [6], Harmony Search (HS) [7], Simulated Annealing 
(SA) [8], Ray Optimization (RO) [9], Big-Bang Big-Crunch 
(BBBC) [10], and Vibrating Particles System (VPS) [11].

Researchers in recent years have sought to develop the 
field of structural optimization by optimizing ideal small 
structural systems and components to enable the optimal 
design of more intricate structures  [12]. Structural opti-
mization is classified into three kinds: (1)  Optimizing 
the size of sections (2) Optimizing the shape of the struc-
ture (3)  Optimization of structural topology  [13]. Truss 

structure is one of the most useful civil engineering struc-
tures in around the world. Truss optimization has been 
considered by engineers and researchers for decades [14]. 
Therefore, truss structures are suitable tool to evaluate the 
performance of optimization algorithms. Size/layout opti-
mization expresses minimizing the weight of the structure 
by selecting cross-sections and configuration of the struc-
tural members under strength constraints and serviceabil-
ity limits. Different meta-heuristic algorithms have been 
used by various researchers to optimize the size and lay-
out of the structure. For instance, Wu and Chow [15] con-
sidered the sections and nodal coordinates as a discrete 
and continuous variables to optimize space trusses by 
GA algorithm, Hasançebi and Erbatur  [16] used "anneal-
ing perturbation" and "adaptive reduction of the design 
space" method to improve GA for mass minimization of 
space trusses, Hasançebi and Erbatur [17] used Simulated 
Annealing (SA) algorithm, Kaveh and Kalatjari [18] used 
the force method and genetic algorithm to minimize the 
weight of the truss structure, Tang et al. [19] optimized size, 
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shape and topology of trusses using the improved Genetic 
Algorithm (GA), Rahami et al. [20] employed energy and 
force method and Genetic algorithm (GA) for optimize 
the size and layout of the truss structures, Kazemzadeh 
Azad et al.  [21] suggested a Mutation-Based Real-Coded 
Genetic Algorithm (MBRCGA) for minimizing the weight 
of truss, Miguel et al. [22] presented a single-stage Firefly-
based Algorithm (FA) to study simultaneous size, shape 
and topology optimization for trusses, Gholizadeh [23] pro-
posed a hybrid of Cellular Automata (CA) and the Particle 
Swarm Optimization (PSO) algorithm to solve size and lay-
out optimization of truss structures, Mortazavi et al. [24] 
utilized integrated Particle Swarm Optimizer (iPSO) algo-
rithm for sizing and shape optimization of planar and spa-
tial truss structures, Panagant and Bureerat [25] suggested 
Fully Stressed Design-Grey Wolf-Adaptive Differential 
Evolution (FSD-GWADE), Kaveh and Zaerreza  [13] uti-
lized shuffled shepherd optimization algorithm (SSOA), 
Jawad et al. [26] used Artificial Bee Colony (ABC) algo-
rithm, Kaveh et al. [27] studied layout optimization of pla-
nar braced frames by using Colliding Bodies Optimization 
(CBO) and Colliding Bodies Optimization-Modified 
Dolphin Monitoring (CBO-MDM).

Vibrating Particles System (VPS) is a multi agent-based 
randomly optimization algorithm by inspiration of the free 
vibration of viscous-damped systems with single degree 
of freedom where particles move toward minimum energy 
level [11]. The high number of regulatory parameters is one 
of the features of VPS that affect the performance of the 
algorithm. Therefore to reduce the impact of these regula-
tory parameters on the algorithm's performance, in pres-
ent study, in addition to applying a new process for update 
the particles position provided by Kaveh  et  al.  [28], by 
Weighing of regulatory parameters based on the objec-
tive function values and adding a mutation mechanism to 
escape from local optima, standard VPS is improved to 
formulate the IVPS (Improved Vibrating Particles System) 
algorithm. The ability of the proposed method are com-
pared to those standard and enhanced version of the vibrat-
ing particle system algorithm and some other powerful 
metaheuristic algorithms on some size/layout optimization 
of truss structure problems. Results indicate that the pro-
posed method is a promising development to improve the 
performance of the standard version of the VPS algorithm.

The present paper consists of six sections. After this 
introduction as the Section 1, in Section 2, the mathemati-
cal formulations of sizing-layout truss structural optimiza-
tion are stated. In Section 3 the vibrating particles system 
algorithm and its enhanced version is briefly described. 

The proposed method is explained in Section 4. Four well 
know sizing and shape optimization of truss structures are 
studied in Section 5. Finally, conclusions are presented in 
Section 6.

2 Formulation of the structural optimization problems
In the present study, the aim is to optimize size and layout 
of the truss structures while satisfying under some design 
constraints to achieve the minimum weight of the struc-
ture. Two types of design variables (a) cross sections areas 
for elements of truss and (b) coordinates of some joints of 
truss are organized to minimize the weight of truss struc-
tures in size and layout optimization. To optimize the size 
and shape to achieve the lowest weight of the truss struc-
ture, the objective function is expressed as follows:	
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Where {X} is a vector of optimization variables compris-
ing the cross-sectional areas and the coordinates of some 
nodes; ng is the number of member groups for cross-sec-
tional area; nn is the number of nodes should be set those 
coordinates; W({X}) presents the weight of the structure; 
nm is the number of elements of the structure; nc is the 
number of constraints; ρi presents the material density of 
ith member; Ai and Li denote the cross-section area and the 
length of the ith member, respectively. xmin and xmax are the 
minimum and the maximum allowable values of optimiza-
tion variables in the search space. gj({X}) presents design 
constraints; and nc is the number of constraints.

For handling the different constraints in optimization 
problems of this paper, a penalty approach is used. So, the 
objective function (Eq. (1)) is redefined as follows:

P X v W X{ }( ) = +( ) × { }( )1 1
2ε ε

. .	 (2)

Where P({X}) presents the penalized objective function 
that should be minimized, v is the sum of the violations of 
the design constraints. Here, ε1 is considered as unity and 
ε2 is determined by:

ε2 1 5 1 5= + ×. .
iter
itermax

,	 (3)

where iter is the current iteration number and itermax is the 
maximum iteration number.
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3 Vibrating particles system algorithm
In this section the phenomenon of damped free vibration, 
the VPS algorithm, the VPS algorithm and the EVPS algo-
rithm are presented briefly.

3.1 The damped free vibration phenomenon
Vibration means the reciprocating motion of a particle 
around its equilibrium position. If the vibration is out of 
the system due to the presence of periodic force (displace-
ment or velocity), it is called forced vibration, and if it is 
due to the internal forces of the system, it is called free 
vibration. A body with mass of m as the vibrating particle, 
a spring with hardness of k that acts as the inertial force of 
the system, and a viscous damper with viscous damping 
coefficient of c that simulates energy loss during vibration 
(Fig. 1) have been used to modeling the free vibration of 
viscous-damped systems with single degree of freedom. 
The motion equation of the body when it shifts as far as x 
relative to its equilibrium position will be as follows:

mx cx kx + + = 0 .	 (4)

Two parameters of the damping ratio ξ and the critical 
damping coefficient cc are defined to solve this differential 
equation as follows:

ξ =
c
cc

,	 (5)

c mc n= 2 ω ,	 (6)

ωn
k
m

= ,	 (7)

where ωn is the natural circular frequency of the system.
Depending on the value of the damping ratio ξ, can be 

divided into three different types of systems: (1)  over-
damped system (ξ > 1); (2) critically damped system (ξ = 1) 
and (3) under-damped system (ξ < 1). A particle only has 
intermittent motion around its equilibrium position when 
ξ < 1 (under-damped system). In this case, the solution of 
Eq. (4) is as follows:

x t e tnt
D( ) = +( )−ρ ω φξω

sin ,	 (8)

ω ω ξD n= −1 2 ,	 (9)

where ρ and ϕ are constants and respect to the initial con-
ditions of the system are calculated. ωD and t are damped 
natural frequency of the system and time, respectively.

3.2 The VPS algorithm
In this algorithm, the initial position of the particles is ran-
domly generated in the search space by:

x x rand x xi
j = + −( )min max min. ,	 (10)

where xi
j is the jth variable of ith particle; rand is a random 

number uniformly distributed in the range of [0, 1].
After calculating the objective function of each parti-

cle, three particles HB, GP and BP are used to update the 
position of the particles, which are the best position from 
the historically of the whole particle population, good par-
ticle and bad particle, respectively. To determine GP and 
BP, at the first the particle population are sorted in ascend-
ing order based on their objective function values, and 
each of the GP and BP particles is randomly selected from 
the upper and lower halves, respectively. The following 
formula is then used to update the particle position:
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Where A and D simulates amplitude of vibration and 
damping, respectively. α is a constant; ω1, ω2, and ω3 are 
three parameters to measure the relative importance of HB, 
GP, and BP, respectively. rand1, rand2, and rand3 are ran-
dom numbers uniformly distributed in the range of [0,1].

The VPS algorithm is one of the swarm intelligence 
algorithms that tries to update the position of particles 
by learning from the existing particle positions. This 
algorithm obtains the new position of the particles using 
vibration around three equilibrium positions HB, GP 
and BP. Moving towards the HB and GP particles pro-
vides exploitation phase of the algorithm so that the new Fig. 1 Viscous-damped free vibration
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position of the particle approaches the position of the par-
ticle with a better objective function. On the other hand, 
moving towards the BP particle avoids the algorithm 
being in local optima, and provides exploration phase 
for the algorithm. Using the combination of these three 
particles in updating the particle position creates a bal-
ance between the exploitation and exploration phases of 
the algorithm. The probability of the impact of each of the 
HB, GP and BP particles in updating the new position of 
particle is controlled using the parameters ω1, ω2 and ω3. 
Inspired by Eq. (8), Eq. (11) tries to search randomly in the 
solution space by vibration around three equilibrium posi-
tions HB, GP and BP. For this purpose, A (Eq. (12)) simu-
lates the amplitude of the particle oscillation, just like the 
ρ parameter in Eq. (8), and D (Eq. (13)) simulates the term 
e–ξωnt in Eq. (8) which represents the damping property by 
reducing the amplitude of particle motion and causes the 
answers to converge to an optimal solution, while increas-
ing the iteration loops of the algorithm. Also, in Eq. (11) 
the value of sin(ωDt + ϕ) is considered unity to have vibra-
tion with maximum amplitude.

To decide whether the effect of BP should be consid-
ered in the updating process of particle position or not, the 
parameter p is generated between 0 and 1. For this purpose, 
if p < rand, then ω3 = 0 and ω2 = 1 – ω1 .

To avoid of boundary violation when the particle position 
is being updated, the harmony search-based side constraint 
handling approach is used [29]. In this method, the violating 
component should be changed with the corresponding com-
ponent of the historically best position of a random parti-
cle with the possibility like Harmony Memory Considering 
Rate (HMCR) parameter, otherwise it must be regener-
ated from the permissible search space. Moreover, if it is 
replaced by the component of a historically best position, 
this value should be changed with the neighboring value by 
the possibility like Pitch Adjusting Rate (PAR).

3.3 The EVPS algorithm
In this section, the Enhanced Vibration Particle System 
(EVPS) algorithm that presented by Kaveh and Hoseini 
Vaez [28] is briefly described.

In the EVPS algorithm, A parameter like Memory is 
defined that it saves NB number of the historically best 
positions in the whole population. On the other hand, HB 
is replaced with OHB (one of the historically best positions 
in the whole population) that it is one row of Memory. The 
best answer for each iteration is compared with the worst 
value of the Memory, to be replaced if it is better.

The change in the mechanism of updating the position 
of the particles is another change made in this method. 
According to that, one of the (a), (b) and (c) from Eq. (15) 
is used with the possibility of ω1, ω2, and ω3, respectively 
instead Eq. (11).
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where (±1) are used randomly. OHB, GP and BP are deter-
mined independently for each particle.

4 Presentation of present method
In this section, the present method is introduced. In the 
continuation of changes made by Kaveh and Hoseini 
Vaez [28], corrections will be made to reduce the number 
of regulatory parameters in the process of the algorithm. 
These amendments are as follows:

In this method, instead of assigning specific numbers 
to the parameters ω1, ω2, and ω3, the values are assigned 
relative to the evaluated objective function of OHB, GP, 
and BP particles, respectively. Therefore, in order to create 
a new position for a selected particle (ith particle), the fol-
lowing can be done:

Step 1: The initial weights for the four particles OHB, 
GP, BP and the selected particle are calculated with Eq. (16), 
Eq. (17), Eq. (18) and Eq. (19), respectively. In these equa-
tions, the objective function is considered as a minimiza-
tion function.

m
CostOHB

OHB
=

1 ,	 (16)

m
CostGP

GP
=

1 ,	 (17)

m
CostBP

BP
=

1 ,	 (18)

m
CostIP

IP
=

1 ,	 (19)

where mOHB, mGP, mBP and mIP are the initial weights 
assigned to the OHB, GP, BP and selected particle, 
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respectively; CostOHB, CostGP, CostBP and CostIP are the 
objective function values that are calculated for the OHB, 
GP, BP and selected particle, respectively.

Step 2: According to Eqs. (20) and (21), two key ranks 
d1 and d2 are defined, respectively. The rank of the selected 
particle in the list which the particles are sorted in ascend-
ing order based on their objective function values (the 
objective function is considered as a minimization func-
tion) is compared by two key ranks d1 and d2. Then, based 
on the following conditions, the weight of the selected par-
ticle (mIP) is assigned to the initial weight of one of the 
three particles OHB, GP and BP:
(a)	 If the rank of the selected particle in the ordered list 

is less than d1, according to Eq. (22), the weight of 
selected particle will be added to the initial weight of 
the OHB.

(b)	 If the rank of the selected particle in the ordered list is 
more than d2, according to Eq. (23), the weight of selected 
particle will be added to the initial weight of the GP.

(c)	 Otherwise, according to Eq. (24), the weight of 
selected particle will be added to the initial weight of 
the BP.

d PopulationSize
1

4
=

×γ ,	 (20)

d PopulationSize
2 2
= ,	 (21)

m m mOHB
new

OHB IP= + ×( ) β 	 (22)

m m mGP
new

GP IP= + ×( ) β 	 (23)

m m mBP
new

BP IP= + ×( ) γ ,	 (24)

Where PopulationSize is all candidate solutions; mOHB
new, 

mGP
new and mBP

new are the new weights calculated for par-
ticles OHB, GP and BP, respectively. To satisfy the bal-
ance between the two phases of exploitation and explo-
ration during the increase in number of iterations of the 
algorithm, we create γ and β according to Eq. (25) and 
Eq. (26) as the decremental and incremental parameters, 
respectively which lead to more exploration-less exploita-
tion in the initial iteration loops of the algorithm and less 
exploration-more exploitation in the final iteration loops 
of the algorithm.

γ =
−iter iter

iter
max

max

	 (25)

β =
+iter iter

iter
max

max

	 (26)

According to the second step, in the initial iteration 
loops of the algorithm, the effect of good and bad particles 
decreases and increases, respectively, and in the final itera-
tion loops of the algorithm, the effect of good and bad par-
ticles increases and decreases, respectively. Also, by adding 
the weight of the selected particle (mIP) to the weight of the 
OHB particle (mOHB), the convergence speed is increased, 
and to avoid being in the local optima, we reduce the proba-
bility of this effect by considering the γ reduction coefficient.

Step 3: Finally, the parameters ω1, ω2 and ω3 which are 
the three parameters for measuring the relative impor-
tance of OHB, GP and BP are equal to the ratio of the new 
weight of the OHB, GP and BP particles to the total new 
weight of these three particles, respectively (according to 
Eq. (27), Eq. (28) and Eq. (29)).

(27)
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m
m m m
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OHB
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BP
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(28)
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(m
m m m

GP
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OHB
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GP
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BP
new ; is relative importance to GP))

(29)

ω ω3 3=
+ +

(m
m m m

BP
new

OHB
new

GP
new

BP
new ; is relative importance to BP))

Further, in this version of the algorithm, the regulatory 
parameter p has been removed from the EVPS algorithm. 
Also, to avoid being in the local optima, a mechanism such 
as the mutation mechanism in the Genetic Algorithm (GA) 
and then a new parameter μ0 has been added to the algo-
rithm. According to Eq. (30), the parameter μ is obtained 
based on μ0 and this parameter is compared with rand. 
If μ > rand, the position of the jth variable from the par-
ticle according to the Eq. (10) is reproduced within the 
design range. In the initial iteration loops of the algorithm, 
μ parameter is equal to μ0 and with increasing iterations, 
this parameter decreases to zero.

µ µ γ= ×0 ,	 (30)

where μ0 is the mutation rate that is set in the range of [0,1].

5 Numerical examples
The performance and applicability of the present method is 
assessed by four sizing and layout optimization problems 
and its performance is compared with other versions of VPS 
algorithm. The parameter of the maximum number of iter-
ations are 500 for the first three problems and 1500 for the 
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fourth problem. The number of population for all problems 
is 20. Other parameters for VPS and EVPS algorithms 
(including α, p, ω1, ω2, NB, HMCR, PAR and neighbor) 
are  set based on [11] and [30], respectively. It  should be 
noted that in the references the value of 0.7 is suggested 
for the p parameter of VPS algorithm, but in this research, 
two values of 0.2 and 0.7 have been considered for the 
mentioned parameter, and the best result for one of these 
two values is presented in the tables. Also, the MATLAB 
code provided in [30–32] are used for the EVPS algorithm, 
the 2017 and 2019 versions of the VPS algorithm, respec-
tively. Thirty independent optimization runs are carried 
out for each example.

5.1 The planar 15-bar truss structure
The 15-bar planar truss structure is the first example to be 
considered. This truss is affected by a force of 10 kips as 
shown in Fig. 2. This example consists of 23 variables that 
15 of them are in discrete search space for sizing optimiza-
tion and the rest are in continuous search space for layout 
optimization. Information about modeling and optimiza-
tion are presented in Table 1.

Table 2 shows that the present method obtains accept-
able results compared to other algorithms. Although 
MBRCGA [21], SCPSO [23] and iPSO [24] algorithms 
have better results than the present method, but the best 
weight obtained by the present method compared to the 
VPS algorithm and its enhanced version (EVPS) is better, 
but the number of analyzes that the present method needs to 
achieve the best weight is more than the other two versions. 
Fig. 3 shows the best shape for the 15-bar truss obtained by 
the present method. Fig. 4 shows a comparison between 
the convergence history of VPS, EVPS algorithms and the 
present method for the average performance of the algo-
rithms in 30 independent runs. The convergence history of 
the present method for the mean and best performance of 
the algorithm in 30 independent runs are shown in Fig. 5.

5.2 The planar 18-bar truss structure
The planar 18-bar truss is at nodes 1, 2, 4, 6 and 8 under 
vertical loading about 20 kips as shown in Fig. 6. This 
example has 12 optimization variables that 4 of them are 

Table 1 Modeling and design data for the 15-bar planar truss

Simulation and design data

Design variables:

Sizing variables Ai, i = 1,2,…,15.

Layout variables x2 = x6; x3 = x7; y2; y3; y4; y6; y7; y8.

Search range:

Possible sizing 
variables

Ai  S ={0.111,0.141,0.174,0.220,0.270,0.287,
0.347,0.440,0.539,0.954,1.081,1.174,1.333,1.488,
1.764,2.142,2.697,2.800,3.131,3.565,3.813,4.805,

5.952,6.572,7.192,8.525,9.300,10.850,13.330,
14.290,17.170,19.180}(in2).

Layout variables 
bounds

100 in. ≤ x2 ≤ 140 in.; 220 in. ≤ x3 ≤ 260 in.;
100 in. ≤ y2 ≤ 140 in.; 100 in. ≤ y3 ≤ 140 in.;

50 in. ≤ y4 ≤ 90 in.; -20 in. ≤ y6 ≤ 20 in.;
-20 in. ≤ y7 ≤ 20 in.; 20 in. ≤ y8 ≤ 60 in.

Material Parameters:

Density ρ 0.1 (lb/in3)

Modulus of 
elasticity E 104 (ksi)

Constraints:

Stress The allowable elements stress interval: 
[-25 (ksi), 25 (ksi)]

Fig. 2 Schematic of the 15-bar planar truss

Fig. 3 Optimum layout of the 15-bar planar truss

Fig. 4 Convergence curves for the 15-bar planar truss
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in discrete search space which are related to member sec-
tions and 8 of them are in continuous search space that are 
related to node coordinates. Information about modeling 
and optimization are presented in Table 3.

Table 4 shows that, like the 15-bar truss results, the 
MBRCGA [21], SCPSO [23] and iPSO [24] algorithms 
performed better than the present method, but still the best 
weight obtained by the present method (i.e., 4,525.09 lbs) 
is better than the values obtained by the VPS algorithm 
and its enhanced version (EVPS). In addition to the fact 
that the present method requires more analysis to achieve 
the best weight than the other two versions of the VPS 
algorithm, the average and standard deviation for 30 inde-
pendent runs were also more values. Optimum layout for 
18-bar truss is shown in Fig. 7 that found by the present 
method. Fig. 8 shows a comparison between the conver-
gence history of VPS, EVPS algorithms and the present 
method for the average performance of the algorithms in 
30 independent runs. The convergence history of the pres-
ent method for the mean and best performance of the algo-
rithm in 30 independent runs are shown in Fig. 9.

5.3 The spatial 25-bar truss
As shown in Fig. 10 the 25-bar truss is considered as 

the third problem. This structure is under concentrated 
loading as shown in Table 5. This example consists of 13 

variables that 8 of them are in discrete search space for 
sizing optimization and the rest are in continuous search 
space for layout optimization. Other information related to 
modeling and optimization are given in Table 5.

According to the results shown in Table 6, VPS algo-
rithm, SCPSO [23] and iPSO [24] found a smaller weight 
as the best weight, which had better results than the pres-
ent method, while the present method has achieved less 
weight compared to the EVPS algorithm. Comparison 
between the optimum layout obtained by the present 
method and initial layout is shown in Fig. 11. Comparison 
of the average performance of VPS, EVPS algorithms and 
the present method for 30 independent runs are shown in 
Fig. 12. The convergence history of the present method 
for the mean and best performance of the algorithm in 30 
independent runs are shown in Fig. 13.

5.4 The planar 47-bar truss
The last sizing and shape optimization problem is the pla-
nar 47-bar truss that is indicated in Fig. 14 which consist 
47 members and 22 nodes. The nodes of structure are sub-
jected to three load cases that are presented in Table 7. This 
example has 44 optimization variables that 27 of them are 
in discrete search space which are related to member sec-
tions and 17 of them are in continuous search space that are 

Table 3 Modeling and design data for the 18-bar planar truss

Simulation and design data

Design variables:

Sizing variables

A1 = A4 = A8 = A12 = A16,
A2 = A6 = A10 = A14 = A18,

A3 = A7 = A11 = A15,
A5 = A9 = A13 = A17.

Layout variables x3, x5, x7, x9, y3, y5, y7, y9.

Search range:

Possible sizing variables Ai  S ={2.00, 2.25, 2.50, …, 21.25, 21.50, 
21.75}(in2)

Layout variables bounds

775 in. ≤ x3 ≤ 1225 in.;
525 in. ≤ x5 ≤ 975 in.;
275 in. ≤ x7 ≤ 725 in.;
25 in. ≤ x9 ≤ 475 in.;

-225 in. ≤ y3, y5, y7, y9 ≤ 245 in.

Material Parameters:

Density ρ 0.1 (lb/in3)

Modulus of elasticity E 104 (ksi)

Constraints:

Stress The allowable elements stress interval:  
[-25 (ksi), 25 (ksi)]

Local buckling σ
β

βc i
i

i

EA

l
i( ) ≤ = … =

2
1 2 18 4, , , , ,

Fig. 5 Convergence curves of the best and average performance of the 
studied algorithm for the 15-bar planar truss

Fig. 6 Schematic of the 18-bar planar truss
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related to node coordinates. Other information for model-
ing and optimization are given in Table 7.

According to the results of Table 8, the SA [17], FSD-
GWADE  [25], CPSO  [23], SCPSO  [23] and iPSO  [24] 
algorithms have better results than the present method, 
but the best and average weights for 30 independent 

runs found by the present method is better than VPS and 
EVPS algorithms, but the number of analyzes is more. 
Comparison between the optimum layout obtained by 
the present method and initial layout is shown in Fig. 15. 
Fig. 16 shows the comparison of convergence histories of 
the 47-bar truss structure for VPS, EVPS and the present 
method. Fig. 17 is compared the convergence histories of 
average and best performance for the present method.

6 Conclusions
In present paper, the ability of the new enhanced version 
of VPS metaheuristic algorithm that is named Improved 
Vibrating Particles System (IVPS) algorithm in optimiz-
ing size/layout the truss structures is investigated. VPS is 
a multi agent-based algorithm by inspiration of the free 
vibration of viscous-damped systems with single degree 
of freedom. The present method has tried to reduce the 
dependence of the VPS algorithm on its regulatory param-
eters by weighting the regulatory parameters of the VPS 
algorithm using the objective function values. 

Fig. 7 Optimum layout of the 18-bar planar truss

Fig. 8 Convergence curves for the 18-bar planar truss

Fig. 9 Convergence curves of the best and average performance of the 
studied algorithm for the 18-bar planar truss

Fig. 10 Schematic of the 25-bar spatial truss

Table 5 Modeling and design data for the 25-bar spatial truss

Simulation and design data

design variables:

Sizing variables
A1; A2 = A3 = A4 = A5; A6 = A7 = A8 = A9;
A10 = A11; A12 = A13; A14 = A15 = A16 = A17;

A18 = A19 = A20 = A21; A22 = A23 = A24 = A25;

Layout variables
x4 = x5 = -x3 = -x6; x8 = x9 = -x7 = -x10;
y3 = y4 = -y5 = -y6; y7 = y8 = -y9 = -y10;

z3 = z4 = z5 = z6;

Search range:

Possible sizing 
variables

Ai  S = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,
1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,

2.6,2.8,3.0,3.2,3.4}(in2).

Layout variables 
bounds

20 in. ≤ x4 ≤ 60 in.; 40 in. ≤ x8 ≤ 80 in.;
40 in. ≤ y4 ≤ 80 in.; 100 in. ≤ y8 ≤ 140 in.;

90 in. ≤ z4 ≤ 130 in.

Material Parameters:

Density ρ 0.1 (lb/in3)

Modulus of 
elasticity E 104 (ksi)

Constraints:

Stress The allowable elements stress interval: 
[-40 (ksi), 40 (ksi)] 

The allowable nodal displacement interval: 
[-0.35 (in.), 0.35 (in.)]Displacement

Loads:

Nodes Fx(kips) Fy(kips) Fz(kips)

1 1.0 -10.0 -10.0

2 0.0 -10.0 -10.0

3 0.5 0.0 0.0

6 0.6 0.0 0.0



Kaveh and Khosravian
Period. Polytech. Civ. Eng., 66(1), pp. 1–17, 2022|11

Ta
bl

e 
6 

Pe
rf

or
m

an
ce

 c
om

pa
ris

on
 fo

r t
he

 2
5-

ba
r s

pa
tia

l t
ru

ss

D
es

ig
n

va
ria

bl
es

G
A

 [1
5]

 
iG

A
 [1

9]
 

FM
-G

A
 

[1
8]

 
FA

 [2
2]

 
FM

-G
A

 
[2

0]
 

PS
O

 [2
3]

 
C

PS
O

 [2
3]

 
SC

PS
O

 
[2

3]
 

iP
SO

 [2
4]

 
V

PS
 (2

01
7 

co
de

) p
 =

 0
.2

V
PS

 (2
01

9 
co

de
) p

 =
 0

.2
EV

PS
 

p 
= 

0.
2

Pr
es

en
t W

or
k 

μ 0
 =

 0
.0

3

A
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
3

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

A
2

0.
2

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

A
6

1.
1

1.
1

1.
1

0.
9

1.
1

1.
1

1
1

1
1

1
0.

9
1

A
10

0.
2

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

A
12

0.
3

0.
1

0.
1

0.
1

0.
1

0.
4

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

A
14

0.
1

0.
2

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

A
18

0.
2

0.
2

0.
1

0.
1

0.
2

0.
4

0.
2

0.
1

0.
1

0.
1

0.
1

0.
2

0.
1

A
22

0.
9

0.
7

1
1

0.
8

0.
7

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

0.
9

x4
41

.0
7

35
.4

7
36

.2
3

37
.3

2
33

.0
48

7
27

.6
16

9
33

.4
97

6
36

.9
52

37
.6

37
.6

17
1

37
.6

47
5

32
.6

97
2

37
.5

27
9

y4
53

.4
7

60
.3

7
58

.5
6

55
.7

4
53

.5
66

3
51

.6
19

6
62

.3
73

5
54

.5
79

54
.4

6
54

.4
36

1
54

.4
45

4
53

.4
71

9
54

.8
14

8

z4
12

4.
6

12
9.

07
11

5.
59

12
6.

62
12

9.
90

92
12

9.
90

71
11

4.
59

45
12

9.
97

6
13

0
13

0.
00

00
12

9.
99

98
12

9.
47

81
12

9.
42

57

x8
50

.8
45

.0
6

46
.4

6
50

.14
43

.7
82

6
42

.5
52

6
40

.0
53

1
51

.7
32

51
.8

9
51

.8
91

4
51

.8
89

3
43

.2
42

2
51

.7
43

3

y8
13

1.
48

13
7.

04
12

7.
95

13
6.

4
13

6.
83

81
13

2.
72

41
13

3.
66

95
13

9.
53

2
13

9.
55

13
9.

54
91

13
9.

53
88

13
7.

43
10

13
9.

57
83

B
es

t w
ei

gh
t (

lb
)

13
6.

2
12

4.
94

12
4

11
8.

83
12

0.
11

49
12

9.
20

76
12

3.
45

1
11

7.
22

7
11

7.
25

5
11

7.
25

56
11

7.
25

56
11

9.
30

20
11

7.
29

00

A
ve

ra
ge

 w
ei

gh
t (

lb
)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

12
2.

87
6

11
9.

57
12

3.
42

55
11

8.
62

00
12

4.
19

90
12

1.
89

93

W
or

st
 w

ei
gh

t (
lb

)
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
13

2.
67

2
12

1.
96

9
14

4.
78

48
12

2.
43

92
13

7.
63

14
12

6.
80

62

St
d.

 d
ev

ia
tio

n 
(lb

)
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
3.

67
1

1.
39

08
5.

62
1.

34
3.

92
2.

32

N
o.

 o
f a

na
ly

se
s

N
/A

6,
00

0
N

/A
6,

00
0

10
,0

00
4,

50
0

4,
50

0
45

00
48

70
5,

84
0

9,
36

0
5,

08
0

9,
12

0



12|Kaveh and Khosravian
Period. Polytech. Civ. Eng., 66(1), pp. 1–17, 2022

Fig. 11 Optimum layout of the 25-bar spatial truss

Fig. 12 Convergence curves for the 25-bar spatial truss

Fig. 13 Convergence curves of the best and average performance of the 
studied algorithm for the 25-bar spatial truss

Fig. 14 Schematic of the 47-bar planar truss

All of the optimization problems of truss structure in 
this paper involve size and layout variables and the fourth 
problem with 44 optimization variables is a slightly larger 
scale problem. The results of the present method in all 
problems were close to the best results obtained by other 
powerful algorithms and in some cases, it achieved bet-
ter results than them. Also, in all structures except 25-bar 
spatial truss, it has achieved better results than other 
versions of the vibrating particle system algorithm. The 
weight gained by the standard version of the vibrating 
particle system algorithm was slightly different (0.029%) 

from the current method for the spatial 25-bar truss. In 
this paper, only four small size/layout optimization truss 
structures have been used to evaluate the capability of 
present method, so the comparison between the perfor-
mance of the present method and other versions of the 
vibrating particle system algorithm can be tested using 
other benchmark structures.
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Table 7 Modeling and design data for the 47-bar planar truss

Simulation and design data

Design variables:

Sizing variables

A1 = A3; A2 = A4; A5 = A6; A7; A8 = A9; A10; A11 = A12; A13 = A14; A15 = A16;  
A17 = A18; A19 = A20; A21 = A22; A23 = A24; A25 = A26; A27; A28; A29 = A30;  

A31 = A32; A33; A34 = A35; A36 = A37; A38; A39 = A40; A41 = A42; A43; A44 = A45;  
A46 = A47.

Layout variables
x1 = -x2; x3 = -x4; y3 = y4; x5 = -x6; y5 = y6; x7 = -x8; y7 = y8; x9 = -x10;  

y9 = y10; x11 = -x12; y11 = y12; x13 = -x14; y13 = y14; x19 = -x20; y19 = y20; x18 = -x21; 
y18 = y21.

Search range:

Possible sizing variables Ai  S ={0.1, 0.2, 0.3, 0.4, …, 4.8, 4.9, 5.0}(in2).

Layout variables bounds

0 in. ≤ xi ≤ 120 in., (i =2, 4, 6, 8); -30 in. ≤ xi ≤ 90 in., (i = 10, 12, 14, 20);
30 in. ≤ x21 ≤ 150 in.; 60 in. ≤ y4 ≤ 180 in.; 180 in. ≤ y6 ≤ 300 in.;

300 in. ≤ y8 ≤ 420 in.; 360 in. ≤ y10 ≤ 480 in.; 420 in. ≤ y12 ≤ 540 in.; 480 in. 
≤ y14 ≤ 600 in.; 540 in. ≤ y20 ≤ 660 in.; 540 in. ≤ y21 ≤ 660 in.

Material Parameters:

Density ρ 0.3 (lb/in3)

Modulus of elasticity E 3 × 104 (ksi) 

Constraints:

Stress The allowable elements stress interval: [-15 (ksi), 20 (ksi)]

Local buckling

Loads:

case Nodes Fx(kips) Fy(kips)

1
17 6.0 -14.0

22 6.0 -14.0

2 17 6.0 -14.0

3 22 6.0 -14.0

σ
β

βc i
i

i

EA

l
i( ) ≤ = =

2
1 2 47 3 96, , , , , . .
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Fig. 15 Optimum layout of the 47-bar planar truss

Fig. 16 Convergence curves for the 47-bar planar truss

Fig. 17 Convergence curves of the best and average performance of the 
studied algorithm for the 47-bar planar truss
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