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Abstract

Vibrating Particles System (VPS) optimization is a newly made meta-heuristic algorithm to optimize problems by inspiration of the
free vibration of viscous-damped systems with single degree of freedom. The agents are modeled as particles which systematically
proceed toward their equilibrium conditions that are reached by the existing population and historically best position. To enhance the
performance of the VPS algorithm, Enhanced Vibrating Particles System (EVPS) applies a new process for updating agent’s positions.
This paper tries to improve the EVPS algorithm with the aim of reduction in the regulatory parameters' effect on the algorithm's
performance by reducing the regulatory parameters. To evaluate the performance of the proposed method, it is applied to four

optimization problems of truss structures including mixed of discrete and continuous design search spaces with displacement, stress

and buckling constraints. As a result, the proposed algorithm is a suitable method and more research can be done on it.
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1 Introduction
The term "optimization" means the systematic selection of
values for variables from or within a permissible collection,
seeking to minimize or maximize the function of a prob-
lem [1]. One of the optimization tools is meta-heuristic algo-
rithms that are able to achieve a global or near-global opti-
mal solutions by spending the right amount of time. Some
of these algorithms are listed as follows: Particle Swarm
Optimization (PSO) [2], Genetic Algorithms (GA) [3],
Colliding Bodies Optimization (CBO) [4], Ant Colony
Optimization (ACO) [5], Charged System Search algorithm
(CSS) [6], Harmony Search (HS) [7], Simulated Annealing
(SA) [8], Ray Optimization (RO) [9], Big-Bang Big-Crunch
(BBBC) [10], and Vibrating Particles System (VPS) [11].
Researchers in recent years have sought to develop the
field of structural optimization by optimizing ideal small
structural systems and components to enable the optimal
design of more intricate structures [12]. Structural opti-
mization is classified into three kinds: (1) Optimizing
the size of sections (2) Optimizing the shape of the struc-
ture (3) Optimization of structural topology [13]. Truss

structure is one of the most useful civil engineering struc-
tures in around the world. Truss optimization has been
considered by engineers and researchers for decades [14].
Therefore, truss structures are suitable tool to evaluate the
performance of optimization algorithms. Size/layout opti-
mization expresses minimizing the weight of the structure
by selecting cross-sections and configuration of the struc-
tural members under strength constraints and serviceabil-
ity limits. Different meta-heuristic algorithms have been
used by various researchers to optimize the size and lay-
out of the structure. For instance, Wu and Chow [15] con-
sidered the sections and nodal coordinates as a discrete
and continuous variables to optimize space trusses by
GA algorithm, Hasangebi and Erbatur [16] used "anneal-
ing perturbation" and "adaptive reduction of the design
space" method to improve GA for mass minimization of
space trusses, Hasangebi and Erbatur [17] used Simulated
Annealing (SA) algorithm, Kaveh and Kalatjari [18] used
the force method and genetic algorithm to minimize the
weight of the truss structure, Tang et al. [19] optimized size,
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shape and topology of trusses using the improved Genetic
Algorithm (GA), Rahami et al. [20] employed energy and
force method and Genetic algorithm (GA) for optimize
the size and layout of the truss structures, Kazemzadeh
Azad et al. [21] suggested a Mutation-Based Real-Coded
Genetic Algorithm (MBRCGA) for minimizing the weight
of truss, Miguel et al. [22] presented a single-stage Firefly-
based Algorithm (FA) to study simultaneous size, shape
and topology optimization for trusses, Gholizadeh [23] pro-
posed a hybrid of Cellular Automata (CA) and the Particle
Swarm Optimization (PSO) algorithm to solve size and lay-
out optimization of truss structures, Mortazavi et al. [24]
utilized integrated Particle Swarm Optimizer (iPSO) algo-
rithm for sizing and shape optimization of planar and spa-
tial truss structures, Panagant and Bureerat [25] suggested
Fully Stressed Design-Grey Wolf-Adaptive Differential
Evolution (FSD-GWADE), Kaveh and Zaerreza [13] uti-
lized shuffled shepherd optimization algorithm (SSOA),
Jawad et al. [26] used Artificial Bee Colony (ABC) algo-
rithm, Kaveh et al. [27] studied layout optimization of pla-
nar braced frames by using Colliding Bodies Optimization
(CBO) and Colliding Bodies Optimization-Modified
Dolphin Monitoring (CBO-MDM).

Vibrating Particles System (VPS) is a multi agent-based
randomly optimization algorithm by inspiration of the free
vibration of viscous-damped systems with single degree
of freedom where particles move toward minimum energy
level [11]. The high number of regulatory parameters is one
of the features of VPS that affect the performance of the
algorithm. Therefore to reduce the impact of these regula-
tory parameters on the algorithm's performance, in pres-
ent study, in addition to applying a new process for update
the particles position provided by Kaveh et al. [28], by
Weighing of regulatory parameters based on the objec-
tive function values and adding a mutation mechanism to
escape from local optima, standard VPS is improved to
formulate the IVPS (Improved Vibrating Particles System)
algorithm. The ability of the proposed method are com-
pared to those standard and enhanced version of the vibrat-
ing particle system algorithm and some other powerful
metaheuristic algorithms on some size/layout optimization
of truss structure problems. Results indicate that the pro-
posed method is a promising development to improve the
performance of the standard version of the VPS algorithm.

The present paper consists of six sections. After this
introduction as the Section 1, in Section 2, the mathemati-
cal formulations of sizing-layout truss structural optimiza-
tion are stated. In Section 3 the vibrating particles system
algorithm and its enhanced version is briefly described.

The proposed method is explained in Section 4. Four well
know sizing and shape optimization of truss structures are
studied in Section 5. Finally, conclusions are presented in
Section 6.

2 Formulation of the structural optimization problems
In the present study, the aim is to optimize size and layout
of the truss structures while satisfying under some design
constraints to achieve the minimum weight of the struc-
ture. Two types of design variables (a) cross sections areas
for elements of truss and (b) coordinates of some joints of
truss are organized to minimize the weight of truss struc-
tures in size and layout optimization. To optimize the size
and shape to achieve the lowest weight of the truss struc-
ture, the objective function is expressed as follows:

Fmd{X} =[xl,xz,...,xng,xngﬂ,xngﬂ,...,xng+nn],

To minimize W({X}) = %piA,-L,-, )
i1

({X})SO,j :1,2,...,nc.

<x; <x

X max

min =

Subjected to {gj

Where {X} is a vector of optimization variables compris-
ing the cross-sectional areas and the coordinates of some
nodes; ng is the number of member groups for cross-sec-
tional area; nn is the number of nodes should be set those
coordinates; W({X}) presents the weight of the structure;
nm is the number of elements of the structure; nc is the
number of constraints; p, presents the material density of
ith member; 4, and L, denote the cross-section area and the
length of the ith member, respectively. x, ;, and x,,, are the
minimum and the maximum allowable values of optimiza-
tion variables in the search space. g ({X}) presents design
constraints; and nc is the number of constraints.

For handling the different constraints in optimization
problems of this paper, a penalty approach is used. So, the
objective function (Eq. (1)) is redefined as follows:

P({x}) = (1+&0) < ({X}). @

Where P({X}) presents the penalized objective function
that should be minimized, v is the sum of the violations of
the design constraints. Here, ¢, is considered as unity and
&, is determined by:

iter

&, =1.5+1.5x S 3

ier, .«

where iter is the current iteration number and iter,, is the
maximum iteration number.



3 Vibrating particles system algorithm

In this section the phenomenon of damped free vibration,
the VPS algorithm, the VPS algorithm and the EVPS algo-
rithm are presented briefly.

3.1 The damped free vibration phenomenon

Vibration means the reciprocating motion of a particle
around its equilibrium position. If the vibration is out of
the system due to the presence of periodic force (displace-
ment or velocity), it is called forced vibration, and if it is
due to the internal forces of the system, it is called free
vibration. A body with mass of m as the vibrating particle,
a spring with hardness of & that acts as the inertial force of
the system, and a viscous damper with viscous damping
coefficient of ¢ that simulates energy loss during vibration
(Fig. 1) have been used to modeling the free vibration of
viscous-damped systems with single degree of freedom.
The motion equation of the body when it shifts as far as x
relative to its equilibrium position will be as follows:

mX+cx+hkx=0. “)
Two parameters of the damping ratio ¢ and the critical

damping coefficient c, are defined to solve this differential
equation as follows:

£=—, )
¢ = 2ma, | ©)
©, = % : %)

where o, is the natural circular frequency of the system.

Depending on the value of the damping ratio & can be
divided into three different types of systems: (1) over-
damped system (&> 1); (2) critically damped system (= 1)
and (3) under-damped system (¢ < 1). A particle only has
intermittent motion around its equilibrium position when
¢ <1 (under-damped system). In this case, the solution of
Eq. (4) is as follows:

k

L oWAMD—

i iy

X

Fig. 1 Viscous-damped free vibration
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x(t)= pe =" sin(wpt +¢), ®)

wp =, \1-E% &)

where p and ¢ are constants and respect to the initial con-
ditions of the system are calculated. w,, and ¢ are damped
natural frequency of the system and time, respectively.

3.2 The VPS algorithm

In this algorithm, the initial position of the particles is ran-
domly generated in the search space by:

xl-j =X + rand.(xmax - xmm) , (10)
where xl:/ is the jth variable of ith particle; rand is a random
number uniformly distributed in the range of [0, 1].

After calculating the objective function of each parti-
cle, three particles HB, GP and BP are used to update the
position of the particles, which are the best position from
the historically of the whole particle population, good par-
ticle and bad particle, respectively. To determine GP and
BP, at the first the particle population are sorted in ascend-
ing order based on their objective function values, and
each of the GP and BP particles is randomly selected from
the upper and lower halves, respectively. The following
formula is then used to update the particle position:

%/ = @ D.Arand\+ HB |+ @, | D.Arand2+GP’ |

. (11)
+oy| D.Arand3+BP |,

A= [col.(HBf —x/ )} + [coz.(GPj —x/ )} {%.(BPJ' —x )} 12)

D:[ iter j_ ’ (13)

ier, .«

o+, +o;=1. (14)

Where 4 and D simulates amplitude of vibration and
damping, respectively. a is a constant; w,, w,, and w, are
three parameters to measure the relative importance of HB,
GP, and BP, respectively. randl, rand2, and rand3 are ran-
dom numbers uniformly distributed in the range of [0,1].

The VPS algorithm is one of the swarm intelligence
algorithms that tries to update the position of particles
by learning from the existing particle positions. This
algorithm obtains the new position of the particles using
vibration around three equilibrium positions HB, GP
and BP. Moving towards the HB and GP particles pro-
vides exploitation phase of the algorithm so that the new
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position of the particle approaches the position of the par-
ticle with a better objective function. On the other hand,
moving towards the BP particle avoids the algorithm
being in local optima, and provides exploration phase
for the algorithm. Using the combination of these three
particles in updating the particle position creates a bal-
ance between the exploitation and exploration phases of
the algorithm. The probability of the impact of each of the
HB, GP and BP particles in updating the new position of
particle is controlled using the parameters @,, ®, and w;.
Inspired by Eq. (8), Eq. (11) tries to search randomly in the
solution space by vibration around three equilibrium posi-
tions HB, GP and BP. For this purpose, 4 (Eq. (12)) simu-
lates the amplitude of the particle oscillation, just like the
p parameter in Eq. (8), and D (Eq. (13)) simulates the term
e " in Eq. (8) which represents the damping property by
reducing the amplitude of particle motion and causes the
answers to converge to an optimal solution, while increas-
ing the iteration loops of the algorithm. Also, in Eq. (11)
the value of sin(w,t + ¢) is considered unity to have vibra-
tion with maximum amplitude.

To decide whether the effect of BP should be consid-
ered in the updating process of particle position or not, the
parameter p is generated between 0 and 1. For this purpose,
if p<rand,then w;=0and w,=1-ow, .

To avoid of boundary violation when the particle position
is being updated, the harmony search-based side constraint
handling approach is used [29]. In this method, the violating
component should be changed with the corresponding com-
ponent of the historically best position of a random parti-
cle with the possibility like Harmony Memory Considering
Rate (HMCR) parameter, otherwise it must be regener-
ated from the permissible search space. Moreover, if it is
replaced by the component of a historically best position,
this value should be changed with the neighboring value by
the possibility like Pitch Adjusting Rate (PAR).

3.3 The EVPS algorithm

In this section, the Enhanced Vibration Particle System
(EVPS) algorithm that presented by Kaveh and Hoseini
Vaez [28] is briefly described.

In the EVPS algorithm, A parameter like Memory is
defined that it saves NB number of the historically best
positions in the whole population. On the other hand, HB
is replaced with OHB (one of the historically best positions
in the whole population) that it is one row of Memory. The
best answer for each iteration is compared with the worst
value of the Memory, to be replaced if it is better.

The change in the mechanism of updating the position
of the particles is another change made in this method.
According to that, one of the (a), (b) and (c) from Eq. (15)
is used with the possibility of w,, w,, and w,, respectively
instead Eq. (11).

[D.A.randl +OHBJJ;(a)

i >

3/ =1 [ D.Arand2+GP’ |5(b

)
| D.Arand3+ BP' |;(c) -
il(OHBj —x/ );(a)

A= J_rl(GPf—x{);b ,

(2)
£1(BP =/ )3(c)

where (+1) are used randomly. OHB, GP and BP are deter-
mined independently for each particle.

4 Presentation of present method
In this section, the present method is introduced. In the
continuation of changes made by Kaveh and Hoseini
Vaez [28], corrections will be made to reduce the number
of regulatory parameters in the process of the algorithm.
These amendments are as follows:

In this method, instead of assigning specific numbers
to the parameters w,, @,, and w;, the values are assigned
relative to the evaluated objective function of OHB, GP,
and BP particles, respectively. Therefore, in order to create
a new position for a selected particle (ith particle), the fol-
lowing can be done:

Step 1: The initial weights for the four particles OHB,
GP, BP and the selected particle are calculated with Eq. (16),
Eq. (17), Eq. (18) and Eq. (19), respectively. In these equa-
tions, the objective function is considered as a minimiza-
tion function.

1

Moy = ————, 16
OHB Costomg (16)

Mep = 1 (17)
ar Costgp

mgp = o (18)
B Costgp

mp = ! (19)
” Costyp

where m,,, mgp, My, and my, are the initial weights
assigned to the OHB, GP, BP and seclected particle,



respectively; Cost,,,, Cost.p, Costy, and Cost,, are the

objective function values that are calculated for the OHB,

GP, BP and selected particle, respectively.

Step 2: According to Egs. (20) and (21), two key ranks

d, and d, are defined, respectively. The rank of the selected
particle in the list which the particles are sorted in ascend-
ing order based on their objective function values (the
objective function is considered as a minimization func-
tion) is compared by two key ranks d, and d,. Then, based
on the following conditions, the weight of the selected par-
ticle (m,;) is assigned to the initial weight of one of the
three particles OHB, GP and BP:

(a) If the rank of the selected particle in the ordered list
is less than d,, according to Eq. (22), the weight of
selected particle will be added to the initial weight of
the OHB.

(b) If the rank of the selected particle in the ordered list is
more than d,, according to Eq. (23), the weight of selected
particle will be added to the initial weight of the GP.

(c) Otherwise, according to Eq. (24), the weight of
selected particle will be added to the initial weight of
the BP.

d = PopulationSize xy ’ (20)
4
d, = PopulationSize ’ 1)
2
Moris = Moy +mp) < B (22)
mgp = (mgp +myp)x (23)
mgp’ = (mgp +mp) Xy, (24)

ew

Where PopulationSize is all candidate solutions; m,,,;,"",
mgp"" and m,,"" are the new weights calculated for par-
ticles OHB, GP and BP, respectively. To satisfy the bal-

ance between the two phases of exploitation and explo-

e

ration during the increase in number of iterations of the
algorithm, we create y and f according to Eq. (25) and
Eq. (26) as the decremental and incremental parameters,
respectively which lead to more exploration-less exploita-
tion in the initial iteration loops of the algorithm and less
exploration-more exploitation in the final iteration loops
of the algorithm.

_ iter, ., —iter 25)

iter, .«

_ iter, . +iter (26)

iter, .«
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According to the second step, in the initial iteration
loops of the algorithm, the effect of good and bad particles
decreases and increases, respectively, and in the final itera-
tion loops of the algorithm, the effect of good and bad par-
ticles increases and decreases, respectively. Also, by adding
the weight of the selected particle (m,,,) to the weight of the
OHB particle (m,,,;), the convergence speed is increased,
and to avoid being in the local optima, we reduce the proba-
bility of this effect by considering the y reduction coefficient.

Step 3: Finally, the parameters w,, @, and w, which are
the three parameters for measuring the relative impor-
tance of OHB, GP and BP are equal to the ratio of the new
weight of the OHB, GP and BP particles to the total new
weight of these three particles, respectively (according to
Eq. (27), Eq. (28) and Eq. (29)).

@7
new
W, = osiB ;(co1 is relative importance to OHB)
new + mVIC’W + mnew
Momp +MGp BP
(28)
new
w, = GP ;(@, is relative importance to GP)
new + mnew 4 an’W’
Mowp + MGp BP
29)
new
o = B8P ;(w; is relative importance to BP)
new

new new
Mopp +Mgp +Mgp

Further, in this version of the algorithm, the regulatory
parameter p has been removed from the EVPS algorithm.
Also, to avoid being in the local optima, a mechanism such
as the mutation mechanism in the Genetic Algorithm (GA)
and then a new parameter u, has been added to the algo-
rithm. According to Eq. (30), the parameter y is obtained
based on u, and this parameter is compared with rand.
If 4 > rand, the position of the jth variable from the par-
ticle according to the Eq. (10) is reproduced within the
design range. In the initial iteration loops of the algorithm,
4 parameter is equal to u, and with increasing iterations,
this parameter decreases to zero.

H=Hy XY, (30)

where ¢, is the mutation rate that is set in the range of [0,1].

5 Numerical examples

The performance and applicability of the present method is
assessed by four sizing and layout optimization problems
and its performance is compared with other versions of VPS
algorithm. The parameter of the maximum number of iter-
ations are 500 for the first three problems and 1500 for the
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fourth problem. The number of population for all problems
is 20. Other parameters for VPS and EVPS algorithms
(including a, p, w,, @,, NB, HMCR, PAR and neighbor)
are set based on [11] and [30], respectively. It should be
noted that in the references the value of 0.7 is suggested
for the p parameter of VPS algorithm, but in this research,
two values of 0.2 and 0.7 have been considered for the
mentioned parameter, and the best result for one of these
two values is presented in the tables. Also, the MATLAB
code provided in [30—32] are used for the EVPS algorithm,
the 2017 and 2019 versions of the VPS algorithm, respec-
tively. Thirty independent optimization runs are carried
out for each example.

5.1 The planar 15-bar truss structure

The 15-bar planar truss structure is the first example to be
considered. This truss is affected by a force of 10 kips as
shown in Fig. 2. This example consists of 23 variables that
15 of them are in discrete search space for sizing optimiza-
tion and the rest are in continuous search space for layout
optimization. Information about modeling and optimiza-
tion are presented in Table 1.

Table 2 shows that the present method obtains accept-
able results compared to other algorithms. Although
MBRCGA [21], SCPSO [23] and iPSO [24] algorithms
have better results than the present method, but the best
weight obtained by the present method compared to the
VPS algorithm and its enhanced version (EVPS) is better,
but the number of analyzes that the present method needs to
achieve the best weight is more than the other two versions.
Fig. 3 shows the best shape for the 15-bar truss obtained by
the present method. Fig. 4 shows a comparison between
the convergence history of VPS, EVPS algorithms and the
present method for the average performance of the algo-
rithms in 30 independent runs. The convergence history of
the present method for the mean and best performance of
the algorithm in 30 independent runs are shown in Fig. 5.

120 in

120 in 120 in |

@ 5 é 6
| |
| |

Fig. 2 Schematic of the 15-bar planar truss

Table 1 Modeling and design data for the 15-bar planar truss

Simulation and design data

Design variables:

Sizing variables A,i=12,.,15.

Layout variables Xy = Xgi X3 = X053 Vo3 Vs Vi Vs Vs Ve

Search range:

A; € §={0.111,0.141,0.174,0.220,0.270,0.287,
0.347,0.440,0.539,0.954,1.081,1.174,1.333,1.488,
1.764,2.142,2.697,2.800,3.131,3.565,3.813,4.805,
5.952,6.572,7.192.8.525,9.300,10.850,13.330,
14.290,17.170,19.180} (in”).

Possible sizing
variables

100 in. <x, <140 in.; 220 in. < x; <260 in.;

Layout variables 100 in. <y, <140 in.; 100 in. <y, < 140 in.;

bounds 50in.<y,<90in.; 20 in. <y, <20 in.;
-20in. <y, <201in.; 20 in. <y, < 60 in.
Material Parameters:
Density p 0.1 (Ib/in’)
Modulus of 4 .
elasticity £ 107 (ksi)
Constraints:
The allowable elements stress interval:
Stress

[-25 (ksi), 25 (ksi)]

800

7oof ++-\/P$(2019 code)

- --EVPS

VPS(2017 code)
—Present work

D
=]
=]

o
=]
=]

Penalized weight (Ib)
ey
o
o

50 100 150 200 250 300 350 400 450 500

0 1 ! L L ! ! L L ! )
0 50 100 150 200 250 300 350 400 450 500
Iteration

Fig. 4 Convergence curves for the 15-bar planar truss

5.2 The planar 18-bar truss structure

The planar 18-bar truss is at nodes 1, 2, 4, 6 and 8 under
vertical loading about 20 kips as shown in Fig. 6. This
example has 12 optimization variables that 4 of them are
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900

——Best optimized design
800 | ——Average optimized design

Penalized weight (Ib)

Table 3 Modeling and design data for the 18-bar planar truss

Simulation and design data

Design variables:

Sizing variables

Layout variables X35 X5y X9y Xg5 V35 Vss Vs Vo-

Search range:

0 50 100 150 200 250 300 350 400 450 500
Iteration

Fig. 5 Convergence curves of the best and average performance of the

studied algorithm for the 15-bar planar truss

20 kips 20 kips 20 Kips 20 kips 20 kips
16 ®v 12 @w 8 @v 4 @ y 1 @i
17 15 13 11 9 7 S 3 g
Y &
x
@ 18 @ 14 @ 10 @ 6 @
|
T

| 250 in } 250 in } 250in 250 in

| 250 in |

Fig. 6 Schematic of the 18-bar planar truss

in discrete search space which are related to member sec-
tions and 8 of them are in continuous search space that are
related to node coordinates. Information about modeling
and optimization are presented in Table 3.

Table 4 shows that, like the 15-bar truss results, the
MBRCGA [21], SCPSO [23] and iPSO [24] algorithms
performed better than the present method, but still the best
weight obtained by the present method (i.e., 4,525.09 1bs)
is better than the values obtained by the VPS algorithm
and its enhanced version (EVPS). In addition to the fact
that the present method requires more analysis to achieve
the best weight than the other two versions of the VPS
algorithm, the average and standard deviation for 30 inde-
pendent runs were also more values. Optimum layout for
18-bar truss is shown in Fig. 7 that found by the present
method. Fig. 8 shows a comparison between the conver-
gence history of VPS, EVPS algorithms and the present
method for the average performance of the algorithms in
30 independent runs. The convergence history of the pres-
ent method for the mean and best performance of the algo-
rithm in 30 independent runs are shown in Fig. 9.

5.3 The spatial 25-bar truss

As shown in Fig. 10 the 25-bar truss is considered as
the third problem. This structure is under concentrated
loading as shown in Table 5. This example consists of 13

A, € §={2.00,2.25,2.50, ..., 21.25, 21.50,
21.75}(in’)

775 in. <x; <1225 in.;
525in. <x53<975in,;
275 in. <x,<725in,;
25in. <x, <475 in.;
225in. £y, ys5, V5, Vo <245 in.

Possible sizing variables

Layout variables bounds

Material Parameters:
0.1 (Ib/in’)
10* (ksi)

Density p
Modulus of elasticity £

Constraints:

The allowable elements stress interval:

Stress [-25 (ksi), 25 (ksi)]
Ed4; .

Local buckling |(O-C)i S%’ bR I8 B
i

variables that 8 of them are in discrete search space for
sizing optimization and the rest are in continuous search
space for layout optimization. Other information related to
modeling and optimization are given in Table 5.

According to the results shown in Table 6, VPS algo-
rithm, SCPSO [23] and iPSO [24] found a smaller weight
as the best weight, which had better results than the pres-
ent method, while the present method has achieved less
weight compared to the EVPS algorithm. Comparison
between the optimum layout obtained by the present
method and initial layout is shown in Fig. 11. Comparison
of the average performance of VPS, EVPS algorithms and
the present method for 30 independent runs are shown in
Fig. 12. The convergence history of the present method
for the mean and best performance of the algorithm in 30
independent runs are shown in Fig. 13.

5.4 The planar 47-bar truss

The last sizing and shape optimization problem is the pla-
nar 47-bar truss that is indicated in Fig. 14 which consist
47 members and 22 nodes. The nodes of structure are sub-
jected to three load cases that are presented in Table 7. This
example has 44 optimization variables that 27 of them are
in discrete search space which are related to member sec-
tions and 17 of them are in continuous search space that are
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Fig. 7 Optimum layout of the 18-bar planar truss
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Fig. 8 Convergence curves for the 18-bar planar truss
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Fig. 9 Convergence curves of the best and average performance of the
studied algorithm for the 18-bar planar truss

Fig. 10 Schematic of the 25-bar spatial truss

related to node coordinates. Other information for model-
ing and optimization are given in Table 7.

According to the results of Table 8, the SA [17], FSD-
GWADE [25], CPSO [23], SCPSO [23] and iPSO [24]
algorithms have better results than the present method,
but the best and average weights for 30 independent

Table 5 Modeling and design data for the 25-bar spatial truss

Simulation and design data

design variables:
A Ay=Ay=A,= A Ag= A, = A= Ay
A=Ay A=Ay Ay = Ay = Ay = Ay,
A=Ay =A)0= Ay Ay = Ay = Ay, = Ay

Sizing variables

Xy T X T X T Xy Xg T Xg = =X = <Xy
V3TV = Vs = Ve V1= Vs = Vo= Vios

z,= 2= Zg;

Layout variables

Search range:

4, €8=1{0.1,0.2,0.3,0.4,0.50.6,0.7,0.8,0.9,1.0,1.1,
1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,
2.6,2.8,3.0,3.2,3.4}(in).

20in. <x,<60in.;40 in. <x; <80 in.;
40 in.<y,<80in.; 100 in. <y, < 140 in.;

Possible sizing
variables

Layout variables

bounds 90 in. <z, < 130 in.
Material Parameters:
Density p 0.1 (Ib/in’)
Modulus of 4o .
elasticity £ 107 (ksi)
Constraints:
Stress The allowable elements stress interval:

[-40 (ksi), 40 (ksi)]
The allowable nodal displacement interval:

Displacement [-0.35 (in.), 0.35 (in.)]

Loads:
Nodes F (kips) F (kips) F_(kips)
1 1.0 -10.0 -10.0
2 0.0 -10.0 -10.0
3 0.5 0.0 0.0
6 0.6 0.0 0.0

runs found by the present method is better than VPS and
EVPS algorithms, but the number of analyzes is more.
Comparison between the optimum layout obtained by
the present method and initial layout is shown in Fig. 15.
Fig. 16 shows the comparison of convergence histories of
the 47-bar truss structure for VPS, EVPS and the present
method. Fig. 17 is compared the convergence histories of
average and best performance for the present method.

6 Conclusions

In present paper, the ability of the new enhanced version
of VPS metaheuristic algorithm that is named Improved
Vibrating Particles System (IVPS) algorithm in optimiz-
ing size/layout the truss structures is investigated. VPS is
a multi agent-based algorithm by inspiration of the free
vibration of viscous-damped systems with single degree
of freedom. The present method has tried to reduce the
dependence of the VPS algorithm on its regulatory param-
eters by weighting the regulatory parameters of the VPS
algorithm using the objective function values.
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Fig. 11 Optimum layout of the 25-bar spatial truss
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Fig. 12 Convergence curves for the 25-bar spatial truss
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Fig. 13 Convergence curves of the best and average performance of the
studied algorithm for the 25-bar spatial truss

All of the optimization problems of truss structure in
this paper involve size and layout variables and the fourth
problem with 44 optimization variables is a slightly larger
scale problem. The results of the present method in all
problems were close to the best results obtained by other
powerful algorithms and in some cases, it achieved bet-
ter results than them. Also, in all structures except 25-bar
spatial truss, it has achieved better results than other
versions of the vibrating particle system algorithm. The
weight gained by the standard version of the vibrating
particle system algorithm was slightly different (0.029%)

30in 60 in 60 in

30 in
30 in

60 in

60 in

60 in

120 in

120 in

120 in

60 in | 60 in

Fig. 14 Schematic of the 47-bar planar truss

from the current method for the spatial 25-bar truss. In
this paper, only four small size/layout optimization truss
structures have been used to evaluate the capability of
present method, so the comparison between the perfor-
mance of the present method and other versions of the
vibrating particle system algorithm can be tested using
other benchmark structures.

Compliance with ethical standards
Conflict of interest: No potential conflict of interest was
reported by the authors.
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Table 7 Modeling and design data for the 47-bar planar truss

[13

Simulation and design data

Design variables:

Sizing variables

Layout variables

A=Ay Ay = A5 As=Ag Ay Ag=Ag; Ay A = A3 Ay = A5 45 =4y
A=Ay Ay = Ay Ay = Ay Ayy = Aoy Ays = Aoy Ayys Aoy Ayy = A
Ay = Ayy; Asyy A3y = Asg; Ayg = Ay Ay Azg = Aoy Ay = Ay Ay Ay = Aus;
A=Ay
Xp T X Xy T NG V3 T Vg5 Xs T Xy Vs = Vs X7 = X3 V7 = Vs Xo = X5
Yo = V105 X1t T Fis Vi T V125 X1z T Fias Viz T Vias X9 T o0 Vie T Voo Yis T X
Yis = Vo

Search range:

Possible sizing variables

Layout variables bounds

4,€5={0.1,0.2,0.3,04, ..., 4.8, 4.9, 5.0}(in’).
0in.<x,<120in., (i=2,4, 6, 8); -30 in. <x,< 90 in., (i = 10, 12, 14, 20);
30 in. <x, <150 in.; 60 in. <y, < 180 in.; 180 in. < y, < 300 in.;
300 in. <y <420 in.; 360 in. <y, <480 in.; 420 in. <y, < 540 in.; 480 in.
<, <600 in.; 540 in. < y,, < 660 in.; 540 in. < y,, < 660 in.

Material Parameters:

Density p
Modulus of elasticity £

0.3 (Ib/in’)
3 % 10" (ksi)

Constraints:

Stress

The allowable elements stress interval: [-15 (ksi), 20 (ksi)]

Local buckling |(O'C)i S%’ i=12,....47, p=3.96.
i

Loads:
case Nodes F (kips) F (kips)
| 17 6.0 -14.0

22 6.0 -14.0
2 17 6.0 -14.0
3 22 6.0 -14.0
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Fig. 15 Optimum layout of the 47-bar planar truss
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